

Fig. 1: Known experimental values for heavy particle emission of the even-Z  $T_z$ = +17 nuclei.

Last updated 11/1/2023

### Table 1

Observed and predicted  $\beta$ -delayed particle emission from the even-Z,  $T_z = +17$  nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

| Nuclide           | $J^{\pi}$ | Ex.     | $T_{1/2}$                            | Qε         | $Q_{\varepsilon p}$ | $Q_{\varepsilon \alpha}$ | Experimental         |
|-------------------|-----------|---------|--------------------------------------|------------|---------------------|--------------------------|----------------------|
|                   |           |         |                                      |            | *                   |                          |                      |
| <sup>170</sup> Er |           | $0^+$   | $\geq 4.1 \times 10^{+15} \text{ y}$ | -3.870(50) |                     |                          | [2018Be25]           |
| <sup>174</sup> Yb |           | $0^+$   | stable                               | -3.080(40) |                     |                          |                      |
| <sup>178</sup> Hf |           | $0^{+}$ | stable                               | -2.098(2)  |                     |                          |                      |
| $^{182}W$         |           | $0^+$   | stable                               | -1.816(2)  |                     |                          |                      |
| <sup>186</sup> Os |           | $0^+$   | $2.0(11) \times 10^{+15} \text{ y}$  | -1.073(1)  |                     |                          | [1975Vi01]           |
| <sup>190</sup> Pt |           | $0^{+}$ | $6.65(28) \times 10^{11} \text{ y}$  | -0.553(1)  |                     |                          | [2011Be08]           |
| <sup>194</sup> Hg |           | $0^+$   | 447(28) y                            | 0.028(4)   | -4.993(3)           | 2.145(3)                 | [2015Do01]           |
| <sup>198</sup> Pb |           | $0^+$   | 2.4(1) h                             | 1.461(12)  | -2.816(9)           | 3.720(9)                 | [1959Ju39]           |
| <sup>202</sup> Po |           | $0^+$   | 45.4(2) m                            | 2.809(16)  | 0.040(16)           | 7.162(11)                | [1970Ra14]           |
| <sup>206</sup> Rn |           | $0^+$   | 6.29(10) m*                          | 3.306(16)  | 1.100(13)           | 9.193(16)                | [1969Ha03, 1967Va17] |
| <sup>210</sup> Ra |           | $0^{+}$ | 3.7(2) s**                           | 3.786(16)  | 2.095(14)           | 10.457(16)               | [1968Lo15, 1967Va22] |
| <sup>214</sup> Th |           | $0^+$   | $113^{+11}_{-9}$ ms                  | 4.262(17)  | 3.060(14)           | 11.614(17)               | [2022Zh45]           |
| <sup>218</sup> U  |           | $0^+$   | $650^{+80}_{-70} \ \mu s$            | 3.245(23)  | 2.400(17)           | 13.036(19)               | [2022Zh45]           |
| $^{218m}$ U       | 2.112(14) | $8^+$   | $390^{+60}_{50}$ µs                  | 5.357(27)  | 4.512(22)           | 15.148(24)               | [2022Zh45]           |
| <sup>222</sup> Pu |           | $0^+$   | -30 /                                | 3.79(30)#  | 3.25(31)#           | 13.99(30)#               |                      |

\* Weighted average of 5.67(17) m [1969Ha03] and 6.5(1) m [1967Va17].

\* Weighted average of 3.8(2) s [1967Va22] and 3.6(2) s [1968Lo15].

### Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z,  $T_z = +17$  nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

| Nuclide           | $S_p$     | $S_{2p}$  | Qα         | BRα                | Experimental                                                                                                                                                                                                                                             |
|-------------------|-----------|-----------|------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>170</sup> Er | 8.600(20) | 16.13(14) | 0.052(2)   |                    |                                                                                                                                                                                                                                                          |
| <sup>174</sup> Yb | 7.977(4)  | 15 040(4) | 0.738(1)   |                    |                                                                                                                                                                                                                                                          |
| <sup>178</sup> Hf | 7.340(1)  | 13.522(1) | 2.084(1)   |                    |                                                                                                                                                                                                                                                          |
| $^{182}W$         | 7.096(2)  | 13.045(2) | 1.764(2)   |                    |                                                                                                                                                                                                                                                          |
| <sup>186</sup> Os | 6.470(1)  | 11.873(1) | 2.821(1)   | 100%               | [ <b>1975Vi01</b> , 2020Be23, 1973ViZL]                                                                                                                                                                                                                  |
| <sup>190</sup> Pt | 6.146(13) | 10.747(1) | 3.269(1)   | 100%               | [2011Be08, 1987AI28, 2017Br04, 1997Ta33, 1986AIZT,<br>1966Ka23, 1961Ma05, 1963Gr08, 1961Gr37, 1961Ma05,<br>1961Pe23, 1956Po16, 1954Po24, 1953Po01]                                                                                                       |
| <sup>194</sup> Hg | 6.068(9)  | 10.473(4) | 2.698(3)   |                    | ,,,,                                                                                                                                                                                                                                                     |
| <sup>198</sup> Pb | 5.002(16) | 8.819(9)  | 3.692(9)   |                    |                                                                                                                                                                                                                                                          |
| <sup>202</sup> Po | 3.802(15) | 6.269(13) | 5.701(2)   | 1.93(6)%*          | [ <b>1993Wa04, 1970Jo26, 1970Ra14, 1968Go12, 1967Le08,</b><br><b>1967Ti10, 1967Tr06</b> , 1992WaZV, 1971Ho01, 1969Ha03,<br>1967Le21, 1967Tr04, 1965Br17, 1965Br27, 1964Br23,<br>1963Ho10, 1962Ax02, 1961Ax02, 1961Be25, 1961Fo05,<br>1954Ro39, 1951Ka14] |
| <sup>206</sup> Rn | 3.437(15) | 5.370(13) | 6.384(2)   | 62(3)%             | [ <b>1993Wa04, 1971Go35, 1971Ho01, 1969Ha03, 1967Va17</b> , 2014Ma66, 1992WaZV, 1967Va07, 1965Nu04, 1957St10, 1954Bu67]                                                                                                                                  |
| <sup>210</sup> Ra | 3.064(15) | 4.480(14) | 7.151(3)   | $pprox 100\%^{**}$ | [ <b>2003He06</b> , <b>1967Va22</b> , 2015Ma37, 2001HeZY, 1997Mi03, 1968Lo15]                                                                                                                                                                            |
| <sup>214</sup> Th | 2.735(16) | 3.684(15) | 7.827(5)   | 100%               | [ <b>2022Zh45, 1980Ve01, 1968Va18</b> , 2005Li17, 1984Sc13, 1968Va10]                                                                                                                                                                                    |
| <sup>218</sup> U  | 2.449(19) | 2.982(18) | 8.775(9)   | 100%               | [ <b>2022Zh45</b> , <b>2021Zh22</b> , <b>2005Le42</b> , 2015Ma37, 2007Le14, 2006LeZR, 1994ApZY, 1994Ye08]                                                                                                                                                |
| $^{218m}$ U       | 0.337(23) | 0.870(24) | 10.887(17) | 100%               | [ <b>2022Zh45, 2005Le42</b> , 2021Zh22, 2015Ma37, 2007Le14, 2006LeZR]                                                                                                                                                                                    |
| <sup>222</sup> Pu | 2.14(36)# | 2.53(32)# | 10.74(30)# |                    |                                                                                                                                                                                                                                                          |

