

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = -5/2 nuclei.

Last updated 3/17/23

Table 1

Observed and predicted β -p, β -2p, and β -3p emission from the even-Z $T_z = -5/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	Q_{ε}	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\varepsilon 2p}$	$BR_{\beta 2p}$	$Q_{\varepsilon 3p}$	$BR_{\beta 3p}$	$Q_{\varepsilon \alpha}$	Experimental
¹¹ O	$(3/2^{-})$	1 30 MeV	23 37(6)	24 75(6)		20.75(6)		17 637(65)		11 24(64)#	[2019We03]
¹⁵ Ne	(3/2)	0.59 MeV	23.65(7)	24.92(7)		20.30(7)		18 35(7)		13.43(67)#	[2014Wa09]
¹⁹ Mø		4.0(15) ps	18,910(60)	19.23(60)		15.31(60)		14.71(60)		12.85(60)	[2014((a0)]
²³ Si*	$(5/2)^+$	42 3(4) ms	17 20(50)#	17.06(50)#	81 8(11)%**	11 56(50)#	7 73(35)%**	9 13(50)#	0.029+0.038%**	8 60(50)#	[2022Ci04, 2018Wa05
51	(0/2)	1210(1)110	1/120(00)	1/100(00)	0110(11)/0	11100(00)	1110(00)/0	<i>y</i> 110(00)#	-0.019 /0	0100(00)//	1997Cz02, 1997Bl04]
²⁷ S	$(5/2)^+$	16.3(2) ms***	18.15(40)#	17.34(40)#	62.2(29)% [@]	11.83(40)#	2.4(5)%***	9.56(40)#	<0.1%	8.32(40)#	[2021Sh23, 2020Su05,
	. ,		~ /		. ,						2019Su14, 2017Ja05,
											2001Ca60, 1991Bo32]
³¹ Ar	$5/2^{+}$	15.1(3) ms ^{@@}	18.36(20)#	18.10(20)#	68.3(3)%	13.71(20)#	9.0(2)%	10.96(20)#	0.07(2)%	9.57(20)#	@@@
³⁵ Ca	$(1/2^+)$	25.7(2) ms	16.36(20)#	16.28(20) #	95.7(15)%	11.62(20)#	4.2(3)%	9.34(20)#		9.80(20)#	[2016Ci05, 1999Tr04,
											1985Ay01]
³⁹ Ti	$(3/2^+)$	28.5(9) ms	16.67(20)#	17.27(20)#	93.7(28)% ^a	12.72(20)#	a	10.87(20)#		11.25(20)#	[2007Do17, 1992Mo15,
											2001Gi01, 1990De43]
⁴³ Cr	$(3/2^+)$	21.2(7) ms	15.95(21)#	15.85(20)#	79.3(30)%	12.09(20)#	11.6(10)%	11.01(20)#	$0.13^{+0.18}_{-0.08}\%$	9.78(20)#	[2012Au08, 2007Do17,
											2011Po01, 2001Gi01,
											1992Bo37]
⁴⁷ Fe	$(7/2^{-})$	21.9(2) ms	15.44(50)#	15.05(50)#	88.4(9)%	10.18(50)#		8.55(50)#		8.37(50)#	[2007Do17 , 1992Bo37]
⁵¹ Ni	7/2-	23.8(2) ms	15.69(50)#	15.54(50)#	87.2(9)% ^b	11.39(50)#	$0.50(2)\%^{c}$	9.30(50)#		8.50(80)#	[2012Au08, 2007Do17]
⁵⁵ Zn	5/2-	19.8(13) ms	17.37(43)#	17.72(40)#	91.0(51)%	13.81(40)#		12.20(40)#		10.65(40)#	[2007Do17]
⁵⁹ Ge		13.3(17) ms	17.39(43)#	18.64(40)#	100%	16.36(40)#		15.67(40)#		12.85(53)#	[2017GoZT, 2016Go26,
											2015Ci06]
⁶³ Se		13.2(39) ms	16.65(54)#	18.00(52)#	100%	15.70(50)#		15.46(50)#		14.49(53)#	[2017GoZT, 2016Go26]
⁶⁷ Kr		7.4(30) ms	16.98(52)#	18.82(47)#	$63(14)\%^d$	16.81(43)#		16.90(42)#		15.52(47)#	[2017GoZT, 2016Go26]

* In addition a branching ratio for β -p α is reported as 0.014^{+0.033}_{-0.012}% [2022Ci04].

** [2022Ci04]

*** [2021Sh23]

[@] From [2021Sh23] plus two high energy peaks from [2001Ca60].

@@ [2015Li20]

@ @ @ [2015Li20, 2000Fy01, 1998Ax02, 1992Ba01, 2019Ko29, 2018Mu18, 2016Ci05, 2016Ma17, 2014Ko17, 2014Ko34, 2013Ko13, 2002Fy01, 2002Bo29, 1999Fy01, 1999Th09, 1998Ax01, 1998Mu06, 1991Bo32, 1990Bo24, 1989Re02]].

^{*a*} Mixture of β -p and β -2p [2007Do17], β -xp is expected to be 100% as ³⁹Sc is unbound to proton emission S_p= -597(24) keV [2021Wa21].

^b [2007Do17].

c [2012Au08].

 ${}^{d}\beta$ -daughter 67 Br is unbound to proton emission.

Table 2

Particle emission from the even-Z $T_z = -5/2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	BR_{2p}	Qα	Experimental
	*	•	•		
¹¹ O	-1.65(40)	-4.25(6)	100%		[2019We03]
¹⁵ Ne	-0.96(8)	-2.52(7)	100%	-9.95(9)	[2014Wa09]
¹⁹ Mg	0.49(11)	-0.760(50)	100%	-10.80(90)	[2018Xu04, 2016Xu08, 2015Mu13,
e					2012Mu05, 2009Mu17, 2007Mu15]
²³ Si	1.54(64)#	1.53(50)#		-10.31(50)#	
²⁷ S	0.77(45)#	0.91(40)#		-8.88(64)#	
³¹ Ar	0.64(20)#	0.006(34)*		-8.59(45)#	
³⁵ Ca	0.88(28)#	0.00(20)#		-8.56(28)#	
³⁹ Ti	0.54(28)#	-1.06(20)#		-5.12(28)#	
⁴³ Cr	1.64(28)#	0.85(20)#		-6.90(28)#	
⁴⁷ Fe	2.00(51)#	2.19(50)#		-7.58(54)#	
⁵¹ Ni	1.35(52)#	1.48(50)#		-6.95(71)#	
⁵⁵ Zn	0.32(57)#	-0.78(40)#		-5.04(64)#	
⁵⁹ Ge	0.12(50)#	-1.60(45)#	$<\!0.2\%$	-4.53(57)#	[2017GoZT]
⁶³ Se	-0.28(58)#	-2.36(58)#	$<\!0.5\%$	-2.91(64)#	[2017GoZT]
⁶⁷ Kr	-0.73(58)#	-2.89(30)#	37(14)%	-1.13(66)#	2017GoZT , 2016Go26]

* from [2018Mu18], [2021Wa16] lists 0.64(20)#

Table 3	
β -p Emission from ²³ Si*, T _{1/2} = 42.3(4) ms, $BR_{\beta p} = 81.8(11) \%^{c}$	

$E_p(\text{c.m.})$	$I_p(\text{rel})\%$	$I_p(abs)\%$	E _{emitter} (²³ Al)**	Edaughter(²² Mg)***	coincident γ -rays***
	0.45+0.22	0.12+0.06		<u> </u>	i
$0.300(90)^{c}$	$0.45_{-0.15}^{+0.22}$	$0.12^{+0.00}_{-0.04}$			
0.654(31)	9.1(4)	2.4(1)	0.795(31)	0	
1.333(28)	21.8(14)	5.78(37)	1.474(28)	0	
1.657(37)	17(2)	4.6(6)	1.798(37)	0	
2.356(29)	100(5)	26.5(14)	3.744(29)	1.247	1.247
2.764(35)	36.4(4)	9.64(10)	4.152(35)	1.247	1.247
3.024(36)	31.9(14)	8.5(4)	3.165(36)	0	
3.592(44)	27.2(8)	7.2(2)	3.733(44)	0	
	23.4(4)	$6.2(1)^{a}$	3.952(51)	0	
4.235(39)	18.8(4)	4.99(10)	4.376(39)	0	
4.781(41)	10.1(7)	2.7(2)	4.922(41)	0	
5.545(82) ^a			5.686(82)	0	
$8.680(70)^{b}$	1.5(4)	$0.4(1)^{b}$	8.821(70)	0	
$9.670(70)^b$	0.4(2)	$0.11(4)^{b}$	9.811(70)	0	
$10.410(70)^{b}$	0.3(1)	$0.07(3)^{b}$	10.551(70)	0	
$10.930(80)^{b}$	0.3(1)	$0.09(3)^{b}$	11.071(80)	0	
$11.620(100)^{b}$	0.1(1)	$0.03(2)^{b}$	11.761(100)	0	

* Weighted average of [2018Wa05] and [1997Bl04, 1997Cz02], except where noted. ** Calculated from proton energies [1997Bl04] and Sp (23 Al) = 140.9(4) keV [2021Hu06]. For levels de-excited by more than one proton transition, E_{level} (emitter) is the weighted average. *** Values from adopted levels in ENSDF [2015Ba27].

^{*a*} [2018Wa05]. ^{*b*} [1997Bl04].

^c [2022Ci04].

Table 4

 β -2p emission from ²³Si*, $BR_{\beta 2p} = 7.73(35)\%^{@}$.

$E_{2p}(c.m.)$	$I_{2p}(\text{rel})\%$	$I_{2p}(abs)\%$	$E_{emitter}$ (²³ Al)**	$E_{daughter}(^{21}Na)^{***}$	coincident γ-rays***
5.858(55)	100	1.85(20)	11.78(7)	0.3319(10)	0.332
6.052(55)	86(20)	1.60(20)	11.78(7)	0	

* Weighted average of [2018Wa05] and [1997Bl04, 1997Cz02]. ** Determined from ²³Si β -p emission.

*** Values from adopted levels in ENSDF [2015Fi05].

@ [2022Ci04].

Table 5	
β -p emission from ²⁷ S*, T _{1/2} = 16.3(2) ms ^b , BR _{βp} = 62.2(29)%	

$E_p(c.m.)$	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter} (^{27}\mathrm{P})^a$	$E_{daughter}(^{26}{ m Si})^{@}$	coincident γ-rays [@]
0.219(9)	100 0/0 1)	22 1(2 1)	1 125(12)	0	
0.318(8)	100.0(9.1)	25.1(2.1)	1.123(12) 1.5(0(12))	0	—
0.762(8)	38.5(0.1)	8.9(1)	1.509(12)	0	 0.0000 1.7000 0.7070
0.913(9)	0.3(1.8)	1.5(0.3)	4.50/(13)	2.78/1(1)	0.9889, 1.7922, 2.7870
1.054(9)	7.8(1.8)	1.8(0.3)	1.861(13)	0	-
1.282(9)	4.8(1.2)	1.1(0.2)	4.876(13)	2.7871(1)	0.9889, 1.7922, 2.7870
1.676(9)	2.6(1.8)	0.6(0.3)	5.270(13)	2.7871(1)	0.9889, 1.7922, 2.7870
1.86(12)	1.3(1.8)	0.3(0.3)	4.464(15)	1.7973	1.7973
1.951(11)	3.5(1.8)	0.8(0.3)	5.545(14)	2.7871(1)	0.9889, 1.7922, 2.7870
2.128(10)	4.3(1.8)	1(0.3)	5.722(13)	2.7871(1)	0.9889, 1.7922, 2.7870
2.264(9)	24.7(4.9)	5.7(0.8)	5.858(13)	2.7871(1)	0.9889, 1.7922, 2.7870
2.417(11)	6.9(2.4)	1.6(0.4)	5.021(14)	1.7973	1.7973
2.576(11)	5.6(2.4)	1.3(0.4)	6.170(14)	2.7871(1)	0.9889, 1.7922, 2.7870
2.717(10)	2.6(1.2)	0.6(0.2)	3.524(13)	0	_
2.808(10)	8.7(3.1)	2(0.5)	6.402(13)	2.7871(1)	0.9889, 1.7922, 2.7870
2.953(12)	4.8(2.4)	1.1(0.4)	6.547(15)	2.7871(1)	0.9889, 1.7922, 2.7870
3.03(12)	4.3(1.8)	1(0.3)	6.624(15)	2.7871(1)	0.9889, 1.7922, 2.7870
3.121(11)	4.8(2.4)	1.1(0.4)	6.715(14)	2.7871(1)	0.9889, 1.7922, 2.7870
3.238(11)	6.1(2.4)	1.4(0.4)	5.842(14)	1.7973	1.7973
3.475(12)	3.5(1.8)	0.8(0.3)	7.069(15)	2.7871(1)	0.9889, 1.7922, 2.7870
3.720(11)	1.7(1.2)	0.4(0.2)	6.324(14)	1.7973	1.7973
3.786(11)	1.7(1.2)	0.4(0.2)	7.380(14)	2.7871(1)	0.9889, 1.7922, 2.7870
3.95(11)	1.7(0.6)	0.4(0.1)	6.554(14)	1.7973	1.7973
4.05(11)	5.2(1.8)	1.2(0.3)	6.654(14)	1.7973	1.7973
4.26(15)	1.7(1.2)	0.4(0.2)	6.864(17)	1.7973	1.7973
4.399(15)	2.2(1.2)	0.5(0.2)	7.993(17)	2.7871(1)	0.9889, 1.7922, 2.7870
4.693(15)	1.7(1.2)	0.4(0.2)	8.287(17	2.7871(1)	0.9889, 1.7922, 2.7870)
4.84(12)	2.2(1.2)	0.5(0.2)	7.444(15)	1.7973	1.7973
7.80(40)***	5.4(19)	1.4(5)%***			
10.56(40)***	3.4(15)	0.9(4)%***	13.164(400)	1.7973	1.7973

* From [2019Su14] unless otherwise stated. ** [2017Ja05]

*** [2017Ja05] **** [2001Ca60] (above energy threshold for [2019Su14]. ^(a) Values from adopted levels in ENSDF [2016Ba18]. ^a Calculated from proton energies and S_p (²⁷P) = 7807(9) keV [2021Hu06].

^b [2021Sh23].

Table 6

 β -2p emission from ²⁷S*, $BR_{\beta 2p} = 2.4(5)\%$

$E_{2p}(c.m.)$	$I_{2p}(\text{rel})$	$I_{2p}(abs)$	$E_{emitter}$ (²⁷ P)**	$E_{daughter}(^{25}\mathrm{Al})^{@}$	coincident γ-rays [@]
6.372(15)	100	0.7(3)%	12.693(17)	0	

* All values taken from [2021Sh23], a 5.3 MeV transition from [2017Ja05] was not observed. ** Calculated from two proton energy and S_{2p} (²⁷P) = 6321(9) keV [2021Hu06].

