

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +19/2 nuclei.

Last updated 2/10/23

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +19/2$ nuclei	i. Unless otherwise stated, all Q-values are taken from [2021Wa16] or
deduced from values therein. J ^{π} values for ¹³⁵ Ce, ¹³⁹ Nd, ¹⁴³ Sm, ¹⁴⁷ Gd, ¹⁵⁹ Yb, ¹⁶³ Hf are	taken from ENSDF.

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\varepsilon \alpha}$	Experimental
125 0				0.005(5)			1.01.1(1.0)	
¹⁵⁵ Ce		1/2+	17.8(3) h	2.027(5)	-2.955(10)		1.014(10)	[1976Ge10]
¹³⁹ Nd		3/2+	29.7(5) m	2.812(28)	-1.740(28)		2.202(29)	[1967La19]
¹⁴³ Sm		$3/2^+$	8.83(1) m	3.444(4)	-0.856(2)		2.887(5)	[1968Bl13]
¹⁴⁷ Gd		$7/2^{-}$	38,06(12) h	2.188(3)	-1.650(3)		5.179(3)	[1969Ch32]
¹⁵¹ Dy		7/2-	17.8(2) m*	2.871(5)	-0.277(7)		6.367(4)	[1978MoZH, 1973Bi06, 1965Ma51, 1964Ma19]
¹⁵⁵ Er		$(7/2^{-})$	5.3(3) m	3.831(18)	0.896(9)		6.989(7)	[1969To06]
¹⁵⁹ Yb		5/2-	1.72(10) m	4.740(30)	2.181(31)		7.781(25)	[1993Al03]
¹⁶³ Hf		$(5/2^{-})$	40.0(6) s	5.520(40)	3.263(30)		8.876(38)	[1982Sc15]
^{167}W		$(5/2^{-})$	19.9(5) s	6.260(30)	4.477(34)		10.273(34)	[1989Me02]
¹⁷¹ Os		5/2-	8.3(2) s	6.950(30)	5.705(23)		11.629(33)	[1995Hi02]
¹⁷⁵ Pt		(7/2-)	2.43(4) s	7.686(22)	6.998(21)		13.117(34)	[2014Pe02]
¹⁷⁹ Hg		$(7/2^{-})$	1.06(4) s	8.060(30)	7.776(30)	0.37(6)%***	14.037(31)	[2002Ko09, 2002Ro17, 1971Ha03, 1971Ho07]
¹⁸³ Pb		(3/2-)	535(30) ms	9.010(30)	8.708(31)		14.984(31)	[2002Je09]
^{183m} Pb	0.079(6)	(13/2+)	415(20) ms	9.089(30)	8.787(31)		15.063(31)	[2002Je09]
¹⁸⁷ Po		$(1/2^{-}, 5/2^{-})$	1.40(25) ms	9.210(30)	10.216(34)		16.986(34)	[2006An11]

* Weighted average of 17.5(5) m [1978MoZH], 16.9(5) m [1973Bi06], 17.7(5) m [1965Ma51] and 18.0(2) m [1964Ma19].

** Weighted average of 1.00(5) s [2002Ko09], 1.08(9) s [2002Ro17], and 1.09(4) s [1971Ha03].

*** [1971Ho17] reports $I_{\beta\rho}p/I_{\alpha} = 0.28(4)\%$. Combining this value with $BR_{\alpha} = 75(4)\%$ [2012Ve04] results in $BR_{\beta\rho} = 0.37(6)\%$