\* Weighted average of 1.92(7)% [1993Wa04] and 2.00(15)% [1967Le08].

\*\* Based half-life.

# Table 3

| $E_{\alpha}(c.m.)$                                                                                                                                                                                                                                                       | $E_{\alpha}(\text{lab})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $I_{\alpha}(abs)$                                                                                                                                                                                                                                                                                           | $J_f^{\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $E_{daughter}(^{182}W)$                                                                                                                                                                                                                                                             | coincident y                                                                                                                                                                       | -rays                                                      | $R_0 (fm)]$                                                                                                   | HF                                                  |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|
| ≈2.82                                                                                                                                                                                                                                                                    | ≈2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100%                                                                                                                                                                                                                                                                                                        | $0^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                  |                                                            | 1.486(29)                                                                                                     | 1.0(5)                                              |                           |
| * All va                                                                                                                                                                                                                                                                 | alues taken from [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 975Vi01].                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                            |                                                                                                               |                                                     |                           |
| <b>able 4</b> lirect $\alpha$ emi                                                                                                                                                                                                                                        | ission from <sup>190</sup> Pt, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_i^{\pi} = 0^+, T_{1/2} = 6.5$                                                                                                                                                                                                                                                                            | $5(3) \times 10^{11} \text{ y}^*,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $BR_{\alpha} = 100\%.$                                                                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                            |                                                                                                               |                                                     |                           |
| $E_{\alpha}(c.m.)$                                                                                                                                                                                                                                                       | $E_{\alpha}(\text{lab})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $I_{\alpha}(\text{rel})$                                                                                                                                                                                                                                                                                    | $I_{\alpha}(abs)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{J}_{f}^{\boldsymbol{\pi}}$                                                                                                                                                                                                                                                 | $E_{daughter}(^{186}\mathrm{Os})$                                                                                                                                                  | coinciden                                                  | t γ-rays                                                                                                      | R <sub>0</sub> (fm)]                                | HF                        |
| 3.122<br>3.258                                                                                                                                                                                                                                                           | 3.053**<br>3.190(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25(10)%<br>100%                                                                                                                                                                                                                                                                                           | 0.25(10)%**<br>99.75(10)%**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $* 		 2^+ 		 0^+$                                                                                                                                                                                                                                                                   | 0.137<br>0.0                                                                                                                                                                       | 0.137                                                      |                                                                                                               | 1.486(29)<br>1.486(29)                              | $13^{+8}_{-4}$<br>1.04(4) |
