

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +11/2 nuclei.

Last updated 3/22/23

Table 1

Observed and predicted β -delayed particle emission from the even-*Z*, $T_z = +11/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values for ¹¹¹Sn, ¹¹⁵Te, ¹¹⁹Xe, ¹²³Ba, ¹²⁷Ce are taken from ENSDF.

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\varepsilon 2p}$	$Q_{\varepsilon \alpha}$	Experimental
1110		7/0+	25.0(0)	0.452(6)	0.000(5)		11 707(5)	0.042(6)	[10/00] 11]
115m		7/2 '	35.8(8) m	2.453(6)	-2.880(5)		-11./9/(5)	0.043(6)	[1969Sh11]
110 Te		112+	6.0(1) m	4.940(30)	1.208(28)		-7.274(28)	3.904(28)	[1972Sh37]
¹¹ / ₁₂₂		(5/2+)	5.8(3) m	4.983(24)	1.607(21)		-4.733(13)	5.784(19)	[1976Be61]
¹²⁵ Ba		(5/2+)	2.4(4) m*	5.389(17)	2.411(16)		-3.987(13)	5.698(25)	[1975Ar31, 1962Pr09]
¹² /Ce		$(1/2^+)$	34(2) s	5.920(40)	3.402(31)		-2.468(30)	6.639(31)	[1996Ge07]
¹³¹ Nd		$(5/2^+)$	25.5(10) s**	6.530(50)	4.366(39)	obs	-1.022(35)	7.703(38)	[1986Wi15, 1999Ga41,
									1993Al03,1977Bo02]
¹³⁵ Sm		$(3/2^+, 5/2^+)$	10.3(5) s	7.21(18)	5.50(16)	0.02(1)%	0.50(16)	9.02(16)	[1989Vi04 , 1977Bo02]
¹³⁹ Gd			5.8(9) s	7.77(20)#	6.58(20)#	obs	1.86(20)#	10.01(21)#	[1999Xi04, 1983Ni05]
139mGd	Х		4.8(9) s	7.77(20)#+x	6.58(20)#+x	obs	1.86(20)#+x	10.01(21)#+x	[1999Xi04, 1983Ni05]
¹⁴³ Dy		$(1/2^+)$	5.6(10) s	8.250(50)	7.502(31)	obs	3.179(18)	10.804(19)	[2003Xu04, 1984Ni03,
2									1983Ni05]
^{143m} Dy	0.3107(6)	$(11/2^{-})$	3.0(3) s	8.561(50)	7.833(31)	obs	3.1490(18)	11.115(19)	[2003Xu04]
¹⁴⁷ Er		$(1/2^+)$	≈2.5 s	9.150(40)	8.658(39)	obs	5.21(12)	11.386(64)	[2010Ma20, 2011MaZL
									2010Ma27,1988WiZN,
									1987ToZU, 1984ScZT]
147m Er	х	$(11/2^{-})$	2.5(2) s	9.150(40)+x	8.658(39)+x	obs	5.21(12)+x	11.386(64)+x	[2010Ma20, 2011MaZL,
		· · ·							2010Ma27, 1988WiZN,
									1987ToZU, 1984ScZT]
¹⁵¹ Yb		$(1/2^+)$	1.6(1) s	9.23(30)	9.00(30)	obs	5.53(30)	11.79(30)	[1989Ni02, 1986To12]
^{151m} Yb	х	$(11/2^{-})$	1.6(1) s	9.23(30)+x	9.00(30)+x	obs	5.53(30)+x	11.79(30)+x	[1989Ni02, 1986To12]
¹⁵⁵ Hf		$(7/2^{-})$	840(30) ms	8.24(30)#	8.33(30)#		5.09(30)#	14.04(30)#	[1981HoZM, 2011Sa59]
¹⁵⁹ W		$(7/2^{-})$	8.2(7) ms	9.01(30)#	9.38(30)#		6.43(30)#	14.69(30)	[1996Pa01]
¹⁶³ Os		(7/2-)	$6.2^{+1.3}$ ms	9.67(30)#	10.37(30)#		7.86(30)#	15.68(30)#	[2019Hi06
¹⁶⁷ Pt		. ,	$0.90(13) \text{ ms}^{***}$	10.32(31)#	11.39(31)#		9.33(31)#	16.82(31)	2019Hi06, 1996Pa01.
- •				=()"					1996Bi07]
¹⁷¹ Hg			$59^{+36}_{-16}\mu{ m s}$	10.90(31)#	12.35(31)#		10.86(31)#	17.99(31)	[2004Ke06]