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +19/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
125 ~					
¹³⁵ Ce	6.687(22)	11.641(10)	-0.362(10)		
¹³⁹ Nd	6.177(29)	10.676(28)	0.174(29)		
¹⁴³ Sm	5.665(24)	9.904(4)	0.075(28)		
¹⁴⁷ Gd	5.528(6)	9.283(1)	1.735(2)		
¹⁵¹ Dy	4.936(8)	8.203(4)	4.180(3)	5.6(4)%	[1974To07, 1982Bo04, 1978MoZH, 1973Bi06,
					1965Ma51, 1964Ma19 , 1990KaZM, 1989KaYU,
					1988KaZK, 1987KaZI, 1985Ne09, 1982De11,
					1981HoZM, 1979Ho10, 1978AfZZ, 1975ToZT,
					1974ToZN, 1974ToZQ, 1973BoXL, 1972OkZZ,
					1968Go13, 1967Go32, 1960Ma47]
¹⁵⁵ Er	4.859(10)	7.644(7)	4.118(5)	< 0.022(7)%	[1974To07, 1990Po13, 1990KaZM, 1978AfZZ,
					1975ToZT, 1974PeZS, 1970Ma23, 1969To06]
¹⁵⁹ Yb	4.419(31)	6.998(32)	3.951(18)	< 0.0001%***	[1995Hi12]
¹⁶³ Hf	3.727(79)	6.013(30)	4.139(31)		
^{167}W	3.284(34)	5.036(34)	4.751(30)	< 0.04(1)%	[1991Me05, 1989Me02]
¹⁷¹ Os	2.682(22)	3.957(24)	5.371(4)	1.8(3)%*	[1995Hi02, 1979Ha10, 2004GoZZ, 1996Pa01,
					1978Sc26, 1976HoZD, 1972To06, 1972ToZC,
					1972ToZL, 1972ToZO, 1972ToZW]
¹⁷⁵ Pt	2.212(22)	2.848(24)	6.164(4)	64.5(13)%	[2014Pe02, 1979Ha10, 2004GoZZ, 2002Ko09,
					1996Pa01, 1986Ke03, 1982De11, 1981DeZA,
					1981DeZL, 1976HoZD, 1973Ga08, 1971Ha03,
					1970Ha18, 1966Si08]
¹⁷⁹ Hg	1.919(30)	2.140(33)	6.430(4)**	75(4)%	[2012Ve04, 2002Ko09, 1979Ho10, 2002Ro17,
					1996Pa01, 1982HeZM, 1971Ha03, 1971Ho17,
					1970Ha18, 1969NaZT, 1968De01]
¹⁸³ Pb	1.542(31)#	1.497(33)#	6.928(7)	obs@	[2002Je09, 1989To01, 2012Ve04, 1987To09,
					1986Ke03, 1980Sc09]
^{183m} Pb	1.463(31)#	1.418(33)#	7.007(9)	obs@	[2002Je09, 1989To01, 1987To09, 1986Ke03,
					1984ScZQ, 1980Sc09]
¹⁸⁷ Po	1.320(37)	0.213(36)	7.979(15)	100%	[2006An11, 2007An19, 2005An17, 2005AnZY]

* Weighted average of 1.9(3)% [1995Hi02] and 1.7(3)% [1979Ha10].

** Deduced from α energy, 6.351(31) in [2021Wa16].

*** Not observed.

 $\ensuremath{^@}$ Not measured, expected to be 80-90% based on half-life.

Table 3

$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{147}\mathrm{Gd})$	coincident γ -rays	R ₀ (fm)	HF
4.070(3)***	5.6(4)**	7/2-	0.0		1.5706(33)	1.92(20)
ed average of 17.5(5 F007]. 4.67(3) MeV [1982) m [1978MoZH], 1 2Bo04], adjusted to	6.9(5) m [1973 4070(3) in [199	Bi06], 17.7(5) m [1965] 91Ry01].	Ma51] and 18.0(2) m [1964	4Ma19].	
ion from ¹⁵⁵ Er*, J ^{π}	$=(7/2^{-}), T_{1/2} = 5.3$	(3) m**, BR_{α} =	= <0.022(7)%.			
$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{151}\mathrm{Dy})$	coincident γ -rays	R ₀ (fm)	HF
4.012(5)	< 0.022(7)%	7/2-	0.0		1.546(21)	>2.9
tes from [1974To07] Γο06]. ion from ¹⁶⁷ W*, J ^π	, except where note = $(5/2^{-})$, $T_{1/2} = 19$	d. $.9(5)$ s, $BR_{\alpha} =$	< 0.04(1)%.			
$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{163}\mathrm{Hf})$	coincident γ -rays	R_0 (fm)	HF
		(5/2-)	sk sk sk		1 548(28)	0.0+1.3@
- -	$\frac{E_{\alpha}(\text{lab})}{4.070(3)^{***}}$ ed average of 17.5(5 F007]. 14.67(3) MeV [1982 ion from ¹⁵⁵ Er*, J ^π <u>E_{\alpha}(\text{lab})</u> 4.012(5) res from [1974T007] F006]. sion from ¹⁶⁷ W*, J ^π <u>E_{\alpha}(\text{lab})</u>	$E_{\alpha}(lab)$ $I_{\alpha}(abs)$ 4.070(3)*** 5.6(4)** ed average of 17.5(5) m [1978MoZH], 1 fo07]. 4.67(3) MeV [1982Bo04], adjusted to - ion from ¹⁵⁵ Er*, J ^{π} = (7/2 ⁻),T _{1/2} = 5.3 $E_{\alpha}(lab)$ $I_{\alpha}(abs)$ 4.012(5) <0.022(7)%	$E_{\alpha}(\text{lab})$ $I_{\alpha}(\text{abs})$ J_{f}^{π} 4.070(3)*** 5.6(4)** $7/2^{-1}$ ed average of 17.5(5) m [1978MoZH], 16.9(5) m [1973 f007]. 14.67(3) MeV [1982Bo04], adjusted to 4070(3) in [1992 dion from ¹⁵⁵ Er*, $J^{\pi} = (7/2^{-1}), T_{1/2} = 5.3(3)$ m**, $BR_{\alpha} =$ $E_{\alpha}(\text{lab})$ $I_{\alpha}(\text{abs})$ J_{f}^{π} 4.012(5) <0.022(7)%	$E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} $E_{daughter}(^{147}Gd)$ 4.070(3)*** 5.6(4)** 7/2 ⁻ 0.0 ed average of 17.5(5) m [1978MoZH], 16.9(5) m [1973Bi06], 17.7(5) m [1965M [107]]. 14.67(3) MeV [1982Bo04], adjusted to 4070(3) in [1991Ry01]. ion from ¹⁵⁵ Er*, J ^π = (7/2 ⁻), T _{1/2} = 5.3(3) m**, BR _α = <0.022(7)%.	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