Table 7
β -p emission from ³¹ Ar*, T _{1/2} = 15.1(3) ms ^e , BR _{βp} = 68.3(3)%**.

$E_p(c.m.)$	$I_p(rel)$	$I_p(abs)$	$E_{emitter}$ (³¹ Cl)	$E_{daughter}(^{30}\mathrm{S})^d$	coincident γ -rays ^d	
$0.461(15)^{b}$	$0.49(16)^{b}$	0.14(5)	0.725(15)	0		
$0.779(15)^{b}$	$3.0(3)^{b}$	0.87(9)	3.254(15)	2.2106(5)	2.211	
$0.844(15)^{ab}$	4.2(4)	1.2(1)		()		
$1.006(15)^{b}$	$1.4(2)^{b}$	0.41(6)	1.270(15)	0		
$1.169(5)^{ab}$	$2.7(16)^{b}$	0.78(46)	6.651(6)	5,2174(7)	2nd proton emitted	
1.251(4)	1.7(5)	0.49(14)	6.651(6)	5.136(2)	2 2106 2 925	
$1.343(13)^a$	0.70(11)	0.20(3)	6.825(13)	5.2174(7)	2nd proton emitted	
1.463(2)	34.0(3)	9.88(9)	1.7527(4)	0		
1.554(2)	6.2(2)	1.80(6)	4.029(4)	2.2106(5)	2.211	
1.698(2)	2.88(14)	0.84(4)	5.364(4)	3.4026(5)	1.192, 2.211, 3.402	
$1.880(3)^a$	3.0(4)	0.87(11)	7.361(4)	5.2174(7)	2nd proton emitted	
1.932(3)	0.8(2)	0.23(6)	5.599(4)	3.4026(5)	1.192, 2.211, 3.402	
$1.987(3)^{a}$	0.44(14)	0.13(4)	7.469(4)	5.2174(7)	2nd proton emitted	
2.075(3)	10.0(2)	2.91(6)	5.742(4)	3.4026(5)	1.192, 2.211, 3.402	
2.153(2)	100.0	29.1(2)	2.417(4)	0		
2.328(2)	4.0(3)	1.16(9)	2.592(4)	0		
2.405(4)	5.1(4)	1.48(11)	2.669(5)	0		
2.977(3)	0.99(13)	0.29(4)	6.644(4)	3.4026(5)	1.192, 2.211, 3.402	
3.121(3)	1.08(14)	0.31(4)	5.595(4)	2.2106(5)	2.211	
3.258(4)	0.44(10)	0.13(3)	5.733(5)	2.2106(5)	2.211	
3.357(4)	1.17(15)	0.34(4)	3.621(5)	0		
3.546(3)	0.89(11)	0.26(3)	7.477(4)	3.6675(10)	1.4566, 2.211	
3.680(11)	3.6(8)	1.0(2)	7.346(11)	3.4026(5)	1.192, 2.211, 3.402	
3.755(3)	6.1(8)	1.8(2)	4.019(4)	0		
$3.933(4)^a$	0.53(13)	0.15(4)	9.414(5)	5.2174(7)	2nd proton emitted	
4.032(3)	2.22(14)	0.65(4)	6.507(4)	2.2106(5)	2.211	
4.164(3)	7.0(2)	2.03(6)	6.639(4)	2.2106(5)	2.211	
$4.340(4)^{a}$	1.09(18)	0.32(5)	12.295(5)	7.693(4)	2nd proton emitted	
$4.432(4)^{a}$	0.31(8)	0.09(2)	12.295(5)	7.598(4)	2nd proton emitted	
$4.535(5)^a$	0.59(11)	0.17(3)	12.295(5)	7.485(4)	2nd proton emitted	
$4.778(9)^{b}$	$0.7(2)^{b}$	0.20(6)	5.042(9)	0		
4.888(5)	1.68(18)	0.49(5)	7.361(6)	2.2106(5)	2.211	
5.454(5)	17.6(3)	5.06(9)	5.716(6)	0		
$5.820(9)^{a}$	0.31(5)	0.09(1)	12.286(9)	5.389(2)	2nd proton emitted	
$6.150(7)^a$	0.19(6)	0.05(2)	12.256(8)	5.843(5)	2nd proton emitted	
6.251(9)	0.51(12)	0.15(3)	6.515(9)	0		
6.350(7)	0.51(12)	0.15(3)	6.614(8)	0		
$6.599(7)^a$	0.26(5)	0.08(1)	12.252(8)	5.389(2)	2nd proton emitted	
$6.758(8)^a$	0.84(11)	0.24(3)	12.239(9)	5.2174(7)	2nd proton emitted	
7.182(9)	0.70(9)	0.20(2)	7.446(9)	0		
7.310(16)	0.49(7)	0.14(2)	7.574(9)	0		
8.362(12)	0.25(4)	0.07(1)	12.295(6)	3.6675(10)	1.457, 2.211	
8.625(15)	0.51(6)	0.15(2)	12.295(6)	3.4026(5)	1.192, 2.211, 3.402	
9.155(19)	0.22(19)	0.064(55)	9.419(19)	0		
9.809(20)	0.30(4)	0.087(12)	12.284(20)	2.2106(5)	2.211	
12.042(28)	0.23(11)	0.067(32)	12.310(25)	0		
12.253(29)	0.034(3)	0.010(1)	12.517(29)	0		

*All values are taken from [2000Fy01] except where indicated. (Values from [2016Ma17] are listed as preliminary and are not included in this table). ** From [2015Li20]. ^a Single proton from a β -2p decay. ^b [1998Ax02] ^c Calculated from proton energies and S_p (³¹Cl) = 264(3) keV [2021Hu06]. ^d Values from adopted levels in ENSDF [2010Ba29]. ^e [2015Li20]

^e [2015Li20].

Table 8 β -2p emission from ³¹Ar*, $BR_{\beta 2p} = 9.0(2)\%$ **

$E_{2p}(c.m.)$	$I_{2p}(\text{rel})$	$I_{2p}(abs)$	$E_{emitter}$ (³¹ Cl)***	$E_{daughter}(^{29}\mathrm{P})^{@}$	coincident γ -rays [@]	
5.680(20)	48(23)	0.61(11)	12.295(5)	1.9539(2)	1.954, 0.570, 1.384	
6.230(20)	56(23)	0.71(12)	12.295(5)	1.3836(1)	1.384	
7.635(25)	100	1.26(20)	12.295(5)	0		

*All values are taken from [1998Ax02] except where indicated.

** From [2015Li20].

*** Determined from ³¹Ar β -p emission.

[@] Values from adopted levels in ENSDF [2012Ba18].

Table 9

 β -3p emission from ³¹Ar, $BR_{\beta 2p} = 0.07(2)\%^{**}$.

$E_{3p}(c.m.)*$	$I_{3p}(\text{rel})$	$I_{3p}(abs)^{**}$	$E_{emitter}$ (³¹ Cl)***	$E_{daughter}(^{29}\mathrm{Si})$	coincident γ -rays	
5.03(29)	100	0.07(2)	12.295(5)	0		
* [1992Ba01]. ** [1998Ax02].						

*** Determined from ³¹Ar β -p emission.

Table 10

<u>β</u>-p emission from ³⁵Ca*, $T_{1/2}$ = 25.7(2) ms, $BR_{\beta p} = 95.7(15)\%^{**}$.