* Weighted average of 2.7(4) m [1975Ar31] and 2.0(5) m [1962Pr09].

** Weighted average of 26.6(17) s [1999Ga41], and 25.0(12) s [1993Al03].

*** Weighted average of 1.1(2) ms [2019Hi06], 0.9(3) ms [2004Ke06], and 0.91(16) ms [1996Bi07].

Table 2

Particle emission from the even-Z, $T_z = +11/2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BR_{α}	Experimental
111 ~					
¹¹¹ Sn	6.758(13)	12.012(6)	-1.373(6)		
¹¹⁵ Te	4.855(34)	8.313(28)	1.451(28)		
¹¹⁹ Xe	5.112(22)	8.277(17)	0.843(30)		
¹²³ Ba	4.799(36)	7.752(16)	0.715(16)		
¹²⁷ Ce	4.295(95)	6.888(31)	1.251(31)		
¹³¹ Nd	3.882(70)	6.058(39)	1.786(40)		
¹³⁵ Sm	3.38(16)	5.10(16)	2.49(16)		
¹³⁹ Gd	3.17(20)#	4.22(20)#	2.80(25)#		
139mGd	3.17(20)#-x	4.22(20)#-x	2.80(25)#+x		
¹⁴³ Dy	2.90(70)	3.52(24)	3.04(20)#		
^{143m} Dy	2.59(70)	3.21(24)	3.35(20)#		
¹⁴⁷ Er	2.659(39)	2.94(39)	3.136(40)		
^{147m} Er	2.659(39)-x	2.94(39)-x	3.136(40)+x		
¹⁵¹ Yb	2.34(36)#	2.38(30)	2.64(30)		
^{151m} Yb*	2.34(36)#-x	2.38(30)-x	2.64(30)+x		
¹⁵⁵ Hf	1.93(36)#	1.73(36)#	4.81(43)#	0.06%	[1981HoZM]
¹⁵⁹ W	1.605(36)#	1.16(36)#	6.451(4)	$92^{+8}_{-23}\%$	[1996Pa01, 1981Ho10, 2019Hi06, 2011Sa59, 1981HoZM]
¹⁶³ Os	1.17(36)#	0.41(36)#	6.673(7)	100%	[2019Hi06, 1996Pa01, 1996Bi07, 1981Ho10, 2004Ke06]
¹⁶⁷ Pt	0.74(37)#	-0.42(37)#	7.160(60)	100%	[2019Hi06, 1996Pa01, 1996Bi07, 1981Ho10
¹⁷¹ Hg	0.245(37)#	-1.23(37)#	7.668(15)	100%	[2004Ke06]