[@] Calculated using 4.751(30) MeV [2021Wa16] for Q_{α} .

Table 6

direct α emission from ¹⁷¹Os*, J^{π} = 5/2⁻, T_{1/2} = 8.3(2) s, BR_{α} = 1.8(3)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{167}W)$	coincident γ-rays	R ₀ (fm)	HF	
5.290(10) 5.367(7)	5.166(10) 5.241(7)	7.0%*** 100%***	(7/2 ⁻) (5/2 ⁻)	0.12(3)% 1.68(3)%	0.079 0.0	0.079***	1.5721(95) 1.5721(95)	$7.7^{+3.0}_{-2.1}\\1.3^{+0.4}_{-0.3}$

* All values from [1995Hi02], except where noted. ** Weighted average of 1.9(3)% [1995Hi02] and 1.7(3)% [1979Ha10].

*** Uncertainties not given in [1995Hi02].

Table 7

Table /			
direct α emission from	175 Pt*, J ^{π} = (7/2 ⁻), T _{1/}	$_{/2} = 2.43(4) \text{ s}, BR_{\alpha} = 64.5(13)^{\circ}$	%

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{m \pi}$	$E_{daughter}(^{171}\mathrm{Os})$	coincident γ -rays	R ₀ (fm)	HF
5.950(4) 5.955(4)	5.814(4) 5.819(4)	7.3(16)% 1.3(4)%	4.0(9)% 0.7(2)%	(7/2 ⁻ , 9/2 ⁻) (9/2 ⁻)	0.2112(5) 0.2079(5)	0.2112(5), 0.1341(4), 0.0767(3) 0.2079(5), 0.1308(4), 0.0767(3)	1.5574(37) 1.5574(37)	${}^{6.6^{+2.1}_{-1.4}}_{38^{+16}_{-9}}$
6.087(4) 6.162(4)	5.948(4) 6.021(4)	100(1)% 8.7(15)%	55.0(5)% 4.8(8)%	(7/2 ⁻) (5/2 ⁻)	0.0767(3) 0.0	0.0767(3)	1.5574(37) 1.5574(37)	$ \begin{array}{r} 1.71(15) \\ 40^{+9}_{-7} \end{array} $

* All values from [2014Pe02], except where noted.