$E_p(\text{c.m.})$	$I_p(\text{rel})$	$I_p(abs)$	<i>E_{emitter}</i> (³⁵ K)***	$E_{daughter}(^{34}\mathrm{Ar})^{@}$	coincident γ-rays [@]
1.427(5)	100	48.5(13)	1.511(5)	0	
1.909-2.647 ^a	11(2)	5.4(9)	4.084-4.822	2.0911(3)	2.091
1.909-2.647 ^a	2.1(8)	1.0(4)	5.280-6.018	3.2877(5)	1.197, 2.091, 3.286
1.909-2.647 ^a	4.1(14)	2.0(7)	5.866-6.604	3873(3)	1.782, 2.091, 0.585, 1.197
2.727(13)	12.4(10)	6.0(5)	4.902(13)	2.0911(3)	2.091
2.947-3.500 ^a	4.5(6)	2.2(3)	5.122-5675	2.0911(3)	2.091
3.592(25)	6.2(6)	3.0(3)	3.676(25)	0	
3.822(36)	7.8(6)	3.8(3)	3.906(36)	0	
4.041(71)	6.0(6)	2.9(3)	6.216(71)	2.0911(3)	2.091
4.570(48)	6.0(6)	2.9(3)	4.654(48)	0	
4.754(38)	8.7(8)	4.2(4)	4.838(38)	0	
5.018(71)	8.0(6)	3.9(3)	5.102(71)	0	
5.294(48)	1.5(4)	0.72(18)	5.378(48)	0	
5.466(48)	1.26(31)	0.61(15)	5.550(48)	0	
5.616(37)	2.95(35)	1.43(17)	5.700(37)	0	
5.834(60)	2.9(4)	1.40(19)	5.918(60)	0	
5.983-6.649 ^a	2.25(35)	1.09(17)	6.067-6.733	0	
6.783(22)	7.8(4)	3.8(2)	8.958(22)	2.0911(3)	2.091
7.131-7.887 ^a	2.3(4)	1.1(2)	4.084-7.971	0	
8.802(89)	0.85(12)	0.41(6)	8.886(89)	0	

* All values are taken from [1999Tr04], except where noted.

** From [2016Ci05].

*** Calculated from proton energies and S_p (³⁵K) = 83.6(5) keV [2021Wa16].

[@] Values from adopted levels in ENSDF [2012Si06].

^a unresolved multiplet

Table 11

 β -2p emission from ³⁵Ca*, $BR_{\beta 2p} = 4.2(3)\%^{**}$.

$E_{2p}(c.m.)$	$I_p(\text{rel})$	$I_p(abs)$	<i>E_{emitter}</i> (³⁵ K)****	$E_{daughter}(^{33}\text{Cl})$	coincident γ -rays
4.305(26)	100	4.2(3)	9.053(27)	0	

* All values are taken from [1999Tr04], except where noted.

** From [2016Ci05].

*** Calculated from two-proton energy and S_{2p} (³⁵K) = 4747.5(6) keV [2021Hu06].

Table 12

β -p emission from ³⁹ Ti*, T _{1/2} = 28.5(9) ms, $BR_{\beta p}$ = 93.7(28)%**.						
$E_p(\text{c.m.})$	$I_p(\text{rel})^{***}$	$I_p(abs)^{***}$	$E_{emitter}$ (³⁹ Sc)	$E_{daughter}(^{38}\mathrm{Ca})$	coincident γ -rays [@]	
3.27(2) $5.17(3)^a$	70(20) 100(30)	7(2) 10(3)				

 \ast All values taken from [2007Do17], except where noted.

** Mixture of β -p and β -2p [2007Do17], β -xp is expected to be 100% as ³⁹Sc is unbound to proton emission S_p= -597(24) keV [2021Hu06].

*** Note that there is considerable disagreement between the published works in this nucleus, and many β -p transitions are unknown.

^{*a*} Possible two proton peak from the β -2p decay of 39Ti to the ground state of ³⁷K [2001Gi01, 1992Mo15].

Table	13

 β -2p emission from ³⁹Ti*

$E_{2p}(c.m.)$	$I_{2p}(\text{rel})$	$I_{2p}(abs)$	$E_{emitter}$ (³⁹ Sc)	Edaughter(³⁷ K)**	coincident γ-rays **
≈2.50 ≈4.75	≈100 ≈55			2.1702(1) 0	2.170

* All values taken from [1992Mo15], except where noted.

** Value from adopted levels in ENSDF [2012Ca15].

Table 14

 β -p emission from ⁴³Cr*,T_{1/2} = 21.2(7) ms, $BR_{\beta p}$ = 79.3(30)%**.

$E_p(\text{c.m.})$	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (⁴³ V)***	$E_{daughter}(^{42}\mathrm{Ti})$	coincident γ -rays	
1.014(17)	8(1)	0.6(1)				
1.614(34)	30(15)	2.1(11)				
1.812(15)	100	7.1(12)				
2.179(17)	66(10)	4.7(7)				
2.753(19)	17(6)	1.2(4)				
3.138(17)	48(10)	3.4(7)				
3.382(25)	14(6)	1.0(4)				
3.744(27)	42(20)	3.0(14)				
4.671(26)	63(11)	4.5(8)				

* All proton energies, intensity and half-life values taken from [2007Do17].

** From [2012Au08]. [2007Do17] gives a value of 92.5(28)% for the sum of β -p and β -2p.

*** Calculated from proton energies and S_p (⁴³V) = 100(40) keV [2021Hu06].

Table 15

β -2p emission fro	β -2p emission from ⁴³ Cr*, $BR_{\beta 2p} = 12.09(40)\%^{**}$.							
E _{2p} (c.m.)	I_{2p}	$E_{emitter}$ (⁴³ V)***	$E_{daughter}(^{41}\mathrm{Sc})$	coincident γ-rays				
4.348(16)		8.198(43)	0					

* All values taken from [2007Do17] except where noted.

** [2012Au08].

*** Calculated from two-proton energy and S_{2p} (⁴³V) = 3850(40) keV [2021Hu06].

Table 16 β -p emission from ⁴⁷Fe*, T_{1/2} = 21.5(7) ms, $BR_{\beta p} = 88.4(9)\%$.

$E_p(\text{c.m.})$	$I_p(\text{rel})$	<i>I_p</i> (abs)	$E_{emitter}$ (⁴⁷ Mn)**	$E_{daughter}(^{46}\mathrm{Cr})$	coincident γ-rays
1 548(10)	36(13)	19(7)			
1.718(20)	75(23)	4.0(12)			
1.864(15)	100	5.3(7)	5.44(3)	1.9871(3)	0.892, 1.095
2.462(29)	36(13)	1.9(7)			
3.973(20)	83(23)	4.4(12)	7.55(4)	3.1965(6)	0.892, 1.095
5.000(215)	38(8)	2.0(4)	$7.38(4)^a$	1.9871(3)	0.892, 1.095
6.104(24)	70(13)	3.7(7)	$7.38(4)^a$	0.8922(1)	0.829

* All values taken from [2007Do17], except where noted.

** Calculated from proton energy and S_p (⁴⁷Mn) = 380(30) keV [2021Hu06].

^aIAS state [2007Do17].

Table 17

 β -p Emission from ⁵¹Ni*, T_{1/2} = 23.8(2) ms, $BR_{\beta p} = 87.2(9)\%^*$.