| * [2017<br>** α w                                                                                                                                                                                                                                                        | 'Br04].<br>as not observed, th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e decay branch wa                                                                                                                                                                                                                                                                                           | as determined t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hrough the obser                                                                                                                                                                                                                                                                    | vation of 137-keV γ                                                                                                                                                                | ray from <sup>190</sup> 1                                  | Pt decay [201]                                                                                                | 1Be08].                                             |                           |
| f <b>able 5</b><br>lirect α emi                                                                                                                                                                                                                                          | ission from <sup>202</sup> Po,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{J}_i^{\pi} = 0^+,  \mathbf{T}_{1/2} = 43$                                                                                                                                                                                                                                                          | 5.4(2) m*, $BR_{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 1.93(6)%**.                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                            |                                                                                                               |                                                     |                           |
| $E_{\alpha}(c.m.)$                                                                                                                                                                                                                                                       | $E_{\alpha}(\text{lab})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $I_{\alpha}(abs)$                                                                                                                                                                                                                                                                                           | $\mathrm{J}_f^\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $E_{daughter}(^{198}\mathrm{Pb})$                                                                                                                                                                                                                                                   | coincident γ                                                                                                                                                                       | '-rays                                                     | R <sub>0</sub> (fm)]                                                                                          | HF                                                  |                           |
| 5.701(1)                                                                                                                                                                                                                                                                 | 5.588(1)***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100%                                                                                                                                                                                                                                                                                                        | $0^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |                                                            | 1.4720(20)                                                                                                    | 1.013(32)                                           |                           |
| * [1970<br>** Weig<br>*** We<br>5.587(5) Me                                                                                                                                                                                                                              | PRa14].<br>ghted average of 1.<br>eighted average of<br>eV [1967Ti10] and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92(7)% [1993Wat<br>5.589(3) MeV [<br>5.578(3) MeV [19                                                                                                                                                                                                                                                       | 04] and 2.00(15<br>1970Ra14] (adj<br>970Ra14] (adju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (i)% [1967Le08].<br>(usted to 5.588(<br>(isted to 5.579(5))                                                                                                                                                                                                                         | 3) MeV in [1991Ry(<br>MeV in [1991Ry01]                                                                                                                                            | 01]), 5.590(5<br>).                                        | ) MeV [1970                                                                                                   | Jo26], 5.588(2)                                     | MeV [1968C                |
| * [1970<br>** Weig<br>*** We<br>5.587(5) Me<br><b>Γable 6</b><br>lirect α emi                                                                                                                                                                                            | Ra14].<br>ghted average of 1.<br>eighted average of<br>eV [1967Ti10] and<br>ission from <sup>206</sup> Rn,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92(7)% [1993Wat<br>5.589(3) MeV [15<br>5.578(3) MeV [19<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$                                                                                                                                                                                                                   | 04] and 2.00(15<br>1970Ra14] (adj<br>970Ra14] (adju<br>29(10) m*, <i>BR</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (i)% [1967Le08].<br>insted to 5.588(2)<br>sted to 5.579(5)<br>$t_{\alpha} = 62(3)\%^{**}.$                                                                                                                                                                                          | 3) MeV in [1991Ry(<br>MeV in [1991Ry01]                                                                                                                                            | 01]), 5.590(5<br>).                                        | ) MeV [1970                                                                                                   | Jo26], 5.588(2)                                     | MeV [1968C                |