Table 8

W ()	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	Edaughter	(¹⁷⁵ Pt) coincide	ent γ-rays	R ₀ (fm)	HF	
6.430(4)	6.287(4)	75(4)%**	(7/2 ⁻)		0.0			1.5367(27)	1.26(12)
* Weight ** [2112	ted average of 1.0 2Ve04].	0(5) s [2002Ko09]	, 1.08(9) s [200	2Ro17], and	1.09(4) s [1971Ha03].				
Table 9 direct α emis	sion from ¹⁸³ Pb*,	$J^{\pi} = (3/2^{-}), T_{1/2}$	= 535(30) ms, <i>E</i>	$BR_{\alpha} = \text{obs}^{**}.$					
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{179}\mathrm{Hg})$	coincide	ent γ-rays	R_0 (fm)	HF
6.717(10) 6.926(7)	6.570(10) 6.775(7)	39(6)% 100(7)%	(3/2 ⁻) (7/2 ⁻)		0.217 0.0	0.217		1.5067(87) 1.5067(87)	$\begin{array}{c} 1.7^{+0.5}_{-0.4} *** \\ 3.9^{+0.9}_{-0.8} *** \end{array}$
* All val	ues from [2002Je	01], except where	noted.						
** Not n *** Valu Table 10 direct α emis	heasured, expected the based on a 100% sion from ^{183m} Pb	l to be 80-90% ba % <i>al pha</i> branching *, Ex = 79(6) keV,	sed on half-life. g ratio for ¹⁸³ Pb $J^{\pi} = ,T_{1/2} = 41$	5(20) ms, <i>BI</i>	$R_{\alpha} = \text{obs}^{**}.$				
** Not n *** Valu Table 10 direct α emis $E_{\alpha}(c.m.)$	heasured, expected the based on a 100% sion from 183m Pb $E_{\alpha}(lab)$	I to be 80-90% ba $\alpha al pha$ branching *, Ex = 79(6) keV, I_{α} (rel)	sed on half-life. g ratio for ¹⁸³ Pb $J^{\pi} = ,T_{1/2} = 41$ $I_{\alpha}(abs)$. $5(20) \text{ ms}, BI$ J_f^{π}	$R_{\alpha} = \text{obs}^{**}.$ $E_{daughter}(^{179}\text{Hg})$	coincider	ıt γ-rays	R ₀ (fm)	HF
** Not n *** Valu Table 10 direct α emis $E_{\alpha}(c.m.)$ 6.848(5) 7.013(11)	heasured, expected the based on a 100% sion from 183m Pb $E_{\alpha}(lab)$ 6.698(5) 6.860(11)	I to be 80-90% ba al pha branching *, Ex = 79(6) keV, I_{α} (rel) 100(6)% 3(1)%	sed on half-life. g ratio for ¹⁸³ Pb $J^{\pi} = ,T_{1/2} = 41$ $I_{\alpha}(abs)$ $(13/2^{+})$ $(7/2^{-})$	5(20) ms, <i>BI</i> J ^π _f	$R_{\alpha} = \text{obs}^{**}.$ $E_{daughter}(^{179}\text{Hg})$ 0.172 0.0	coincider 0.0061, 0 	t γ-rays .111	R ₀ (fm) 1.5067(87) 1.5067(87)	HF $1.12^{+0.24}_{-0.20}$ 140^{+90}_{-50}
** Not n *** Valu Table 10 direct α emis $E_{\alpha}(c.m.)$ 6.848(5) 7.013(11) * All val ** Not n *** Valu	heasured, expected to based on a 1009 sion from 183m Pb $E_{\alpha}(lab)$ 6.698(5) 6.860(11) ues from [2002Je0 heasured, expected to based on a 1009	I to be 80-90% ba al pha branching al pha branching $al constant is a constant in the second I_{\alpha}(rel)$	sed on half-life. g ratio for ¹⁸³ Pb $\frac{J^{\pi} = ,T_{1/2} = 41}{I_{\alpha}(abs)}$ $(13/2^{+})$ $(7/2^{-})$ noted. sed on half-life. g ratio for ¹⁸³ Pb	. $5(20) \text{ ms}, BI$ J_f^{π}	$R_{\alpha} = obs^{**}.$ $E_{daughter}(^{179}Hg)$ 0.172 0.0	coincider 0.0061, 0 	tt γ-rays .111	R ₀ (fm) 1.5067(87) 1.5067(87)	HF $1.12^{+0.24}_{-0.20}$ 140^{+90}_{-50} **

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pmb{\pi}}$	$E_{daughter}(^{183}\text{Pb})$	coincident γ-rays	R ₀ (fm)	HF
7.693(15) 7.979	7.528(15) 7.808	$100\% < 2\%^{**}$	$100\% < 2\%^{**}$	(1/2 ⁻) (3/2 ⁻)	0.286(1) 0.0	0.286(1)	1.487(13) 1.487(13)	$0.29^{+0.11}_{-0.09}$ >100

* All values from [2006An11].

** A single event at this energy was pbserved observed.

*** Inferred from half-life.

[@] The very low value for HF may indicate that the decay of ¹⁸⁷Po has other unobserved transitions.

References used in the Tables

- [1] 1960Ma47 R. D. Macfarlane, UCRL-9566, p. 46 (1960).
- [2] 1964Ma19 R. D. Macfarlane, D. W. Seegmiller, Nucl. Phys. 53, 449 (1964). https://doi.org/10.1016/0029-5582(64)90624-8
- [3] 1965Ma51 I. Mahunka, T. Fenyes, Izv. Akad. Nauk SSSR, Ser. Fiz. 29, 1121 (1965); Bull. Acad. Sci. USSR, Phys. Ser. 29, 1126 (1966).
- [4] 1966Si08 A. Siivola, Nucl. Phys. 84, 385 (1966). https://doi.org/10. 1016/0029-5582(66)90377-4
- [5] 1967Go32 N. A. Golovkov, K. Y. Gromov, N. A. Lebedev, B. Makhmudov, A. S. Rudnev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. —bf31, 1618 (1967); Bull. Acad. Sci. USSR, Phys. Ser. —bf31, 1657 (1968).
- [6] 1967La19 J. Lange, H. Munzel, I. Leitl, Radiochim. Acta 8, 123 (1967).
- [7] 1968Bl13 H. -J. Bleyl, H. Munzel, G. Pfennig, Radiochim. Acta 9, 173 (1968).
- [8] 1968De01 A. G. Demin, T. Fenyes, I. Mahunka, V. G. Subbotin, L. Tron, Nucl. Phys. A106, 337 (1968). https://doi.org/10.1016/0375-9474(67)90878-0

- [9] 1968Go13 N. A. Golovkov, So Ki Kvan, V. G. Chumin, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 27 (1968).
- [10] 1969Ch32 Y. Y. Chu, E. M. Franz, G. Friedlander, Phys. Rev. 187, 1529 (1969). https://doi.org/10. 1103/PhysRev.187.1529
- [11] 1969NaZT R. A. Naumann, Proc. Int. Conf. Radioactivity in Nucl. Spectrosc., Nashville, Tenn (1969), J. H. Hamilton, J. C. Manthuruthil, Eds., Gordon and Breach, New York, N. Y., Vol. I, p. 449 (1972).
- [12] 1969To06 K. S. Toth, R. L. Hahn, M. F. Roche, D. S. Brenner, Phys. Rev. —bf183, 1004 (1969). https://doi.org/10.1103/Phys-Rev. 183. 1004
- [13] 1970Ha18 P. G. Hansen, H. L. Nielsen, K. Wilsky, M. Alpsten, M. Finger, A. Lindahl, R. A. Naumann, O. B. Nielsen, Nucl. Phys. A148, 249 (1970).
- [14] 1970Ma23 I. Mahunka, Acta Phys. 28, 229 (1970); BNL-TR-356 (1970).
- [15] 1971Ha03 P. G. Hansen, B. Jonson, J. Zylicz, M. Alpsten, A. Appelqvist, G. Nyman, Nucl. Phys. A160, 445 (1971). https://doi.org/10.1016/0375-9474(71)90144-8
- [16] 1971H007 P. Hornshoj, K. Wilsky, P. G. Hansen, B. Jonson, M. Alpsten, G. Andersson, A. Appelqvist, B. Bengtsson, O. B. Nielsen, Phys. Lett. 34B, 591 (1971).
- [17] 1971Ho17 P. K. Hopke, R. A. Naumann, Phys. Rev. C4, 606 (1971). https://doi.org/10. 1103/PhysRevC.4.606
- [18] 1972OkZZ D. U. O'Kain, K. S. Toth, C. R. Bingham, R. L. Hahn, ORNL-4791, p. 5 (1972).
- [19] 1972To06 K. S. Toth, R. L. Hahn, M. A. Ijaz, R. F. Walker, Jr., Phys. Rev. C5, 2060 (1972). https://doi.org/10.1103/PhysRevC.5.2060
- [20] 1972ToZC K. S. Toth, M. A. Ijaz, R. L. Hahn, C. R. Bingham, R. F. Walker, Jr., ORNL-4791, p. 4 (1972).
- [21] 1972ToZL K. S. Toth, , REPT ORNL-4791, P4, (1972).
- [22] 1972ToZO K. S. Toth, CONF Aix-En-Provence(Nucl Phys), Vol2, P93, 10/9/72
- [23] 1972ToZU K. S. Toth, CONF Nashville(Reactions Between Complex Nuclei), Vol1 P76
- [24] 1972ToZW K S Toth, JOUR BAPSA 17 559.
- [25] 1973Bi06 C. R. Bingham, D. U. O'Kain, K. S. Toth, R. L. Hahn, Phys. Rev. C7, 2575 (1973). https://doi.org/10. 1103/Phys-RevC.7.2575
- [26] 1973BoXL J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [27] 1973Ga08 H. Gauvin, R. L. Hahn, Y. Le Beyec, M. Lefort, J. Livet, Nucl. Phys. A208, 360 (1973). https://doi.org/10.1016/0375-9474(73)90381-3
- [28] 1974PeZS I. Penev, K. Zuber, Y. Zuber, A. Lyatushinskii, A. V. Potempa, Program and Thesis, Proc. 24th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 106 (1974).
- [29] 1974To07 K. S. Toth, C. R. Bingham, W. -D. Schmidt-Ott, Phys. Rev. C10, 2550 (1974). https://doi.org/10. 1103/Phys-RevC.10.2550
- [30] 1974ToZN K. S. Toth, R. L. Hahn, E. Newman, C. R. Bingham, W. -D. Schmidt-Ott, ORNL-4937, p. 53 (1974).
- [31] 1974ToZQ K. S. Toth, CONF Nashville(Reactions Between Complex Nuclei), Vol1 P156 (1974).
- [32] **1975ToZT** K. S. Toth, C. R. Bingham, W. -D. Schmidt-Ott, ORNL-5025, p. 56 (1975).
- [33] 1976Ge10 R. J. Gehrke, R. G. Helmer, J. Inorg. Nucl. Chem. 38, 1929 (1976). https://doi.org/10.1016/0022-1902(76)80440-X
- [34] 1976HoZD P. Hornshoj, P. G. Hansen, E. Hagberg, B. Jonson, S. Mattsson, O. B. Nielsen, H. L. Ravn, P. Tidemand-Petersson, L. Westgaard, Proc. Int. Conf. Nuclei Far from Stability, 3rd, Cargese, France, R. Klapisch, Ed., CERN-76-13, p. 171 (1976).
- [35] 1978AfZZ V.P.Afanasev, L.Kh.Batist, E.E.Berlovich, K.Ya.Gromov, V.G.Kalinnikov, T.Kozlovski, Ya.Kormitski, K.A.Mezilev, F.V.Moroz, Yu.N.Novikov, V.N.Panteleev, A.G.Polyakov, V.I.Raiko, E.Rurarz, V.K.Tarasov, Yu.V.Yushkevich, Program and Theses, Proc.28th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Alma-Ata, p.70 (1978).
- [36] 1978MoZH D. M. Moltz, J. M. Wouters, R. A. Gough, M. S. Zisman, J. Cerny, LBL-8151, p. 13 (1978)
- [37] 1978Sc26 U. J. Schrewe, W. -D. Schmidt-Ott, R. -D. v. Dincklage, E. Georg, P. Lemmertz, H. Jungclas, D. Hirdes, Z. Phys. A288, 189 (1978). https://doi.org/10.1007/BF01408649
- [38] 1979Ho10 S. Hofmann, W. Faust, G. Munzenberg, W. Reisdorf, P. Armbruster, K. Guttner, H. Ewald, Z. Phys. A291, 53 (1979). https://doi.org/10.1007/BF01415817
- [39] 1980Sc09 U. J. Schrewe, P. Tidemand-Petersson, G. M. Gowdy, R. Kirchner, O. Klepper, A. Plochocki, W. Reisdorf, E. Roeckl, J. L. Wood, J. Zylicz, R. Fass, D. Schardt, Phys. Lett. 91B, 46 (1980). https://doi.org/10.1016/0370-2693(80)90659-0

- [40] 1981DeZL S. Della Negra, C. Depr'jn, D. Jacqaat, Y. Le Seyec REPT IPNO-RC-81-07.
- [41] 1981HoZM S. Hofmann, G. Munzenberg, W. Faust, F. Hessberger, W. Reisdorf, J. R. H. Schneider, P. Armbruster, K. Guttner, B. Thuma, Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, Vol. 1, p. 190 (1981); CERN-81-09 (1981).
- [42] 1982Bo04 J. D. Bowman, R. E. Eppley, E. K. Hyde, Phys. Rev. C25, 941 (1982). https://doi.org/10.1103/PhysRevC.25.941
- [43] 1982De11 S. Della Negra, C. Deprun, D. Jacquet, Y. Le Beyec, Ann. Phys. (Paris) 7, 149 (1982).
- [44] 1982DeZA M. de Saint-Simon, S. Haan, G. Audi, A. Coc, M. Epherre, P. Guimbal, M. Langevin, A. C. Mueller, C. Thibault, F. Touchard, Univ. Paris, Inst. Phys. Nucl., Ann. Rept., pE135 (1982).
- [45] 1982HeZM F. P. Hessberger, S. Hofmann, G. Munzenberg, W. Reisdorf, J. R. H. Schneider, P. Armbruster, GSI-82-1, 64 (1982).
- [46] 1982Sc15 U. J. Schrewe, E. Hagberg, H. Schmeing, J. C. Hardy, V. T. Koslowsky, K. S. Sharma, E. T. H. Clifford, Phys. Rev. C25, 3091 (1982). https://doi.org/10.1103/PhysRevC.25.3091
- [47] 1984ScZQ J. Schneider GSI-84-3 (1984).
- [48] **1985Ne09** R. Neugart, Hyperfine Interactions **24**, 159 (1985). https://doi.org/10.1007/BF02354810
- [49] 1986Ke03 J G Keller, K -H Schmidt, F P Hessberger, G Munzenberg, W Reisdorf, H -G Clerc, C -C Sahm, Nucl Phys A452, 173 (1986). https://doi.org/10.1016/0375-9474(86)90514-2
- [50] 1986Ke05 J. Kelly, W. Bertozzi, T. N. Buti, J. M. Finn, F. W. Hersman, M. V. Hynes, C. Hyde-Wright, B. E. Norum, A. D. Bacher, G. T. Emery, C. C. Foster, W. P. Jones, D. W. Miller, B. L. Berman, J. A. Carr, F. Petrovich, Phys. Lett. 169B, 157 (1986). https://doi.org/10.1016/0370-2693(86)90641-6
- [51] 1987KaZI K. Katori, H. Miyatake, A. Higashi, A. Shinohara, N. Ikeda, I. Katayama, S. Morinobu, RCNP (Osaka), Ann. Rept., 1986, p. 86 (1987).
- [52] 1987To09 K. S. Toth, D. M. Moltz, F. Blonnigen, F. T. Avignone III, Phys. Rev. C35, 2330 (1987). https://doi.org/10.1103/PhysRevC.35.2330
- [53] 1988KaZK K.Katori, H.Miyatake, A.Shinohara, A.Higashi, T.Ohshima, N.Ikeda, S.Hatori, I.Katayama, S.Morinobu, RCNP (Osaka), Ann.Rept., 1987, p.84 (1988).
- [54] 1989KaYU K. Katori, T. Ohshima, H. Miyatake, A. Shinohara, S. Hatori, I. Katayama, S. Morinobu, RCNP (Osaka), Ann. Rept., 1988, p. 92 (1989).
- [55] 1989Me02 F. Meissner, W. -D. Schmidt-Ott, V. Freystein, T. Hild, E. Runte, H. Salewski, R. Michaelsen, Z. Phys. A332, 153 (1989).
- [56] **1989To01** K S Toth, D M Moltz, J D Robertson, Phys Rev C**39**, 1150 (1989). https://doi.org/10.1103/PhysRevC.39.1150
- [57] 1990KaZM V. G. Kalinnikov, K. Ya. Gromov, M. Yanitski, Yu. V. Yushkevich, V. P. Afanasev, V. G. Egorov, M. Yakhim, V. A. Bystrov, N. Yu. Kotovsky, S. V. Evtisov, JINR-D13-90-183 (1990).
- [58] 1990Po13 A. V. Potempa, V. P. Afanasev, Ya. Vavryshchuk, K. Ya. Gromov, V. G. Kalinnikov, N. Yu. Kotovsky, V. V. Kuznetsov, M. Lewandowski, Ya. A. Saidimov, M. Yakhim, Zh. Sereter, V. I. Fominykh, V. Charnatski, Yu. V. Yushkevich, M. Yanitski, A. Yasinski, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 852 (1990); Bull. Acad. Sci. Ussr, Phys. Ser. 54, No. 5, 35 (1990).
- [59] 1991Me05 F. Meissner, W. -D. Schmidt-Ott, K. Becker, U. Bosch-Wicke, U. Ellmers, H. Salewski, R. Michaelsen, Z. Phys. A339, 315 (1991). https://doi.org/10.1007/BF01284072
- [60] 1993Al03 G. D. Alkhazov, L. H. Batist, A. A. Bykov, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, V. D. Wittmann, Z. Phys. A344, 425 (1993). https://doi.org/10.1007/BF01283198
- [61] 1995Hi02 T. Hild, W. -D. Schmidt-Ott, V. Kunze, F. Meissner, C. Wennemann, H. Grawe, Phys. Rev. C51, 1736 (1995). https://doi.org/10.1103/PhysRevC.51.1736
- [62] 1995Hi12 T. Hild, W. -D. Schmidt-Ott, V. Kunze, F. Meissner, H. Salewski, K. S. Toth, R. Michaelsen, Phys. Rev. C52, 2236 (1995). https://doi.org/10. 1103/PhysRevC.52.2236
- [63] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [64] 2002Je09 D. G. Jenkins, A. N. Andreyev, R. D. Page, M. P. Carpenter, R. V. F. Janssens, C. J. Lister, F. G. Kondev, T. Enqvist, P. T. Greenlees, P. M. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, C. D. O'Leary, P. Raddon, A. Simons, R. Wadsworth, D. T. Joss, Phys. Rev. C66, 011301 (2002). https://doi.org/10. 1103/PhysRevC. 66. 011301