$E_p(\text{c.m.})$	$I_p(rel)$	$I_p(abs)$	$E_{emitter}$ (⁵¹ Co)**	$E_{daughter}$ (⁵⁰ Fe)***	coincident γ-rays***	
1.084(41)	14(9)	1.3(8)				
1.356(23)	17(6)	1.5(5)				
1.859(20)	35(10)	3.0(9)				
2.234(18)	21(6)	1.8(5)				
2.515(28)	55(25)	4.8(22)				
2.915(17)	46(10)	4.0(9)				
3.121(31)	24(12)	2.1(10)				
3.421(23)	6(5)	0.5(4)				
3.709(29)	17(6)	1.5(5)				
3.929(24)	13(7)	1.1(6)				
4.415(27)	6(3)	0.5(3)				
4.662(16)	100	8.7(8)	6.664(52)	1.8515(5)	0.765, 1.087	
5.664(30)	10(5)	0.9(4)				

* All values taken from [2007Do17], except where noted.

** Calculated from proton energy and $S_p(^{51}Co) = 150(50) \text{ keV} [2021\text{Hu06}].$

*** Values from adopted levels in ENSDF [2011El01].

Table 18

$D^{-}D$ EIIIISSIDII IIUIII – Z_{II}^{-} , $I_{I}^{-}/_{2}$ – $I_{2}^{-}O(I_{2})$ IIIS, $DI(R_{2}) = 21.0(3)$	(51)%
---	-------

$E_p(\text{c.m.})$	I_p	$E_{emitter}$ (⁵⁵ Cu)	$E_{daughter}(^{54}\mathrm{Ni})$	coincident γ -rays
4.689(38)	obs	≈7.30*	2.5-2.6**	

* All values taken from [2007Do17], except where noted.

** The emitted proton is assumed to be from IAS in 55 Cu at \approx 7.300 MeV to the second excited state in 54 Ni which is expected to be \approx 2.5-2.6 MeV.

References used in the Tables

- [1] **1985Ay01** J. Aysto, D. M. Moltz, X. J. Xu, J. E. Reiff, J. Cerny, Phys. Rev. Lett. **55**, 1384 (1985). https://doi.org/10.1103/PhysRevLett.55.1384
- [2] 1989Re02 J. E. Reiff, M. A. C. Hotchkis, D. M. Moltz, T. F. Lang, J. D. Robertson, J. Cerny, Nucl. Instrum. Methods Phys. Res. A276, 228 (1989). https://doi.org/10.1016/0168-9002(89)90637-2
- [3] 1990Bo24 M. J. G. Borge, H. Gabelmann, L. Johannsen, B. Jonson, G. Nyman, K. Riisager, O. Tengblad, and the ISOLDE Collaboration, Nucl. Phys. A515, 21 (1990). https://doi.org/10.1016/0375-9474(90)90319-H
- [4] 1990De43 C. Detraz, R. Anne, P. Bricault, D. Guillemaud-Mueller, M. LewitowiCz, A. C. Mueller, Y. H. Zhang, V. Borrel, J. C. Jacmart, F. Pougheon, A. Richard, D. Bazin, J. P. Dufour, A. Fleury, F. Hubert, M. S. Pravikoff, Nucl. Phys. A519, 529 (1990). https://doi.org/10.1016/0375-9474(90)90445-R
- [5] 1991Bo32 V. Borrel, J. C. Jacmart, F. Pougheon, R. Anne, C. Detraz, D. Guillemaud-Mueller, A. C. Mueller, D. Bazin, R. Del Moral, J. P. Dufour, F. Hubert, M. S. Pravikoff, E. Roeckl, Nucl. Phys. A531353 (1991). https://doi.org/10.1016/0375-9474(91)90616-E

- [6] 1992Ba01 D. Bazin, R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, M. S. Pravikoff, R. Anne, P. Bricault, C. Detraz, M. LewitowiCz, Y. Zheng, D. Guillemaud-Mueller, J. C. Jacmart, A. C. Mueller, F. Pougheon, A. Richard, Phys. Rev. C45, 69 (1992). https://doi.org/10.1103/PhysRevC.45.69
- [7] 1992Bo37 V. Borrel, R. Anne, D. Bazin, C. Borcea, G. G. Chubarian, R. Del Moral, C. Detraz, S. Dogny, J. P. Dufour, L. Faux, A. Fleury, L. K. Fifield, D. Guillemaud-Mueller, F. Hubert, E. Kashy, M. LewitowiCz, C. Marchand, A. C. Mueller, F. Pougheon, M. S. Pravikoff, M. G. Saint-Laurent, O. Sorlin, Z. Phys. A344, 135 (1992). https://doi.org/10.1007/BF01291696
- [8] 1992Mo15 D. M. Moltz, J. C. Batchelder, T. F. Lang, T. J. Ognibene, J. Cerny, P. E. Haustein, P. L. Reeder, Z. Phys. A342, 273 (1992). https://doi.org/10.1007/BF01291509
- [9] 1997BI04 B. Blank, F. Boue, S. Andriamonje, S. Czajkowski, R. Del Moral, J. P. Dufour, A. Fleury, P. Pourre, M. S. Pravikoff, E. Hanelt, N. A. Orr, K. -H. Schmidt, Z. Phys. A357, 247 (1997). https://doi.org/10.1007/s002180050241
- [10] 1997Cz02 S. Czajkowski, S. Andriamonje, B. Blank, F. Boue, R. Del Moral, J. P. Dufour, A. Fleury, E. Hanelt, N. A. Orr, P. Pourre, M. S. Pravikoff, K. -H. Schmidt, Nucl. Phys. A616278c (1997). https://doi.org/10.1016/S0375-9474(97)00098-5
- [11] 1998Ax01 L. Axelsson, and the ISOLDE Collaboration, Nucl. Phys. A628, 345 (1998). https://doi.org/10.1016/S0375-9474(97)00623-4
- [12] 1998Ax02 L. Axelsson, J. Aysto, M. J. G. Borge, L. M. Fraile, H. O. U. Fynbo, A. Honkanen, P. Hornshoj, A. Jokinen, B. Jonson, P. O. Lipas, I. Martel, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, M. H. Smedberg, O. Tengblad, and the ISOLDE Collaboration, Nucl. Phys. A634, 475 (1998); Erratum Nucl. Phys. A641529 (1998). https://doi.org/10.1016/S0375-9474(98)00172-9
- [13] 1998Mu06 I. Mukha, L. Axelsson, J. Aysto, U. C. Bergmann, M. J. G. Borge, L. M. Fraile, H. O. U. Fynbo, A. Honkanen, P. Hornshoj, Y. Jading, B. Jonson, A. Jokinen, I. Martel, M. Oinonen, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, T. Siiskonen, M. H. Smedberg, O. Tengblad, F. Wenander, and the ISOLDE Collaboration, Nucl. Phys. A630, 394c (1998). https://doi.org/10.1016/S0375-9474(97)00777-X
- [14] 1999Fy01 H. O. U. Fynbo, L. Axelsson, J. Aysto, M. J. G. Borge, L. M. Fraile, A. Honkanen, P. Hornshoj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, K. Riisager, T. Siiskonen, M. H. Smedberg, O. Tengblad, F. Wenander, and the ISOLDE Collaboration, Phys. Rev. C59 2275 (1999). https://doi.org/10.1103/PhysRevC.59.2275
- [15] 1999Th09 J. Thaysen, L. Axelsson, J. Aysto, M. J. G. Borge, L. M. Fraile, H. O. U. Fynbo, A. Honkanen, P. Hornshoj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, K. Riisager, T. Siiskonen, M. H. Smedberg, O. Tengblad, F. Wenander, and the ISOLDE Collaboration, Phys. Lett. 467 B, 194 (1999). https://doi.org/10.1016/S0370-2693(99)01172-7
- [16] 1999Tr04 W. Trinder, J. C. Angelique, R. Anne, J. Aysto, C. Borcea, J. M. Daugas, D. Guillemaud-Mueller, S. Grevy, R. Grzywacz, A. Jokinen, M. LewitowiCz, M. J. Lopez, F. de Oliveira, A. N. Ostrowski, T. Siiskonen, M. G. Saint-Laurent, Phys. Lett. 459B, 67 (1999). https://doi.org/10.1016/S0370-2693(99)00655-3
- [17] 2000Fy01 H. O. U. Fynbo, M. J. G. Borge, L. Axelsson, J. Aysto, U. C. Bergmann, L. M. Fraile, A. Honkanen, P. Hornshoj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, I. Piqueras, K. Riisager, T. Siiskonen, M. H. Smedberg, O. Tengblad, J. Thaysen, F. Wenander, and the ISOLDE Collaboration, Nucl. Phys. A67738 (2000). https://doi.org/10.1016/S0375-9474(00)00248-7
- [18] 2001Ca60 G. Canchel, L. Achouri, J. Aysto, R. Beraud, B. Blank, E. Chabanat, S. Czajkowski, P. Dendooven, A. Emsallem, J. Giovinazzo, J. Honkanen, A. Jokinen, M. LewitowiCz, C. Longour, F. de Oliveira-Santos, K. Perajarvi, M. Staniou, J. C. Thomas, Eur. Phys. J. A 12, 377 (2001). https://doi.org/10.1007/s10050-001-8659-z
- [19] 2001Gi01 J. Giovinazzo, B. Blank, C. Borcea, M. Chartier, S. Czajkowski, G. de France, R. Grzywacz, Z. Janas, M. LewitowiCz, F. de Oliveira Santos, M. Pfutzner, M. S. Pravikoff, J. C. Thomas, Eur. Phys. J. A 10, 73 (2001). https://doi.org/10.1007/s100500170146
- [20] 2002Bo29 M. J. G. Borge, L. M. Fraile, O. Tengblad, U. O. C. Bergmann, H. O. U. Fynbo, I. Mukha, K. Riisager, L. Axelsson, B. Jonson, G. Nyman, K. Markenroth, J. Aysto, A. Honkanen, A. Jokinen, M. Oinonen, Y. Jading, I. Martel, T. Nilsson, F. Wenander, and the ISOLDE Collaboration, Nucl. Phys. A701, 373c (2002). https://doi.org/10.1016/S0375-9474(01)01613-X
- [21] 2002Fy01 H. O. U. Fynbo, L. Axelsson, J. Aysto, U. C. Bergmann, M. J. G. Borge, L. M. Fraile, A. Honkanen, P. Hornshoj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, K. Riisager, T. Siiskonen, M. H. Smedberg, J. Thaysen, O. Tengblad, F. Wenander, and the ISOLDE Collaboration, Nucl. Phys. A701, 394c (2002). https://doi.org/10.1016/S0375-9474(01)01617-7
- [22] 2007Do17 C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, B. Blank, C. Borcea, R. Borcea, A. Boston, M. Caamano, G. Canchel, M. Chartier, D. Cortina, S. Czajkowski, G. de France, F. de Oliveira Santos, A. Fleury, G. Georgiev, J. Giovinazzo, S.