Table 3

direct α emission from ¹⁵⁵ Hf*, J ^{π} = (7/2 ⁻), T _{1/2} = 840(30) ms**, BR _{α} = 0.06 %.									
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{151}\mathrm{Yb})$	coincident γ -rays	R ₀ (fm)	HF		
4.900	4.774	0.06%	(1/2+)	0.0					
* All valu ** [2011]	es from [1981HoZ Sa59].	M], except where	e noted.						
Table 4 direct α emiss	ion from ¹⁵⁹ W*, J ²	$\pi = (7/2^{-}), T_{1/2} =$	= 8.2(7) ms, <i>BF</i>	$R_{\alpha} = 92^{+8}_{-23}$ %.					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_p(abs)$	J_f^{π}	$E_{daughter}(^{155}\mathrm{Hf})$	coincident γ -rays	R_0 (fm)	HF		
6.457(5)	6.295(5)**	92^{+8}_{-23} %	(7/2 ⁻)	0.0		1.5566(82)	$2.2^{+0.5}_{-0.4}$		
* All values from [1996Pa01]. ** Weighted average of 6.292(5) MeV [1996Pa01] and 6.299(6) MeV [1981Ho10].									
Table 5 direct α emiss	ion from ¹⁶³ Os*, J	$\pi = (7/2^{-}), T_{1/2} =$	$= 6.2^{+1.3}_{-0.9}$ ms, <i>B</i>	$R_{\alpha} = 100\%.$					
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_p(abs)$	$J_f^{\pmb{\pi}}$	$E_{daughter}(^{159}W)$	coincident γ-rays	R ₀ (fm)	HF		
6.666(12)	6.503(12)	100%	(7/2-)	0.0		1.5537(37)	1.28(31)		
* All valu ** Weigh	ted average of 6.51	6]. 2(19) MeV [1990	5Pa01] and 6.4	99(12) keV [2019Hi06].					
Table 6 direct α emiss	ion from ¹⁶⁷ Pt, J ^{π}	$=, T_{1/2} = 0.90(12)$	3) ms**, BR_{α}	= 100%.					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_p(abs)$	$\mathrm{J}_f^{\pmb{\pi}}$	$E_{daughter}(^{163}\mathrm{Os})$	coincident γ -rays	R ₀ (fm)	HF		
7.163(7)	6.983(7)**	100%	(7/2-)	0.0		1.555(10)	$1.5^{+0.4}_{-0.3}$		
* Weight ** Weigh	ed average of 1.1(2 ted average of 6.98) ms [2019Hi06], 35(8) MeV [2019]	0.9(3) ms [20 Hi06], 6.979(7	04Ke06], and 0.91(16) ms) [2004Ke06], and 6.988(2	[1996Bi07]. [0) MeV [1996Bi07].				
Table 7 direct α emiss	ion from ¹⁷¹ Hg*, J	$T^{\pi} = , T_{1/2} = 59^{+3}_{-1}$	$^{36}_{6} \mu \text{s}, BR_{\alpha} = 1$	00 %.					
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_p(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{167}\mathrm{Pt})$	coincident γ -rays	R ₀ (fm)	HF		
7.667(12)	7.488(12)	100%		0.0		1.541(24)	$0.5\substack{+0.5\\-0.4}$		

* All values from [2004Ke06].

References used in the Tables

- [1] 1962Pr09 L. Preiss, P. M. Strudler, J. Inorg. Nuclear Chem. 24, 589 (1962). https://doi.org/10.1016/0022-1902(62)80075-X
- [2] 1969Sh11 V. A. Shilin, V. R. Burmistrov, V. N. Levkovskii, Izv. Akad. Nauk SSSR, Ser.Fiz. 33, 38 (1969); Bull. Acad. Sci. USSR, Phys. Ser. 33, 36 (1970).
- [3] 1972Sh37 V. A. Shilin, V. R. Burmistrov, Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 2509 (1972); Bull. Acad. Sci. USSR, Phys. Ser. 36, 2181 (1973).
- [4] 1975Ar31 R. Arlt, A. Jasinski, W. Neubert, H. -G. Ortlepp, Acta Phys.Pol. B6, 433 (1975).
- [5] 1976Be61 E. E. Berlovich, L. K. Batist, Y. S. Blinnikov, V. A. Bondarenko, V. V. Gavrilov, Y. V. Elkin, G. G. Lemeshko, K. A. Mezilev, Y. T. Mironov, F. V. Moroz, Y. N. Novikov, S. Y. Orlov, V. N. Panteleev, A. G. Polyakov, V. A. Sergienko, S. L. Smolskii, V. K. Tarasov, V. I. Tikhonov, N. D. Shchigolev, Izv. Akad. Nauk SSSR, Ser. Fiz. 40, 2036 (1976); Bull. Acad. Sci. USSR, Phys. Ser. 40, No. 10, 10 (1976).