- [65] 2002Ko09 F. G. Kondev, M. P. Carpenter, R. V. F. Janssens, C. J. Lister, K. Abu Saleem, I. Ahmad, H. Amro, J. Caggiano, C. N. Davids, A. Heinz, B. Herskind, T. L. Khoo, T. Lauritsen, W. C. Ma, J. J. Ressler, W. Reviol, L. L. Riedinger, D. G. Sarantites, D. Seweryniak, S. Siem, A. A. Sonzogni, P. G. Varmette, I. Wiedenhover, Phys. Lett. 528B, 221 (2002). https://doi.org/10.1016/S0370-2693(02)01221-2
- [66] 2002Ro17 M. W. Rowe, J. C. Batchelder, T. N. Ginter, K. E. Gregorich, F. Q. Guo, F. P. Hessberger, V. Ninov, J. Powell, K. S. Toth, X. J. Xu, J. Cerny, Phys. Rev. C 65, 054310 (2002). https://doi.org/10.1103/PhysRevC.65.054310
- [67] 2004GoZZ J. T. M. Goon, Thesis, University of Tennessee, Knoxville (2004).
- [68] 2005An17 A. N. Andreyev, D. Ackermann, S. Antalic, I. G. Darby, S. Franchoo, F. P. Hessberger, S. Hofmann, M. Huyse, P. Kuusiniemi, B. Lommel, B. Kindler, R. Mann, G. Munzenberg, R. D. Page, S. Saro, B. Sulignano, B. Streicher, K. Van de Vel, P. Van Duppen, D. R. Wiseman, Phys. Rev. C 72, 014612 (2005). https://doi.org/10.1103/PhysRevC.72.014612
- [69] 2005AnZY A. N. Andreyev, S. Antalic, D. Ackermann, S. Franchoo, F. P. Hessberger, S. Hofmann, M. Huyse, I. Kojouharov, B. Kindler, P. Kuusiniemi, S. R. Lesher, B. Lommel, R. Mann, G. Munzenberg, K. Nishio, R. D. Page, J. Ressler, B. Streicher, B. Sulignano, P. Van Duppen, D. Wiseman, GSI 2005-1, p. 77 (2005).
- [70] 2006An11 A. N. Andreyev, S. Antalic, D. Ackermann, S. Franchoo, F. P. Hessberger, S. Hofmann, M. Huyse, I. Kojouharov, B. Kindler, P. Kuusiniemi, S. R. Lesher, B. Lommel, R. Mann, G. Munzenberg, K. Nishio, R. D. Page, J. J. Ressler, B. Streicher, S. Saro, B. Sulignano, P. Van Duppen, D. Wiseman, R. Wyss, Phys. Rev. C 73, 044324 (2006). https://doi.org/10.1103/PhysRevC.73.044324
- [71] 2007An19 S. Antalic, A. N. Andreyev, D. Ackermann, L. Bianco, D. Cullen, I. Darby, S. Franchoo, S. Heinz, F. P. Hessberger, S. Hofmann, M. Huyse, B. Kindler, I. Kojouharov, A. -P. Leppanen, S. R. Lesher, B. Lommel, R. Mann, G. Munzenberg, K. Nishio, R. D. Page, J. Pakarinen, J. J. Ressler, S. Saro, B. Streicher, B. Sulignano, J. Thomson, P. Van Duppen, M. Venhart, D. Wiseman, R. Wyss, Acta Phys. Pol. B38, 1557 (2007).
- [72] 2012Ve04 M. Venhart, A. N. Andreyev, S. Antalic, L. Bianco, P. T. Greenlees, U. Jakobsson, P. Jones, D. T. Joss, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Nyman, R. D. Page, P. Peura, P. Rahkila, J. Saren, C. Scholey, J. Sorri, J. Thomson, J. Uusitalo, Eur. Phys. J. A 48, 101 (2012). https://doi.org/10.1140/epja/i2012-12101-y
- [73] 2014Pe02 P. Peura, C. Scholey, D. T. Joss, S. Juutinen, R. Julin, T. Back, B. Cederwall, P. T. Greenlees, U. Jakobsson, P. Jones, D. S. Judson, S. Ketelhut, M. Labiche, M. Leino, M. Nyman, D. O'Donnell, R. D. Page, P. Rahkila, P. Ruotsalainen, M. Sandzelius, P. J. Sapple, J. Saren, J. Simpson, J. Thomson, J. Uusitalo, H. V. Watkins, Phys. Rev. C 89, 024316 (2014). https://doi.org/10.1103/PhysRevC. 89. 024316
- [74] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021).