Grevy, R. Grzywacz, M. Hellstrom, M. Honma, Z. Janas, D. Karamanis, J. KurcewiCz, M. LewitowiCz, M. J. Lopez Jimenez, C. Mazzocchi, I. Matea, V. Maslov, P. Mayet, C. Moore, M. Pfutzner, M. S. Pravikoff, M. Stanoiu, I. Stefan, J. C. Thomas, Nucl. Phys. A**792**, 18 (2007). https://doi.org/10.1016/j.nuclphysa.2007.05.004

- [23] 2007Fi14 R. B. Firestone, Nucl. Data Sheets 108, 2319 (2007). https://doi.org/10.1016/j.nds.2007.10.001
- [24] 2007Mu15 I. Mukha, K. Summerer, L. Acosta, M. A. G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J. Espino, A. Fomichev, J. E. Garcia-Ramos, H. Geissel, J. Gomez-Camacho, L. Grigorenko, J. Hoffmann, O. Kiselev, A. Korsheninnikov, N. Kurz, Yu. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfutzner, C. Rodriguez-Tajes, E. Roeckl, M. Stanoiu, H. Weick, P. J. Woods, Phys. Rev. Lett. 99, 182501 (2007). https://doi.org/10.1103/PhysRevLett.99.182501
- [25] 2009Mu17 I.Mukha, For the S271 Collaboration, Eur. Phys. J. A 42, 421 (2009). https://doi.org/10.1140/epja/i2009-10790-9
- [26] 2010Ba29 M. S. Basunia, Nucl. Data Sheets 111, 2331 (2010). https://doi.org/10.1016/j.nds.2010.09.001
- [27] 2011El01 Z. Elekes, J. Timar, B. Singh, Nucl. Data Sheets 112, 1 (2011). https://doi.org/10.1016/j.nds.2010.12.001
- [28] 2011Po01 M. Pomorski, K. Miernik, W. Dominik, Z. Janas, M. Pfutzner, C. R. Bingham, H. Czyrkowski, M. Cwiok, I. G. Darby, R. Dabrowski, T. Ginter, R. Grzywacz, M. Karny, A. Korgul, W. Kusmierz, S. N. Liddick, M. Rajabali, K. Rykaczewski, A. Stolz, Phys. Rev. C 83, 014306 (2011). https://doi.org/10.1103/PhysRevC.83.014306
- [29] 2012Au08 L. Audirac, P. Ascher, B. Blank, C. Borcea, B. A. Brown, G. Canchel, C. E. Demonchy, F. de Oliveira Santos, C. Dossat, J. Giovinazzo, S. Grevy, L. Hay, J. Huikari, S. Leblanc, I. Matea, J. -L. Pedroza, L. Perrot, J. Pibernat, L. Serani, C. Stodel, J. -C. Thomas, Eur. Phys. J. A 48, 179 (2012). https://doi.org/10.1140/epja/i2012-12179-1
- [30] 2012Ba18 M. S. Basunia, Nucl. Data Sheets 113, 909 (2012). https://doi.org/10.1016/j.nds.2012.04.001
- [31] 2012Ca15 J. Cameron, J. Chen, B. Singh, N. Nica, Nucl. Data Sheets 113, 365 (2012). https://doi.org/10.1016/j.nds.2012.02.001
- [32] 2012Mu05 I. Mukha, L. Grigorenko, L. Acosta, M. A. G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J. M. Espino, A. Fomichev, J. E. Garcia-Ramos, H. Geissel, J. Gomez-Camacho, J. Hofmann, O. Kiselev, A. Korsheninnikov, N. Kurz, Yu. A. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfutzner, C. Rodriguez-Tajes, E. Roeckl, C. Scheidenberger, M. Stanoiu, K. Summerer, H. Weick, P. J. Woods, Phys. Rev. C 85, 044325 (2012). https://doi.org/10.1103/PhysRevC.85.044325
- [33] 2012Si06 B. Singh, N. Nica, Nucl. Data Sheets 113, 1115 (2012). https://doi.org/10.1016/j.nds.2012.05.001
- [34] 2013Ko13 G. T. Koldste, B. Blank, M. J. G. Borge, J. A. Briz, M. Carmona-Gallardo, L. M. Fraile, H. O. U. Fynbo, J. Giovinazzo, J. G. Johansen, A. Jokinen, B. Jonson, T. Kurturkian-Nieto, J. H. Kusk, T. Nilsson, A. Perea, V. Pesudo, E. Picado, K. Riisager, A. Saastamoinen, O. Tengblad, J. -C. Thomas, J. Van de Walle, Phys. Rev. C 87 055808 (2013). https://doi.org/10.1103/PhysRevC.87.055808
- [35] 2014Ko17 G. T. Koldste, B. Blank, M. J. G. Borge, J. A. Briz, M. Carmona-Gallardo, L. M. Fraile, H. O. U. Fynbo, J. Giovinazzo, B. D. Grann, J. G. Johansen, A. Jokinen, B. Jonson, T. Kurturkian-Nieto, J. H. Kusk, T. Nilsson, A. Perea, V. Pesudo, E. Picado, K. Riisager, A. Saastamoinen, O. Tengblad, J. -C. Thomas, J. Van de Walle, Phys. Rev. C 89, 064315 (2014).
- [36] 2014Ko34 G. T. Koldste, B. Blank, M. J. G. Borge, J. A. Briz, M. Carmona-Gallardo, L. M. Fraile, H. O. U. Fynbo, J. Giovinazzo, J. G. Johansen, A. Jokinen, B. Jonson, T. Kurturkian-Nieto, T. Nilsson, A. Perea, V. Pesudo, E. Picado, K. Riisager, A. Saastamoinen, O. Tengblad, J. -C. Thomas, J. Van de Walle, Phys. Lett. B 737, 383 (2014). https://doi.org/10.1103/PhysRevC.89.064315
- [37] 2014Wa09 F. Wamers, J. Marganiec, F. Aksouh, Yu. Aksyutina, H. Alvarez-Pol, T. Aumann, S. Beceiro Novo, K. Boretzky, M. J. G. Borge, M. Chartier, A. Chatillon, L. V. Chulkov, D. Cortina-Gil, H. Emling, O. Ershova, L. M. Fraile, H. O. U. Fynbo, D. Galaviz, H. Geissel, M. Heil, D. H. H. Hoffmann, H. T. Johansson, B. Jonson, C. Karagiannis, O. A. Kiselev, J. V. Kratz, R. Kulessa, N. Kurz, C. Langer, M. Lantz, T. Le Bleis, R. Lemmon, Yu. A. Litvinov, K. Mahata, C. Muntz, T. Nilsson, C. Nociforo, G. Nyman, W. Ott, V. Panin, S. Paschalis, A. Perea, R. Plag, R. Reifarth, A. Richter, C. Rodriguez-Tajes, D. Rossi, K. Riisager, D. Savran, G. Schrieder, H. Simon, J. Stroth, K. Summerer, O. Tengblad, H. Weick, C. Wimmer, M. V. Zhukov, Phys.Rev.Lett. 112, 132502 (2014). https://doi.org/10.1103/PhysRevLett.112.132502
- [38] 2015Ba27 M. S. Basunia, Nucl. Data Sheets 127, 69 (2015). https://doi.org/10.1016/j.nds.2015.07.002
- [39] 2015Ci06 A. A. Ciemny, W. Dominik, T. Ginter, R. Grzywacz, Z. Janas, M. Kuich, C. Mazzocchi, M. Pfutzner, M. Pomorski, F. Zarzynski, D. Bazin, T. Baumann, A. Bezbakh, B. P. Crider, M. Cwiok, S. Go, G. Kaminski, K. Kolos, A. Korgul, E. Kwan, S. Liddick, K. Miernik, S. V. Paulauskas, J. Pereira, K. Rykaczewski, C. Sumithrarachchi, Y. Xiao, Phys. Rev. C92, 014622 (2015). https://doi.org/10.1103/PhysRevC.92.014622
- [40] 2015Fi05 R. B. Firestone, Nucl. Data Sheets 127, 1 (2015). https://doi.org/10.1016/j.nds.2015.07.001
- [41] 2015Li20 A. A. Lis, C. Mazzocchi, W. Dominik, Z. Janas, M. Pfutzner, M. Pomorski, L. Acosta, S. Baraeva, E. Casarejos, J.