| * [1970<br>** Wei<br>** Wei<br>5.587(5) Me<br>5.587(5) Me<br>fable 6<br>lirect $\alpha$ emi                                                                                                                                                                              | PRa14].<br>ghted average of 1.<br>eighted average of $V$ [1967Ti10] and<br>ission from <sup>206</sup> Rn,<br>$E_{\alpha}$ (lab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92(7)% [1993Wat<br>5.589(3) MeV [<br>5.578(3) MeV [19<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$<br>$I_{\alpha}$ (abs                                                                                                                                                                                                | D4] and 2.00(15<br>1970Ra14] (adj<br>970Ra14] (adju<br>.29(10) m*, <i>BR</i><br>) $J_f^{\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (i)% [1967Le08].<br>isusted to 5.588(2)<br>sted to 5.579(5)<br>$f_{\alpha} = 62(3)\%^{**}.$<br>$E_{daughter}(^{202}$                                                                                                                                                                | 3) MeV in [1991Ry(<br>MeV in [1991Ry01] Po) coincide                                                                                                                               | 01]), 5.590(5<br>).<br>nt γ-rays                           | ) MeV [1970<br>R <sub>0</sub> (fm)]                                                                           | Jo26], 5.588(2)<br>HF                               | MeV [1968C                |
| * [1970<br>** Weig<br>*** Weig<br>*** Weig<br>5.587(5) Me<br>5.587(5) Me<br>Fable 6<br>direct $\alpha$ emin<br>$E_{\alpha}(c.m.)$<br>5.3836(16)                                                                                                                          | PRa14].<br>ghted average of 1.<br>eighted average of 2.<br>(1967Ti10] and<br>ission from $^{206}$ Rn,<br>$E_{\alpha}$ (lab)<br>6.2597(16) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92(7)% [1993Wat<br>5.589(3) MeV [19<br>5.578(3) MeV [19<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$<br>$I_{\alpha}(abs)$                                                                                                                                                                                              | D4 and 2.00(15<br>1970Ra14] (adj<br>970Ra14] (adju<br>.29(10) m*, <i>BR</i><br>) J <sup><math>\pi</math></sup><br>0 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (i)% [1967Le08].<br>insted to 5.588(2)<br>sted to 5.579(5)<br>$t_{\alpha} = 62(3)\%^{**}.$<br>$E_{daughter}(^{202})$<br>0.0                                                                                                                                                         | <ol> <li>MeV in [1991Ry(<br/>MeV in [1991Ry01]</li> <li>Po) coincide</li> </ol>                                                                                                    | 01]), 5.590(5<br>).<br>nt γ-rays                           | ) MeV [1970<br>R <sub>0</sub> (fm)]<br>1.4917(27                                                              | Jo26], 5.588(2)<br>HF<br>) 1.11(6)                  | MeV [1968C                |
| * [1970<br>** Weig<br>*** Weig<br>5.587(5) Me<br>5.587(5) Me<br>filtect $\alpha$ emin<br>$E_{\alpha}(c.m.)$<br>5.3836(16)<br>* Weig<br>** [197<br>*** We                                                                                                                 | PRa14].<br>ghted average of 1.<br>eighted average of 2.<br>(1967Ti10] and<br>ission from $^{206}$ Rn,<br>$E_{\alpha}$ (lab)<br>6.2597(16) <sup>3</sup><br>hted average of 5.6<br>'1Ho01].<br>eighted average of 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92(7)% [1993Wat<br>5.589(3) MeV [19<br>5.578(3) MeV [19<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$<br>$I_{\alpha}$ (abs<br>*** 100%<br>7(17) m [1969Hat<br>5.2606(25) MeV [                                                                                                                                          | D4] and 2.00(15<br>1970Ra14] (adj<br>970Ra14] (adju<br>.29(10) m*, <i>BR</i><br>) $J_f^{\pi}$<br>0 <sup>+</sup><br>D3] and 6.5(1) n<br>1993Wa04], 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (i)% [1967Le08].<br>iusted to 5.588(3<br>sted to 5.579(5)<br>$b_{\alpha} = 62(3)\%^{**}.$<br>$E_{daughter}(^{202})$<br>0.0<br>n [1967Va17].<br>260(3) MeV [19]                                                                                                                      | <ol> <li>MeV in [1991Ry(<br/>MeV in [1991Ry01]</li> <li>coincide</li> <li>coincide</li> </ol>                                                                                      | 01]), 5.590(5<br>).<br>nt γ-rays                           | ) MeV [1970<br>R <sub>0</sub> (fm)]<br>1.4917(27<br>Wa17].                                                    | Jo26], 5.588(2)<br>HF<br>) 1.11(6)                  | MeV [1968C                |
| * [1970<br>** Weig<br>*** Weig<br>5.587(5) Me<br>5.587(5) Me<br>Girect $\alpha$ emi<br>6.3836(16)<br>* Weig<br>** [197<br>*** We<br>Table 7<br>direct $\alpha$ emi                                                                                                       | PRa14].<br>ghted average of 1.<br>zighted average of 1.<br>zighted average of 200<br>ission from $^{206}$ Rn,<br>$E_{\alpha}$ (lab)<br>6.2597(16) <sup>2</sup><br>hted average of 5.6<br>(1Ho01].<br>zighted average of 6<br>ission from $^{210}$ Ra,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92(7)% [1993Wat<br>5.589(3) MeV [19<br>5.578(3) MeV [19<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$<br>$I_{\alpha}$ (abs<br>*** 100%<br>7(17) m [1969Hat<br>5.2606(25) MeV [<br>$J_i^{\pi} = 0^+, T_{1/2} = 3$                                                                                                        | 24] and 2.00(15<br>1970Ra14] (adj<br>970Ra14] (adju<br>.29(10) m*, <i>BR</i><br>) $J_f^{\pi}$<br>0 <sup>+</sup><br>03] and 6.5(1) n<br>1993Wa04], 6.2<br>.7(2) s*, <i>BR</i> <sub>α</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i)% [1967Le08].<br>iusted to 5.588(3<br>sted to 5.579(5)<br>$\frac{a}{\alpha} = 62(3)\%^{**}.$<br>$E_{daughter}(^{202})$<br>0.0<br>n [1967Va17].<br>260(3) MeV [197<br>≈ 100%.                                                                                                      | <ul> <li>MeV in [1991Ry(<br/>MeV in [1991Ry01]</li> <li>2Po) coincide</li> <li></li> <li>71Go35] and 6.258(3)</li> </ul>                                                           | 01]), 5.590(5<br>).<br>nt γ-rays                           | ) MeV [1970<br><u>R<sub>0</sub> (fm)]</u><br>1.4917(27<br>'Va17].                                             | Jo26], 5.588(2)<br>HF<br>) 1.11(6)                  | MeV [1968C                |
| * [1970<br>** Weig<br>*** We<br>5.587(5) Me<br>5.587(5) Me<br>fable 6<br>lirect $\alpha$ emi<br>5.3836(16)<br>* Weigl<br>** [197<br>*** We<br>fable 7<br>lirect $\alpha$ emi<br>$E_{\alpha}(c.m.)$                                                                       | PRa14].<br>ghted average of 1.<br>zighted average of 1.<br>zighted average of 1.<br>zighted average of 2.<br>$E_{\alpha}(lab)$<br>$6.2597(16)^{2}$<br>hted average of 5.6<br>(1Ho01].<br>zighted average of 6<br>ission from <sup>210</sup> Ra,<br>$E_{\alpha}(lab)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92(7)% [1993Wat<br>5.589(3) MeV [1<br>5.578(3) MeV [1<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$<br>$I_{\alpha}$ (abs<br>*** 100%<br>7(17) m [1969Hat<br>5.2606(25) MeV [<br>$J_i^{\pi} = 0^+, T_{1/2} = 3$<br>$I_{\alpha}$ (abs)                                                                                    | $\begin{array}{c} 0.41 \text{ and } 2.00(15) \\ 1970Ra141 (adju) \\ 1970Ra141 (adju) \\ 1970Ra141 (adju) \\ 10.11 ($                                                                                                                                                                                                                                                                                                                                                                                                         | i)% [1967Le08].<br>iusted to 5.588(3<br>sted to 5.579(5)<br>$\frac{a}{a} = 62(3)\%^{**}.$<br>$E_{daughter}(^{203})$<br>0.0<br>n [1967Va17].<br>260(3) MeV [197<br>≈ 100%.<br>$E_{daughter}(^{206}Rn$                                                                                | <ul> <li>3) MeV in [1991Ry0</li> <li>MeV in [1991Ry01]</li> <li>Po) coincide</li> <li>Po) coincide</li> <li>71Go35] and 6.258(3</li> <li>coincident</li> </ul>                     | 01]), 5.590(5<br>).<br>nt γ-rays<br>3) MeV [1967<br>γ-rays | ) MeV [1970<br><u>R<sub>0</sub> (fm)]</u><br>1.4917(27<br>/Va17].<br><u>R<sub>0</sub> (fm)]</u>               | Jo26], 5.588(2)<br>HF<br>) 1.11(6)<br>HF            | MeV [1968C                |
| * [1970<br>** Weig<br>*** We<br>5.587(5) Me<br>5.587(5) Me<br>fable 6<br>lirect $\alpha$ emi<br>5.3836(16)<br>* Weigl<br>** [197<br>*** We<br>fable 7<br>lirect $\alpha$ emi<br>$E_{\alpha}(c.m.)$<br>7.151(5)                                                           | PRa14].<br>ghted average of 1.<br>eighted average of 1.<br>eighted average of 1.<br>eighted average of 1.<br>Eighted average of 2.6<br>(16)<br>hted average of 5.6<br>(16)<br>hted average of 5.6<br>(16)<br>$E_{\alpha}(1ab)$<br>Eighted average of 6<br>ission from <sup>210</sup> Ra,<br>$E_{\alpha}(1ab)$<br>7.015(5)**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92(7)% [1993Wat<br>5.589(3) MeV [15<br>5.578(3) MeV [19<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$<br>$I_{\alpha}$ (abs<br>*** 100%<br>7(17) m [1969Hat<br>5.2606(25) MeV [<br>$J_i^{\pi} = 0^+, T_{1/2} = 3$<br>$I_{\alpha}$ (abs)<br>100%                                                                          | $\begin{array}{c} 0.41 \text{ and } 2.00(15) \\ 1970Ra141 (adju) \\ .29(10) \text{ m*}, BR \\ 0.100 \text{ m*}, BR $ | i)% [1967Le08].<br>iusted to 5.588(3<br>sted to 5.579(5)<br>$\frac{i_{\alpha}}{i_{\alpha}} = 62(3)\%^{**}.$<br>$E_{daughter}(^{203})$<br>0.0<br>n [1967Va17].<br>260(3) MeV [19]<br>≈ 100%.<br>$E_{daughter}(^{206}Rn)$<br>0.0                                                      | <ul> <li>3) MeV in [1991Ry0]</li> <li>MeV in [1991Ry01]</li> <li>Po) coincide</li> <li></li> <li>71Go35] and 6.258(3</li> <li></li> <li></li> <li></li> </ul>                      | 01]), 5.590(5<br>).<br>nt γ-rays<br>6) MeV [1967<br>γ-rays | ) MeV [1970<br><u>R<sub>0</sub> (fm)]</u><br>1.4917(27<br>/Va17].<br><u>R<sub>0</sub> (fm)]</u><br>1.4861(29) | Jo26], 5.588(2)<br>HF<br>) 1.11(6)<br>HF<br>0.90(5) | MeV [1968C                |
| * [1970<br>** Weig<br>*** Weig<br>5.587(5) Me<br>5.587(5) Me<br>6.3836(16)<br>* Weig<br>** [197<br>*** We<br><b>Table 7</b><br>direct $\alpha$ emi<br>$E_{\alpha}(c.m.)$<br>7.151(5)<br>* Weig<br>** Weig                                                                | PRa14].<br>ghted average of 1.<br>zighted average of 1.<br>zighted average of 1.<br>zighted average of 1.<br>ission from <sup>206</sup> Rn,<br>$E_{\alpha}(lab)$<br>6.2597(16) <sup>2</sup><br>hted average of 5.6<br>(1Ho01].<br>zighted average of 6<br>ission from <sup>210</sup> Ra,<br>$E_{\alpha}(lab)$<br>7.015(5)**<br>hted average of 3.8<br>ghted average of 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92(7)% [1993Wat<br>5.589(3) MeV [15<br>5.578(3) MeV [19<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$<br>$I_{\alpha}$ (abs<br>*** 100%<br>7(17) m [1969Hat<br>5.2606(25) MeV [<br>$J_i^{\pi} = 0^+, T_{1/2} = 3$<br>$I_{\alpha}$ (abs)<br>100%<br>(2) s [1967Va22]<br>003(10) MeV [20                                   | $\begin{array}{c} 0.41 \text{ and } 2.00(15) \\ 1970Ra141 (adju) \\ 1970Ra141 (adju) \\ 1970Ra141 (adju) \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000$                                                                                                                                                                                                                                                    | i)% [1967Le08].<br>iusted to 5.588(3<br>sted to 5.579(5)<br>$\frac{i_{\alpha}}{i_{\alpha}} = 62(3)\%^{**}.$<br>$E_{daughter}(^{203})$<br>0.0<br>n [1967Va17].<br>260(3) MeV [19]<br>≈ 100%.<br>$E_{daughter}(^{206}$ Rn<br>0.0<br>068Lo15].<br>018(5) MeV [19]                      | <ul> <li>3) MeV in [1991Ry0]</li> <li>MeV in [1991Ry01]</li> <li>Po) coincide</li> <li></li> <li>71Go35] and 6.258(3</li> <li>) coincident</li> <li></li> <li>p67Va22].</li> </ul> | 01]), 5.590(5<br>).<br>nt γ-rays<br>6) MeV [1967<br>γ-rays | ) MeV [1970<br><u>R<sub>0</sub> (fm)]</u><br>1.4917(27<br>/Va17].<br><u>R<sub>0</sub> (fm)]</u><br>1.4861(29) | Jo26], 5.588(2)<br>HF<br>) 1.11(6)<br>HF<br>0.90(5) | MeV [1968C                |
| * [1970<br>** Weig<br>*** Weig<br>5.587(5) Me<br>5.587(5) Me<br>5.587(5) Me<br>6.3836(16)<br>* Weig<br>** [197<br>*** We<br>Table 7<br>direct $\alpha$ emi<br>E <sub><math>\alpha</math></sub> (c.m.)<br>7.151(5)<br>* Weig<br>** Weig<br>table 8<br>direct $\alpha$ emi | PRa14].<br>ghted average of 1.<br>zighted average of 1.<br>zighted average of 1.<br>zighted average of 1.<br>ission from <sup>206</sup> Rn,<br>$E_{\alpha}(lab)$<br>6.2597(16) <sup>2</sup><br>hted average of 5.6<br>(1Ho01].<br>zighted average of 6.6<br>(1Ho01].<br>zighted average of 6.6<br>(1Ho01].<br>zighted average of 5.6<br>(1Ho01].<br>zighted average of 7.<br>average of 7.<br>a | 92(7)% [1993Wat<br>5.589(3) MeV [15<br>5.578(3) MeV [15<br>$J_i^{\pi} = 0^+, T_{1/2} = 6$<br>$I_{\alpha}$ (abs<br>*** 100%<br>7(17) m [1969Hat<br>5.2606(25) MeV [<br>$J_i^{\pi} = 0^+, T_{1/2} = 3$<br>$I_{\alpha}$ (abs)<br>100%<br>(2) s [1967Va22]<br>003(10) MeV [20<br>$J_i^{\pi} = 0^+, T_{1/2} = 1$ | D4] and 2.00(15<br>1970Ra14] (adj<br>970Ra14] (adj<br>970Ra14] (adju<br>.29(10) m*, <i>BR</i><br>) $J_{f}^{\pi}$<br>0 <sup>+</sup><br>03] and 6.5(1) n<br>1993Wa04], 6.2<br>.7(2) s*, <i>BR</i> <sub><math>\alpha</math></sub> =<br>$J_{f}^{\pi}$<br>0 <sup>+</sup><br>and 3.6(2) s [19<br>03He06] and 7.<br>13 <sup>+11</sup> / <sub>-9</sub> ms*, <i>BR</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i)% [1967Le08].<br>iusted to 5.588(3<br>sted to 5.579(5)<br>$\frac{i_{\alpha}}{i_{\alpha}} = 62(3)\%^{**}.$<br>$E_{daughter}(^{203})$<br>0.0<br>n [1967Va17].<br>260(3) MeV [19]<br>≈ 100%.<br>$E_{daughter}(^{206}$ Rn<br>0.0<br>268Lo15].<br>018(5) MeV [19]<br>$\alpha = 100\%.$ | <ul> <li>3) MeV in [1991Ry0]</li> <li>MeV in [1991Ry01]</li> <li>Po) coincide</li> <li></li> <li>71Go35] and 6.258(3</li> <li>) coincident</li> <li></li> <li>067Va22].</li> </ul> | 01]), 5.590(5<br>).<br>nt γ-rays<br>6) MeV [1967<br>γ-rays | ) MeV [1970<br><u>R<sub>0</sub> (fm)]</u><br>1.4917(27<br>/Va17].<br><u>R<sub>0</sub> (fm)]</u><br>1.4861(29) | Jo26], 5.588(2)<br>HF<br>) 1.11(6)<br>HF<br>0.90(5) | MeV [1968C                |

7.678(6)\*\*

7.824(6)

\* [2022Zh45]. \*\* Weighted average of 7.674(14) MeV [2022Zh45], 7.677(10) MeV [1980Ve01] and 7.680(10) MeV [1968Va18].

0.0

 $0^+$ 

100%

\_\_\_\_

1.4986(56)

1.26(12)

### Table 9

| $E_{\alpha}(\text{c.m.})$            | $E_{\alpha}(\text{lab})$   | $I_{\alpha}(abs)$ | $J_f^{\pi}$ | $E_{daughter}(^{214}\mathrm{Th})$ | coincident γ-rays | $R_0$ (fm)] | HF       |
|--------------------------------------|----------------------------|-------------------|-------------|-----------------------------------|-------------------|-------------|----------|
| 8.773(8)                             | 8.612(8)**                 | 100%              | $0^+$       | 0.0                               |                   | 1.512(14)   | 1.26(16) |
| * [2022Zh4<br>** Weighte<br>Table 10 | 5].<br>d average of 8.612( | 14) MeV [20222    | Zh45] and 8 | 612(9) MeV [2005Le42]             | ].                |             |          |

direct  $\alpha$  emission from <sup>218m</sup>U, ex. = 2.112(14) MeV,  $J_i^{\pi} = 8^+$ ,  $T_{1/2} = 390^{+60}_{-50} \,\mu s^*$ ,  $BR_{\alpha} = 100\%$ 

direct  $\alpha$  emission from <sup>218</sup>U,  $J_i^{\pi} = 0^+$ ,  $T_{1/2} = 650^{+80}_{-70} \,\mu s^*$ ,  $BR_{\alpha} = 100\%$ .

| $E_{\alpha}(c.m.)$       | $E_{\alpha}(\text{lab})$    | $I_{\alpha}(\text{rel})$ | $I_{\alpha}(abs)$  | $\mathbf{J}_f^{\pi}$ | $E_{daughter}(^{214}\mathrm{Th})$ | coincident $\gamma$ -rays | $R_0$ (fm)]            | HF                                                                                |
|--------------------------|-----------------------------|--------------------------|--------------------|----------------------|-----------------------------------|---------------------------|------------------------|-----------------------------------------------------------------------------------|
| 10.261(16)<br>10.885(11) | 10.073(16)*<br>10.685(11)** | 28(5)%*<br>100(5)%*      | 22(5)%*<br>78(5)%* | $0^{+}$              | 0.629<br>0.0                      |                           | 1.512(14)<br>1.512(14) | $\begin{array}{c} 1.2^{+0.6}_{-0.4}\times10^{4}\\ 5.8(10)\times10^{4}\end{array}$ |

\* [2022Zh45].

\*\* Weighted average of 20.690(14) MeV [2022Zh45] and 10.678(17) MeV [2005Le42].

## **References used in the Tables**

- [1] 1951Ka14 L. Katz, H. E. Johns, R. G. Baker, R. N. H. Haslam, R. A. Douglas, Phys. Rev. 82, 271 (1951). https://doi.org/10.1103/PhysRev.82.271
- [2] 1953Po01 W. Porschen, W. Riezler, Z. Naturforsch. 8a, 502 (1953).
- [3] 1954Bu67 W. E. Burcham, Proc. Phys. Soc. (London) 67A, 555 (1954). https://doi.org/10.1088/0370-1298/67/6/410
- [4] 1954Po24 W. Porschen, W. Riezler, Z. Naturforsch. 9a, 701 (1954).
- [5] 1954Ro39 S. Rosenblum, H. Tyren, Compt. Rend. Acad. Sci. 239, 1205 (1954).
- [6] 1956Po16 W. Porschen, W. Riezler, Z. Naturforsch. 11a, 143 (1956).
- [7] 1957St10 A. W. Stoner, E. K. Hyde, J. Inorg. Nuclear Chem. 4, 77 (1957). https://doi.org/10.1016/0022-1902(57)80087-6
- [8] 1959Ju39 B. Jung, Nuclear Phys. 10, 440 (1959). https://doi.org/10.1016/0029-5582(59)90234-2
- [9] 1961Ax02 S. Axensten, C. M. Olsmats, Ark. Fys. 19, 461 (1961).
- [10] 1961Be25 B. N. Belyaev, A. V. Kalyamin, A. N. Murin, Izvest. Akad. Nauk SSSR, Ser. Fiz. 25, 874 (1961); Columbia Tech. Transl. 25, 886 (1962).
- [11] 1961Fo05 W. Forsling, T. Alvager, Ark. Fys. 19, 353 (1961).
- [12] 1961Gr37 G. Graeffe, M. Nurmia, Ann. Acad. Sci. Fennicae Ser. A VI, No. 77 (1961)
- [13] 1961Ma05 R. D. Macfarlane, T. P. Kohman, Phys. Rev. 121, 1758 (1961). https://doi.org/10.1103/PhysRev.121.1758
- [14] 1961Pe23 K. A. Petrzhak, M. I. Yakunin, Zhur. Eksptl. i Teoret. Fiz. 41, 1780 (1961); Soviet Phys. JETP 14, 1265 (1962).
- [15] 1962Ax02 S. Axensten, G. Liljegren, I. Lindgren, C. M. Olsmats, Arkiv Fysik 22, 392 (1962).
- [16] 1963Gr08 G. Graeffe, Ann. Acad. Sci. Fennicae, Ser. A VI, No. 128 (1963).
- [17] 1963Ho10 A. J. Howard, Jr., (thesis), Yale University (1963).
- [18] 1964Br23 C. Brun, M. Lefort, J. Inorg. Nucl. Chem. 26, 1633 (1964). https://doi.org/10.1016/0022-1902(64)80090-7
- [19] 1965Br17 C. Brun, Y. Le Beyec, M. Lefort, Phys. Letters 16, 286 (1965). https://doi.org/10.1016/0031-9163(65)90854-1
- [20] 1965Br27 C. Brun, Y. Le Beyec, M. Lefort, Compt. Rend. 261, 1667 (1965).
- [21] 1965Nu04 M. Nurmia, K. Valli, E. K. Hyde, UCRL-16580, p. 80 (1965).
- [22] 1966Ka23 G. Kauw, Forschungsber. Landes Nordrhein-Westfalen No. 1640 (1966).
- [23] 1967Le08 Y. Le Beyec, M. Lefort, Nucl. Phys. A99, 131 (1967). https://doi.org/10.1016/0375-9474(67)90213-8
- [24] 1967Le21 Y. Le Beyec, M. Lefort, Arkiv Fysik 36, 183 (1967)
- [25] 1967Tr04 W. J. Treytl, K. Valli, UCRL-17299, p. 32 (1967).
- [26] **1967Tr06** W. Treytl, K. Valli, Nucl. Phys. A**97**, 405 (1967). https://doi.org/10.1016/0375-9474(67)90495-2

- [27] 1967Va07 K. Valli, M. J. Nurmia, E. K. Hyde, UCRL-17299, p. 30 (1967).
- [28] 1967Va17 K. Valli, M. J. Nurmia, E. K. Hyde, Phys. Rev. 159, 1013 (1967). https://doi.org/10.1103/PhysRev.159.1013
- [29] 1967Va22 K. Valli, W. Treytl, E. K. Hyde, Phys. Rev. 161, 1284 (1967). https://doi.org/10.1103/PhysRev.161.1284
- [30] 1968Go12 N. A. Golovkov, R. B. Ivanov, Y. V. Norseev, So Ki Kvan, V. A. Khalkin, V. G. Chumin, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 54 (1968).
- [31] 1968Lo15 Y. V. Lobanov, V. A. Durin, Yadern. Fiz. 8, 849 (1968); Soviet J. Nucl. Phys. 8, 493 (1969).
- [32] 1968Va10 K. Valli, E. K. Hyde, UCRL-17989, p. 17 (1968)
- [33] 1968Va18 K. Valli, E. K. Hyde, Phys. Rev. 176, 1377 (1968). https://doi.org/10.1103/PhysRev.176.1377
- [34] 1969Ha03 P G Hansen, P Hornshoj, H L Nielsen, K Wilsky, H Kugler, G Astner, E Hagebo, J Hudis, A Kjelberg, F Munnich, P Patzelt, M Alpsten, G Andersson, A Appelqvist, B Bengtsson, R A Naumann, O B Nielsen, E Beck, R Foucher, J P Husson, J Jastrzebski, A Johnson, J Alstad, T Jahnsen, A C Pappas, T Tunaal, R Henck, P Siffert, G Rudstam, Phys Lett 28B, 415 (1969); Erratum Phys Lett 28B, 663 (1969). https://doi.org/10.1016/0370-2693(69)90337-2
- [35] 1970Jo26 A. G. Jones, A. H. W. Aten, Jr., Radiochim. Acta 13, 176 (1970).
- [36] 1970Ra14 K. Raichev, L. Tron, Acta Phys. 28, 263 (1970).
- [37] 1971Go35 N. A. Golovkov, R. B. Ivanov, A. Kolaczkowski, Y. V. Norseev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 2272 (1971); Bull. Acad. Sci. USSR, Phys. Ser. 35, 2063 (1972).
- [38] 1971Ho01 P. Hornshoj, K. Wilsky, P. G. Hansen, A. Lindahl, O. B. Nielsen, Nucl. Phys. A163, 277 (1971). https://doi.org/10.1016/0375-9474(71)90536-7
- [39] 1973ViZL V. E. Viola, REPT MNC-4028-12 P54.
- [40] 1975Vi01 V. E. Viola, Jr., C. T. Roche, M. M. Minor, J. Inorg. Nucl. Chem. 37, 11 (1975). https://doi.org/10.1016/0022-1902(75)80115-1
- [41] 1980Ve01 D. Vermeulen, H. -G. Clerc, W. Lang, K. -H. Schmidt, G. Munzenberg, Z. Phys. A294, 149 (1980). https://doi.org/10.1007/BF01435049
- [42] 1984Sc13 K. -H. Schmidt, C. -C. Sahm, K. Pielenz, H. -G. Clerc, Z. Phys. A316, 19 (1984). https://doi.org/10.1007/BF01415656
- [43] 1986AIZT B. A. M. Al-Bataina, Diss. Abst. Int. 46, 2358 (1986); Thesis Univ. Michigan (1986).
- [44] 1987Al28 B. Al-Bataina, J. Janecke, Radiochim. Acta 42, 159 (1987).
- [45] 1992WaZV J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, P. Lievens, R. Kirchner, O. Klepper, E. Roeckl, and the ISOLDE Collaboration, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constant, Bernkastel-Kues, Germany, E19 (1992).
- [46] 1993Wa04 J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, P. Lievens, and the ISOLDE Collaboration, Phys. Rev. C47, 1447 (1993). https://doi.org/10.1103/PhysRevC.47.1447
- [47] 1994AnZY A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 44th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 85 (1994).
- [48] 1994Ye08 A. V. Yeremin, A. N. Andreyev, D. D. Bogdanov, G. M. Ter-Akopian, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, S. Sharo, E. N. Voronkov, A. V. Taranenko, A. Yu. Lavrentjev, Nucl. Instrum. Methods Phys. Res. A350, 608 (1994). https://doi.org/10.1016/0168-9002(94)91265-3
- [49] 1997Mi03 S. Mitsuoka, H. Ikezoe, T. Ikuta, Y. Nagame, K. Tsukada, I. Nishinaka, Y. Oura, Y. L. Zhao, Phys. Rev. C55, 1555 (1997). https://doi.org/10.1103/PhysRevC.55.1555
- [50] 1997Ta33 O. A. P. Tavares, M. L. Terranova, Radiat. Meas. 27, 19 (1997). https://doi.org/10.1016/S1350-4487(96)00154-0
- [51] 2001HeZY F. P. Hessberger, S. Hofmann, D. Ackermann, GSI 2001-1, p. 18 (2001).
- [52] 2005Le42 A. -P. Leppanen, J. Uusitalo, S. Eeckhaudt, T. Enqvist, K. Eskola, T. Grahn, F. P. Hessberger, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, P. Nieminen, J. Pakarinen, J. Perkowski, P. Rahkila, C. Scholey, G. Sletten, Eur. Phys. J. A 25, Supplement 1, 183 (2005). https://doi.org/10.1140/epjad/i2005-06-116-y
- [53] 2005Li17 Z. Liu, J. Kurcewicz, P. J. Woods, C. Mazzocchi, F. Attallah, E. Badura, C. N. Davids, T. Davinson, J. Doring, H. Geissel, M. Gorska, R. Grzywacz, M. Hellstrom, Z. Janas, M. Karny, A. Korgul, I. Mukha, M. Pfutzner, C. Plettner, A. Robinson, E. Roeckl, K. Rykaczewski, K. Schmidt, D. Seweryniak, H. Weick, Nucl. Instrum. Methods Phys. Res. A543, 591

(2005). https://doi.org/10.1016/j.nima.2004.12.023

- [54] 2006LeZR A. -P. Leppanen, J. Uusitalo, S. Eeckhaudt, T. Enqvist, K. Eskola, T. Grahn, F. P. Hessberger, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, P. Nieminen, J. Pakarinen, J. Perkowski, P. Rahkila, C. Scholey, G. Sletten, Proc. Frontiers in Nuclear Structure, Astrophysics, and Reactions, Isle of Kos, Greece, 12-17 Sept. 2005, S. V Harissopulos, P. Demetriou, R. Julin, Eds., p. 487 (2006); AIP Conf. Proc. 831 (2006). https://doi.org/10.1063/1.2200991
- [55] 2007Le14 A. P. Leppanen, J. Uusitalo, M. Leino, S. Eeckhaudt, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, P. Nieminen, J. Pakarinen, P. Rahkila, C. Scholey, G. Sletten, Phys. Rev. C 75, 054307 (2007). https://doi.org/10.1103/PhysRevC.75.054307
- [56] 2011Be08 P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F. A. Danevich, A. Incicchitti, M. Laubenstein, S. S. Nagorny, S. Nisi, O. G. Polischuk, V. I. Tretyak, Phys. Rev. C 83, 034603 (2011). https://doi.org/10.1103/PhysRevC.83.034603
- [57] 2014Ma66 D. A. Mayorov, T. A. Werke, M. C. Alfonso, M. E. Bennett, C. M. Folden, Phys. Rev. C 90, 024602 (2014). https://doi.org/10.1103/PhysRevC.90.024602
- [58] 2015Do01 S. F. Dorsett, K. S. Krane, Appl. Radiat. Isot. 96, 83 (2015). https://doi.org/10.1016/j.apradiso.2014.11.004
- [59] 2015Ma37 L. Ma, Z. Y. Zhang, Z. G. Gan, H. B. Yang, L. Yu, J. Jiang, J. G. Wang, Y. L. Tian, Y. S. Wang, S. Guo, B. Ding, Z. Z. Ren, S. G. Zhou, X. H. Zhou, H. S. Xu, G. Q. Xiao, Phys. Rev. C 91, 051302 (2015). https://doi.org/10.1103/PhysRevC.91.051302
- [60] 2018Be25 P. Belli, R. Bernabei, R. S. Boiko, F. Cappella, V. Caracciolo, R. Cerulli, F. A. Danevich, A. Incicchitti, B. N. Kropivyansky, M. Laubenstein, S. Nisi, D. V. Poda, O. G. Polischuk, V. I. Tretyak, J. Phys. (London) G45, 095101 (2018). https://doi.org/10.1088/1361-6471/aad3e3
- [61] 2020Be23 P. Belli, R. Bernabei, F. Cappella, V. Caracciolo, R. Cerulli, F. A. Danevich, A. Incicchitti, D. V. Kasperovych, V. V. Kobychev, G. P. Kovtun, N. G. Kovtun, M. Laubenstein, D. V. Poda, O. G. Polischuk, A. P. Shcherban, S. Tessalina, V. I. Tretyak, Phys. Rev. C 102, 024605 (2020). https://doi.org/10.1103/PhysRevC.102.024605
- [62] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [63] 2021Zh22 Z. Y. Zhang, H. B. Yang, M. H. Huang, Z. G. Gan, C. X. Yuan, C. Qi, A. N. Andreyev, M. L. Liu, L. Ma, M. M. Zhang, Y. L. Tian, Y. S. Wang, J. G. Wang, C. L. Yang, G. S. Li, Y. H. Qiang, W. Q. Yang, R. F. Chen, H. B. Zhang, Z. W. Lu, X. Xu, L. M. Duan, H. R. Yang, W. X. Huang, Z. Liu, X. H. Zhou, Y. H. Zhang, H. S. Xu, N. Wang, H. B. Zhou, X. J. Wen, S. Huang, W. Hua, L. Zhu, X. Wang, Y. C. Mao, X. T. He, S. Y. Wang, W. Z. Xu, H. W. Li, Z. Z. Ren, S. G. Zhou, Phys. Rev. Lett. 126, 152502 (2021). https://doi.org/10.1103/PhysRevLett.126.152502
- [64] 2022Zh45 M. M. Zhang, Y. L. Tian, Y. S. Wang, Z. Y. Zhang, Z. G. Gan, H. B. Yang, M. H. Huang, L. Ma, C. L. Yang, J. G. Wang, C. X. Yuan, C. Qi, A. N. Andreyev, X. Y. Huang, S. Y. Xu, Z. Zhao, L. X. Chen, J. Y. Wang, M. L. Liu, Y. H. Qiang, G. S. Li, W. Q. Yang, R. F. Chen, H. B. Zhang, Z. W. Lu, X. Xu, L. M. Duan, H. R. Yang, W. X. Huang, Z. Liu, X. H. Zhou, Y. H. Zhang, H. S. Xu, N. Wang, H. B. Zhou, X. J. Wen, S. Huang, W. Hua, L. Zhu, X. Wang, Y. C. Mao, X. T. He, S. Y. Wang, W. Z. Xu, H. W. Li, Y. F. Niu, L. Guo, Z. Z. Ren, S. G. Zhou, Phys. Rev. C 106, 024305 (2022). https://doi.org/10.1103/PhysRevC.106.024305