- [6] 1977B002 D. D. Bogdanov, A. V. Demyanov, V. A. Karnaukhov, L. A. Petrov, A. Plochocki, V. G. Subbotin, J. Voboril, Nucl. Phys. A275, 229 (1977). https://doi.org/10.1016/0375-9474(77)90285-8
- [7] 1981Ho10 S. Hofmann, G. Munzenberg, F. Hessberger, W. Reisdorf, P. Armbruster, B. Thuma, Z. Phys. A299, 281 (1981). https://doi.org/10.1007/BF01443948
- [8] 1981HoZM S. Hofmann, G. Munzenberg, W. Faust, F. Hessberger, W. Reisdorf, J. R. H. Schneider, P. Armbruster, K. Guttner, B. Thuma, Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, Vol. 1, p. 190 (1981); CERN-81-09 (1981).
- [9] 1983Ni05 J. M. Nitschke, M. D. Cable, W. -D. Zeitz, Z. Phys. A312, 265 (1983). https://doi.org/10.1007/BF01412173
- [10] 1984Ni03 J. M. Nitschke, P. A. Wilmarth, P. K. Lemmertz, W. -D. Zeitz, J. A. Honkanen, Z. Phys. A316, 249 (1984). https://doi.org/10.1007/BF01412274
- [11] 1984ScZT D. Schardt, P. O. Larsson, R. Kirchner, O. Klepper, V. T. Koslowsky, E. Roeckl, K. Rykaczewski, P. Kleinheinz, K. Zuber, Proc. Intern. Conf. Atomic Masses and Fundamental Constants, 7th, Darmstadt-Seeheim, p. 229, (1984).
- [12] 1986To12 K. S. Toth, Y. A. Ellis-Akovali, J. M. Nitschke, P. A. Wilmarth, P. K. Lemmertz, D. M. Moltz, F. T. Avignone III, Phys. Lett. 178B, 150 (1986). https://doi.org/10.1016/0370-2693(86)91486-3
- [13] **1986Wi15** P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, J. GilatZ. Phys. A**325**, 485 (1986).
- [14] 1987ToZU K. S. Toth, J. M. Nitschke, P. A. Wilmarth, Y. A. Ellis-Akovali, K. Vierinen, Contrib. Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada, K11 (1987).
- [15] 1988WiZN P. A. Wilmarth, unpublished (thesis), LBI-26101 (1988).
- [16] 1989Ni02 J. M. Nitschke, P. A. Wilmarth, R. B. Firestone, P. Moller, K. S. Toth, J. Gilat, Phys. Rev. Lett. 62, 2805 (1989). https://doi.org/10.1103/PhysRevLett.62.2805
- [17] 1989Vi04 K. S. Vierinen, J. M. Nitschke, P. A. Wilmarth, R. B. Firestone, J. Gilat, Nucl. Phys. A499, 1 (1989). https://doi.org/10.1016/0375-9474(89)90266-2
- [18] 1993Al03 G. D. Alkhazov, L. H. Batist, A. A. Bykov, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, V. D. Wittmann, Z. Phys. A 344, 425 (1993). https://doi.org/10.1007/BF01283198
- [19] 1996Bi07 C. R. Bingham, K. S. Toth, J. C. Batchelder, D. J. Blumenthal, L. T. Brown, B. C. Busse, L. F. Conticchio, C. N. Davids, T. Davinson, D. J. Henderson, R. J. Irvine, D. Seweryniak, W. B. Walters, P. J. Woods, B. E. Zimmerman, Phys. Rev. C54, R20 (1996). https://doi.org/10.1103/PhysRevC.54.R20
- [20] 1996Ge07 J. Genevey, A. Gizon, D. Barneoud, Gh. Cata-Danil, R. Beraud, A. Emsallem, C. Foin, C. F. Liang, P. Paris, S. Viteritti, Z. Phys. A356, 7 (1996). https://doi.org/10.1007/s002180050139