Duenas-Diaz, V. Dunin, J. M. Espino, A. Estrade, F. Farinon, A. Fomichev, H. Geissel, A. Gorshkov, G. Kaminski, O. Kiselev, R. Knobel, S. Krupko, M. Kuich, Yu. A. Litvinov, G. Marquinez-Duran, I. Martel, I. Mukha, C. Nociforo, A. K. Orduz, S. Pietri, A. Prochazka, A. M. Sanchez-Benitez, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. Tanaka, H. Weick, J. S. Winfield, Phys. Rev. C **91**, 064309 (2015). https://doi.org/10.1103/PhysRevC.91.064309

- [42] 2015Mu13 I. Mukha, L. V. Grigorenko, X. Xu, L. Acosta, E. Casarejos, A. A. Ciemny, W. Dominik, J. Duenas-Diaz, V. Dunin, J. M. Espino, A. Estrade, F. Farinon, A. Fomichev, H. Geissel, T. A. Golubkova, A. Gorshkov, Z. Janas, G. Kaminski, O. Kiselev, R. Knobel, S. Krupko, M. Kuich, Yu. A. Litvinov, G. Marquinez-Duran, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Orduz, M. Pfutzner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sanchez-Benitez, C. Scheidenberger, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, J. S. Winfield, M. V. Zhukov, Phys. Rev. Lett. 15, 202501 (2015). https://doi.org/10.1103/PhysRevLett.115.202501
- [43] 2016Ci05 A. A. Ciemny, C. Mazzocchi, W. Dominik, Z. Janas, M. Pfutzner, M. Pomorski, L. Acosta, S. Baraeva, E. Casarejos, J. Duenas-Diaz, V. Dunin, J. M. Espino, A. Estrade, F. Farinon, A. Fomichev, H. Geissel, A. Gorshkov, G. Kaminski, O. Kiselev, R. Knobel, S. Krupko, M. Kuich, Yu. A. Litvinov, G. Marquinez-Duran, I. Martel, I. Mukha, C. Nociforo, A. K. Orduz, S. Pietri, A. Prochazka, A. M. Sanchez-Benitez, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. Tanaka, H. Weick, J. S. Winfield, Nucl. Phys. Rev. 33, 221 (2016). https://doi.org/10.11804/NuclPhysRev.33.02.221
- [44] 2016Go26 T.Goigoux, P.Ascher, B.Blank, M.Gerbaux, J.Giovinazzo, S.Grevy, T.Kurtukian Nieto, C.Magron, P.Doornenbal, G.G.Kiss, S.Nishimura, P.-A.Soderstrom, V.H.Phong, J.Wu, D.S.Ahn, N.Fukuda, N.Inabe, T.Kubo, S.Kubono, H.Sakurai, Y.Shimizu, T.Sumikama, H.Suzuki, H.Takeda, J.Agramunt, A.Algora, V.Guadilla, A.Montaner-Piza, A.I.Morales, S.E.A.Orrigo, B.Rubio, Y.Fujita, M.Tanaka, W.Gelletly, P.Aguilera, F.Molina, F.Diel, D.Lubos, G.de Angelis, D.Napoli, C.Borcea, A.Boso, R.B.Cakirli, E.Ganioglu, J.Chiba, D.Nishimura, H.Oikawa, Y.Takei, S.Yagi, K.Wimmer, G.de France, S.Go, B.A.Brown, Phys. Rev. Lett. 117, 162501 (2016). https://doi.org/10.1103/PhysRevLett.117.162501
- [45] 2016Ma17 I. Marroquin, M. J. G. Borge, A. A. Ciemny, H. de Witte, L. M. Fraile, H. O. U. Fynbo, A. Garzon-Camacho, A. Howard, H. Johansson, B. Jonson, O. S. Kirsebom, G. T. Koldste, R. Lica, M. V. Lund, M. Madurga, C. Mazzocchi, C. Mihai, M. Munch, S. A. Nae, E. Nacher, A. Negret, T. Nilsson, A. Perea, J. Refsgaard, K. Riisager, E. Rapisarda, C. Sotty, M. Stanoiu, O. Tengblad, A. E. Turturica, M. V. Vedia, Acta Phys. Pol. B47, 747 (2016). https://doi.org/10.5506/APhysPolB.47.747
- [46] 2016Xu08 X Xu, I Mukha, L Acosta, E Casarejos, A A Ciemny, W Dominik, J Duenas-Diaz, V Dunin, J M Espino, A Estrade, F Farinon, H Geissel, A Fomichev, T A Golubkova, A Gorshkov, L V Grigorenko, Z Janas, G Kaminski, O Kiselev, R Knobel, S Krupko, M kuich, Yu A Litvinov, G Marquinez-Duran, I Martel, C Mazzocchi, C Nociforo, A K Orduz, M Pfutzner, S Pietri, M Pomorski, A Prochazka, S Rymzhanova, A M Sanchez-Benitez, C Scheidenberger, P Sharov, H Simon, B Sitar, R Slepnev, M Stanoiu, P Strmen, I Szarka, M Takechi, Y K Tanaka, H Weick, M Winkler, J S Winfield, Nucl Phys Rev 33, 197 (2016). https://doi.org/10.11804/NuclPhysRev.33.02.197#
- [47] 2017GoZT T. Goigoux, Thesis, University of Bordeaux (2017) (unpublished).
- [48] 2017Ja05 L. Janiak, N. Sokolowska, A. A. Bezbakh, A. A. Ciemny, H. Czyrkowski, R. D?browski, W. Dominik, A. S. Fomichev, M. S. Golovkov, A. V. Gorshkov, Z. Janas, G. Kami?ski, A. G. Knyazev, S. A. Krupko, M. Kuich, C. Mazzocchi, M. Mentel, M. PfAŒtzner, P. Pluciski, M. Pomorski, R. S. Slepniev, B. Zalewski, Phys. Rev. C 95, 034315 (2017). https://doi.org/10.1103/PhysRevC.95.034315
- [49] 2018Mu18 I. Mukha, L. V. Grigorenko, D. Kostyleva, L. Acosta, E. Casarejos, A. A. Ciemny, W. Dominik, J. A. Duenas, V. Dunin, J. M. Espino, A. Estrade, F. Farinon, A. Fomichev, H. Geissel, A. Gorshkov, Z. Janas, G. Kaminski, O. Kiselev, R. Knobel, S. Krupko, M. Kuich, Yu. A. Litvinov, G. Marquinez-Duran, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Orduz, M. Pfutzner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sanchez-Benitez, C. Scheidenberger, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, J. S. Winfield, X. Xu, M. V. Zhukov, Phys. Rev. C 98, 064308 (2018). https://doi.org/10.1103/PhysRevC.98.064308
- [50] 2018Wa05 K. Wang, D. Q. Fang, Y. T. Wang, X. X. Xu, L. J. Sun, Z. Bai, M. R. Huang, S. L. Jin, C. Li, H. Li, J. Li, X. F. Li, C. J. Lin, J. B. Ma, P. Ma, W. H. Ma, M. W. Nie, C. Z. Shi, H. W. Wang, J. G. Wang, J. S. Wang, L. Yang, Y. Y. Yang, H. Q. Zhang, Y. J. Zhou, Y. G. Ma, W. Q. Shen, Int. Jour. Modern Phys. E, 27 1850014 (2018). https://doi.org/10.1142/S0218301318500143
- [51] 2018Xu04 X. -D. Xu, I. Mukha, L. V. Grigorenko, C. Scheidenberger, L. Acosta, E. Casarejos, V. Chudoba, A. A. Ciemny, W. Dominik, J. Duenas-Diaz, V. Dunin, J. M. Espino, A. Estrade, F. Farinon, A. Fomichev, H. Geissel, T. A. Golubkova, A. Gorshkov, Z. Janas, G. Kaminski, O. Kiselev, R. Knobel, S. Krupko, M. Kuich, Yu. A. Litvinov, G. Marquinez-Duran, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Orduz, M. Pfutzner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sanchez-Benitez, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, J. S. Winfield, Phys. Rev. C 97, 034305 (2018). https://doi.org/10.1103/PhysRevC.97.034305
- [52] 2019Ko29 D. Kostyleva, Acta Phys. Pol. B50, 405 (2019). https://doi.org/10.5506/APhysPolB.50.405
- [53] 2019Su14 L. J. Sun, for the RIBLL Collaboration, Phys. Rev. C 99, 064312 (2019).

https://doi.org/10.1103/PhysRevC.99.064312

- [54] 2019We03 T. B. Webb, S. M. Wang, K. W. Brown, R. J. Charity, J. M. Elson, J. Barney, G. Cerizza, Z. Chajecki, J. Estee, D. E. M. Hoff, S. A. Kuvin, W. G. Lynch, J. Manfredi, D. McNeel, P. Morfouace, W. Nazarewicz, C. D. Pruitt, C. Santamaria, J. Smith, L. G. Sobotka, S. Sweany, C. Y. Tsang, M. B. Tsang, A. H. Wuosmaa, Y. Zhang, K. Zhu, Phys. Rev. Lett. 122, 122501 (2019). https://doi.org/10.1103/PhysRevLett.122.122501
- [55] 2020Su05 L. J. Sun, for the RIBLL Collaboration, Phys. Lett. B 802, 135213 (2020). https://doi.org/10.1016/j.physletb.2020.135213
- [56] 2021Sh23 G. Z. Shi, J. J. Liu, Z. Y. Lin, H. F. Zhu, X. X. Xu, L. J. Sun, P. F. Liang, C. J. Lin, J. Lee, C. X. Yuan, S. M. Wang, Z. H. Li, H. S. Xu, Z. G. Hu, Y. Y. Yang, R. F. Chen, J. S. Wang, D. X. Wang, H. Y. Wu, K. Wang, F. F. Duan, Y. H. Lam, P. Ma, Z. H. Gao, Q. Hu, Z. Bai, J. B. Ma, J. G. Wang, F. P. Zhong, C. G. Wu, D. W. Luo, Y. Jiang, Y. Liu, D. S. Hou, R. Li, N. R. Ma, W. H. Ma, G. M. Yu, D. Patel, S. Y. Jin, Y. F. Wang, Y. C. Yu, Q. W. Zhou, P. Wang, L. Y. Hu, X. Wang, H. L. Zang, P. J. Li, Q. R. Gao, H. Jian, S. X. Zha, F. C. Dai, R. Fan, Q. Q. Zhao, L. Yang, P. W. Wen, F. Yang, H. M. Jia, G. L. Zhang, M. Pan, X. Y. Wang, H. H. Sun, X. H. Zhou, Y. H. Zhang, M. Wang, M. L. Liu, H. J. Ong, W. Q. Yang, Phys. Rev. C 103, L061301 (2021). https://doi.org/10.1103/PhysRevC.103.L061301
- [57] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf
- [58] 2022Ci04 A. A. Ciemny, C. Mazzocchi, W. Dominik, A. Fijalkowska, J. Hooker, C. Hunt, H. Jayatissa, L. Janiak, G. Kaminski, E. Koshchiy, M. Pfützner, M. Pomorski, B. Roeder, G. V. Rogachev, A. Saastamoinen, S. Sharma, N. Soko?owska, W. Satula, and Jagjit Singh, Phys. Rev. C 106, 014317 (2022). https://doi.org/10.1103/PhysRevC.106.014317