- [21] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [22] 1999Ga41 Z. G. Gan, Z. Qin, J. S. Guo, L. J. Shi, H. Y. Liu, T. R. Guo, X. G. Lei, R. C. Ma, W. X. Huang, S. G. Yuan, X. Q. Zhang, G. M. Jin, Eur. Phys. J. A 6, 59 (1999). https://doi.org/10.1007/s100500050317
- [23] 1999Xi04 Y. Xie, S. Xu, Z. Li, Y. Yu, Q. Pan, C. Wang, T. Zhang, Eur. Phys. J. A 6, 239 (1999). https://doi.org/10.1007/s100500050340
- [24] 2003Xu04 S. -W. Xu, Y. -X. Xie, Z. -K. Li, X. -D. Wang, B. Guo, C. -G. Leng, C. -F. Wang, Y. Yu, Eur. Phys. J. A16, 347 (2003). https://doi.org/10.1140/epja/i2002-10102-1
- [25] 2004Ke06 H. Kettunen, T. Enqvist, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M. Leino, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, Phys. Rev. C 69, 054323 (2004). https://doi.org/10.1103/PhysRevC.69.054323
- [26] 2010Ma20 F. Ma, X. H. Zhou, Y. Zheng, S. W. Xu, Y. X. Xie, L. Chen, X. G. Lei, Y. X. Guo, Y. H. Zhang, Z. K. Li, Y. H. Qiang, S. Guo, H. X. Wang, H. B. Zhou, B. Ding, G. S. Li, N. T. Zhang, Phys. Rev. C81, 047301 (2010). https://doi.org/10.1103/PhysRevC.81.047301
- [27] 2010Ma27 F. Ma, X.- H. Zhou, Y. Zheng, S.- W. Xu, Y.- X. Xie, L. Chen, Y.- H. Zhang, Z.- K. Li, Y.- H. Qiang, X.- G. Lei, Y.-X. Guo, S. Guo, B. Ding, H.- X. Wang, G.- S. Li, H.- B. Zhou, Chin. Phys. Lett. 27, 062104 (2010). https://doi.org/10.1088/0256-307X/27/6/062104
- [28] 2011MaZL F. Ma, S. W. Xu, X. H. Zhou, Y. X. Xie, Y. Zheng, Proc. of the 4th Inter. Conf. Proton Emitting Nuclei and Related Topics (PROCON 2011), Bordeaux, France, 6-10 June 2011, LB. Blank Ed. p. 185 (2011); AIP Conf. Proc. 1409 (2011)
- [29] 2011Sa59 P. J. Sapple, R. D. Page, D. T. Joss, L. Bianco, T. Grahn, J. Pakarinen, J. Thomson, J. Simpson, D. O'Donnell, S. Erturk, P. T. Greenlees, U. Jakobsson, P. M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Ny-

man, P. Peura, A. Puurunen, P. Rahkila, P. Ruotsalainen, J. Saren, C. Scholey, J. Uusitalo, Phys. Rev. C 84, 054303 (2011). https://doi.org/10.1103/PhysRevC.84.054303

- [30] 2019Hi06 J. Hilton, J. Uusitalo, J. Saren, R. D. Page, D. T. Joss, M. A. M. AlAqeel, H. Badran, A. D. Briscoe, T. Calverley, D. M. Cox, T. Grahn, A. Gredley, P. T. Greenlees, R. Harding, A. Herzan, E. Higgins, R. Julin, S. Juutinen, J. Konki, M. Labiche, M. Leino, M. C. Lewis, J. Ojala, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, C. Scholey, J. Sorri, L. Sottili, S. Stolze, F. Wearing, Phys. Rev. C 100, 014305 (2019). https://doi.org/10.1103/PhysRevC.100.014305
- [31] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf