

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = -3/2 nuclei.

Last updated 7/27/23

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = -3/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	Q_{ε}	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\varepsilon 2p}$	$Q_{\varepsilon 3p}$	$Q_{\varepsilon \alpha}$	$BR_{\beta \alpha}$	Experimental
⁹ C	(3/2-)	126.5(9) ms	16.495(23)	16.680(2)	61.1(17)%*	-0.574(2)	-10.548(2)	14.806(50)	37.6(56)%**	[2001Be51, 2001Bu05, 1972Es05 , 2004Ti06, 2000Ge09, 1988Mi03, 1972Es05, 1971EsZR, 1971EsZW, 1965Ha09]
¹³ 0	(3/2 ⁻)	8.58(5) ms	17.770(10)	15.826(10)	11.3(20)%	-0.131(10)	-11.360(10)	8.274(10)	0.078(6)%***	[2023Bi03, 2005Kn02, 1990As01, 1971EsZR, 1970Es03, 1966Ce02,
¹⁷ Ne	1/2-	109.3(6) ms	14.5488(4)	13.9485(4)	94.4(29)%	1.8211(4)	-8.3865(4)	8.7300(5)	3.51(16)% [@]	[2002Mo19, 1965Ba65] [2002Mo19, 1988Bo39, 2002Ch61, 1971EsZR, 1971Ha05, 1967Es02, 1966Es04, 1965Ha20, 1964Da13, 1964F103, 1964Mc16, 1963Ba63, 1963Ka36]
²¹ Mg	5/2+	118.6(5) ms	13.0887(8)	10.657(1)	20.9(13)%	-2.187(1)	-10.180(1)	6.527(1)	0.115(19)% ^{@@}	[2015Lu12 , 2015Lu13, 1992Go10, 1985Zh05, 1974ScZL, 1973Go06, 1973GoZL, 1973Se08, 1973SeYM, 1965Ha20, 1965Mc01, 1964Fl03, 1963Ba63, 1963Ka36]
²⁵ Si	5/2+	220(4) ms	12.743(10)	10.472(10)	35.0(20)%	-1.221(10)	-10.015(10)	3.587(10)		[2021Su03 , 2004Th09, 1993Ro06, 1992Ha28, 1985Zh05, 1975ScZC, 1974SeZL, 1974SeZM, 1973GoZL, 1973SeYM, 1966Ha22, 1966Re07, 1966Re15, 1965Ha20, 1965Mc01 1963Ba63, 1963Mc08]
²⁹ S	(5/2 ⁺)	187(6) ms	13.858(13)	11.109(13)	47(5)%	-0.475(13)	-8.747(13)	3.397(13)		[1985Zh05, 1979Vi01 , 1978ViZT, 1978ViZT, 1973Go06, 1973GoZL
³³ Ar	1/2+	173.0(20) ms	11.6190(6)	9.3423(4)	38.8(14)%	0.4782(4)	-6.8183(4)	5.1435(6)		1964Ha45, 1967F110] [2010Ad03, 2014Ko17, 2002Fy01, 2000Ga61, 1999Th09, 1996Ho24, 1993Sc16, 1987Bo21, 1971EsZR, 1971Ha05, 1966Po12, 1965Ha08, 1964Re08]
³⁷ Ca	3/2+	181.1(10) ms	11.6641(6)	9.8065(6)	82.1(8)%	1.299(1)	-5071(1)	5.442(1)		[1997Tr05, 1991Ga23 , 2015Su01, 1997Ka10, 1995Tr03, 1974Se11, 1966Po12, 1964Ha42, 1964Re08]
⁴¹ Ti	3/2+	81.9(5) ms	12.945(28)	11.860(28)	92.4(6)% ^{@@@@}	3.531(28)	-2.850(28)	6.677(28)		[2015Sh16, 2007Do17,1998Bh12, 1998Li46, 1974Se11, 1997Tr11, 2014Ka01, 1997Ho12, 1998Jo20, 1985Zh05, 1973Go06, 1966Po12, 1964Re08]
⁴⁵ Cr	(7/2-)	60.9(4) ms	12.370(40)	10.74(4)	34.4(8)%	2.100(40)	-2.830(40)	6.707(40)		[2007Do17, 1987Ki14, 1974Ja10]
⁴⁹ Fe	7/2-	64.7(3) ms	12.869(24)	10.782(25)	56.7(4)%	2.678(24)	-2.490(24)	4.710(24)		[2007Do17 , 2002Pf03, 1996Fa09, 1970Ce02]
⁵⁵ N1	1/2=	55.2(7) ms	13.029(25)	11.412(13)	22.7(10)% ^a	4.0354(25)#	-1.237(25)	5.564(25)		[2016Su10, 2007Do17 , 2013Su07, 1993Xu04, 1978ViZT]
³⁷ Zn	(7/2-)	43.6(2) ms	14.76(20)#	14.07(20)#	90(10)%	6.90(20)#	1.84(20)#	7.68(20)#		[2022Sa20, 2020Ci04, 2007Bl09, 2002 Jo09 2002L 013 1979Vi011
⁶¹ Ge	(3/2 ⁻)	40.7(4) ms	13.35(30)#	13.10(30)#	78(3)%	7.99(30)#	4.57(30)#	11.09(30)#		[2017GoZT, 2007BI09 , 2002Lo13, 1987Ho01, 1978ViZTI
⁶⁵ Se	(3/2 ⁻)	34.2(2) ms	13.92(31)#	14.01(30)#	$94^{+6}_{-4}\%$	8.95(30)#	6.28(30)#	11.69(30)#		[2017GoZT, 2011Ro47 , 1993Ba12, 1978ViZT]
⁶⁹ Kr	(5/2-)	28(1) ms	14.12(30)#	14.76(30)#	100% ^b	9.87(30)#	7.60(30)#	12.38(30)#		[2011Ro47, 2014De41, 2017GoZT]
⁷³ Sr	(3/2 ⁻)	23.1(14) ms	14.06(40)#	14.70(40)#	100% ^c	9.97(40)#	8.11(40)#	11.89(40)#		[2019Si33, 2020Ho17 , 2020Ho06, 1993Ba61]
⁷⁷ Zr			14.84(45)#	15.36(40)#		11.04(40)#	8.87(40)#	11.99(40)#		
⁸¹ Mo		>450 ns	14.90(64)#	16.01(58)#		11.76(51)#	9.85(50)#	12.55(54)#		[2017Su26]
⁸⁵ Ru		>450 ns	15.22(64)#	16.25(58)#		12.40(53)#	11.12(50)#	13.31(64)#		[2017Su26]

* Branching ratio is taken from [2001Bu05], normalized to the 54.1(15)% proton transition from the ground state of ⁹B from Ref. [2001Be51]. The β -delayed p emission from ⁹C ends in ⁸Be which then decays into 2 α particles. Therefore this decay can be called β -p2 α emission. ** The β -delayed α emission from ⁹C ends in ⁵Li which is proton unbound. Therefore this decay can be called β - α emission.

*** [2023Bi03] report a value of 0.078(6)% for β -delayed 3 α p decay. This value is a combination of both ${}^{13}O \xrightarrow{\beta}{}^{13}N \xrightarrow{p}{}^{12}C \xrightarrow{\alpha}{}^{8}Be \xrightarrow{2\alpha}{}^{2\alpha}$ and ${}^{13}O \xrightarrow{\beta}{}^{13}N \xrightarrow{\alpha}{}^{9}B \xrightarrow{p}{}^{2\alpha}$ ⁸Be $\xrightarrow{2\alpha}$.

^{*a*} In addition a $BR_{\beta p\alpha} = 0.0014(4)\%$ is reported [2002Mo19].

[@] [@] In addition a $BR_{\beta p\alpha} = 0.016(3)\%$ is reported [2015Lu12].

[@] [@] [@] Weighted average of 91.6(6)% [2007Do17], 95.3(23)% [1998Bh12], and 100.3(22)% [1997Tr11].

^a Weighted average of 23.4(10)% [2007Do17] and 22.0(10)% [2016Su10].

^b Expected to be 100% as the daughter ⁶⁹Br is unbound by 640(40) keV [2017Wa10]. ^c Expected to be 100% as the daughter ⁷³Rb is unbound by 570(20) keV [2017Wa10].

Table 2

Particle emission from the even-Z, $T_z = -3/2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	Experimental
90	1.000((0.4)	1 42((0)	10 (5(000) //	
² C	1.2996(24)	1.436(2)	-10.65(200)#	
150	1.512(10)	2.112(10)	-8.220(10)	
¹⁷ Ne	1.464(5)	0.933(1)	-9.040(10)	
²¹ Mg	3.2356(13)	5.4261(8)	-8.0215(8)	
²⁵ Si	3.413(10)	5.277(10)	-9.501(19)	
²⁹ S	3.236(13)	5.288(13)	-9.347(16)	
³³ Ar	3.3386(7)	4.9197(5)	-8.715(13)	
³⁷ Ca	3.0079(7)	4.667(1)	-6.177(1)	
⁴¹ Ti	2.463(28)	2.993(28)	-4.986(28)	
⁴⁵ Cr	3.000(40)	4.780(40)	-6.240(50)	
⁴⁹ Fe	2.743(25)	4.766(25)	-7.660(40)	
⁵³ Ni	2.576(26)	4.020(25)	-7.310(30)	
⁵⁷ Zn	1.21(20)#	1.79(20)#	-5.34(20)#	
⁶¹ Ge	1.49(36)#	1.15(30)#	-3.67(36)#	
⁶⁵ Se	0.78(36)#	0.68(30)#	-1.66(42)#	
⁶⁹ Kr	0.64(40)#	0.14(31)#	-1.55(42)#	
⁷³ Sr	0.91(64)#	0.20(42)#	-2.24(50)#	
⁷⁷ Zr	0.64(50)#	-0.44(46)#	-2.08(57)#	
⁸¹ Mo	0.33(64)#	-0.73(58)#	-2.29(64)#	
⁸⁵ Ru	0.22(64)#	-1.13(64)#	-1.60(71)#	

Table 3

 β -p Emission from ⁹C, T_{1/2}=126.5(9) ms^{@@}, $BR_{\beta p} = 61.1(17)\%^{**}$

E_p^*	$I_p(rel)$	$I_p(abs)^{**}$	E _{emitter} (⁹ B)***	<i>E_{daughter}</i> (⁸ Be)***	coincident γ -rays
0 1959(0)	100	59(11)	0	0	100% a
2 529(30)	0.23(3)	0.136(14)	$\frac{1}{2}$ 34(3)	0	100% a
3.113(20)	0.18(1)	0.112(6)	2.93(20)	0	$100\% \alpha$
3.25(30)	8.6(9)	5.0(5)	3.10(30)	0	100% α
5.4(14)	1.2(6)	0.72(36)	$5.3^{+1.4}_{-0.5}$	0	100% α
9.32(40)	2.1(7)	1.2(4)	$12.16_{-0.4}^{+0.03}$	3.03	100% α
12.35(40)	0.084(19)	0.049(6)	$12.16^{+0.03}_{-0.4}$	0	100% α
13.526(20)	1.7(9)x 10 ⁻⁵	9.3(5)x 10 ⁻⁶	13.34(20)	0	100% α
14.22(10)	0.069(7)	0.07(2)	14.03(10)	0	100% α
@	0.38(20)	0.22(12)			100% α

* E_p values calculated from E_{level} (emitter) [2001Bu05] and $S_p = -0.1858(9)$ MeV [2021HWa16]. ** Branching ratio is taken from [2001Bu05], normalized to the 54.1(15)% proton transition from the ground state of ⁹B from Ref. [2001Be51].

*** From (table 3 and figure 7) in [2001Bu05].

[@] Background states [2001Be51].

@@ [1972Es05]

Table 4 β - α emission from ⁹C, $BR_{\beta\alpha} = 37.6(56)\%^{**}$

E_{α}^{*}	I_{α} (rel)	$I_{\alpha} (abs)^{***}$	$E_{emitter}$ (⁹ B)***	<i>E</i> _{daughter} (⁵ Li)	coincident γ-rays	
0 653(58)	100(19)	29 3(56)	234(3)	0	100% proton	
1.237(53)	0.61(33)	0.18(9)	2.93(20)	0	100% proton	
1.37(30)	0.11(3)	0.031(4)	3.1(3)	0	100% proton	
$3.6^{+1.4}_{-0.5}$	1.7(9)	0.49(25)	$5.3^{+1.4}_{-0.5}$	0	100% proton	
10.47(40)	12.0(10)	3.5(3)	12.16(40)	0	100% proton	
12.34(11)	0.61(33)	0.18(9)	14.03(10)	0	100% proton	
10.58 [@]	0.18(12)	$0.06(4)^{@}$	12.16(40)	1.49@	100% proton	
#	0.105(5)	0.035(2)			100% proton	

* E_{α} values deduced from $E_{emitter}$ (⁹B) [2001Bu05] and Q_{α} = -1.690(50) MeV [2021Wa16]. ** Branching ratio is taken from [2001Bu05], normalized to the 54.1(15)% proton transition from the ground state of ⁹B from Ref. [2001Be51]. *** From (table 3 and figure 7) in [2001Bu05] unless otherwise stated.

[#] Background states [2001Be51].

@ From [2001Be51].

Table 5

 β -p emission from ¹³O*, T_{1/2}= 8.58(5) ms[@], BR_{βp} = 10.9(20)%.

E_p	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (¹³ N)	$E_{daughter}(^{12}C)^{**}$	coincident γ-rays**	
1.006(6)	2 4(3)	0.23(5)	7 376(9)***	4 4389(3)	4 4 3 8	
1.5597(10)	100	9.5	3.502(2)***	0		
2.591(6)	4.5(3)	0.43(8)	8.918(11)***	4.4389(3)	4.438	
3.175(6)	1.06(11)	0.10(2)	9.476(8)***	4.4389(3)	4.438	
5.445(6)	0.09(4)	0.009(4)	7.376(9)***	0		
7.030(6)	5.3(4)	0.50(10)	8.918(11)***	0		
7.396(53)	0.011(2)	0.0010(3)	15.300(200)	7.6542(2)	3.215, 4.438	
7.614(6)	1.40(13)	0.13(3)	9.476(8)***	0		
8.714(53)	0.030(5)	0.003(1)	15.0646(4)***	4.4389(3)	4.438	
9.78(6)	0.15(4)	0.040(14)	11.700(30)***	0		
11.32(9)	0.11(9)	0.010(9)	13.26(10)	0		
13.152(53)	0.049(7)	0.005(1)	15.0646(4)***	0		
13.5(4)	0.04(3)	0.004(3)	15.300(200)	0		

* All values taken from [2005Kn02], except where noted.

** Values from adopted levels in ENSDF [2017Ke05].

*** Values from adopted levels in ENSDF [1991Aj01].

@ [1990As01]

Fable 6	
3-p Emission from ¹⁷ Ne*, $T_{1/2} = 109.3(5) \text{ ms}^{@}$, $BR_{\beta p} = 94.4(29)\%$	

E_p	$I_p(\text{rel})$	$I_p(abs)$	<i>E_{emitter}</i> (¹⁷ F)***	$E_{daughter}(^{16}\mathrm{O})^{@@}$	coincident γ-rays [@]
0.358	<0.10	<0.049	8 075	7 1160(1)	7 115
0.338	0.066(50)	0.033(20)	10.655	0.585(11)	0.582 6.016 2.688
0.47	3.06(24)	1.51(0)	8 107	7 1169(1)	7 115
0.48	5.00(24)	<0.058	8.197	6.0171(6)	6.016
0.557	< 0.12	< 0.0018	10.032	8 8719(5)	2 742 6 129 1 755 7 115
0.500	2 61(27)	1 78(12)	<u> </u>	6.0171(6)	6.016
0.080	3.01(27) 1.28(6)	1.78(13) 0.63(3)	8.197	7 1160(1)	7 115
0.719	$(2.8) \times 10^{-6}$	(.05(5))	10.005	0.585(11)	0.522 6.016 2.622
0.720	$< 2.6 \times 10$ 1 28(6)	$< 1.4 \times 10$ 0.63(3)	8 435	9.383(11)	9.382, 0.910, 2.088 6 016
1.002	0.020(8)	0.03(3)	11 197	0.585(11)	0.522 6.016 2.699
1.002	2.52(10)	1.25(5)	0.025	7.1160(1)	9.382, 0.910, 2.088
1.108	2.53(10)	(1.23(3))	0.025 10.662	8 8710(5)	7.115
1.19	< 0.020 2.47(11)	< 0.02	8 824	6.0171(6)	6.016
1.307	2.47(11) 0.16(15)	1.22(3)	8.024	6 120(80)	6 120
1.344	0.10(13)	0.080(7) 0.45(3)	8.075	6.0494(1)	**
1.425	$\frac{0.71(0)}{< 3.1 \times 10^{-4}}$	<0.00015	10.012	8 8710(5)	2 742 6 120 1 755 7 115
1.44	$< 3.1 \times 10$ 0.07(23)	< 0.00013 0.48(12)	8 200	6 120(80)	6 120
1.47	(1.97(23))	(12)	8.200	6.0404(1)	**
1.33	$< 3.3 \times 10^{-1}$	$< 1.0 \times 10^{-1}$	8.200	6.1200	6 120
1.700	4.63(17)	2.38(8)	0.450 11.102	0.1299 8 8710(5)	0.129 2.742 6.120 1.755 7.115
1.721	0.24(4)	0.12(2)	0.447	7.1160(1)	7 115
1.75	0.02(4) 0.70(3)	0.31(2) 0.35(2)	9.447	7.1109(1)	/.115 **
1.760	0.70(3) 1.82(7)	0.55(2)	0.430	6.0494(1)	6.016
1.95	1.63(7)	0.90(4)	9.447	6.1200	6.120
2.093	0.10(2) 2.45(20)	0.06(1) 1.7(1)	0.023	6.0404(1)	0.129 **
2.173	5.45(20)	(1.7(1)	0.023	7.1160(1)	7 115
2.515	< 0.020	< 0.015	2 104	7.1109(1)	7.115
2.504	0.31(3)	0.15(2) 0.11(1)	5.104	0 = 6.0171(6)	6.016
2.51	0.22(2) 0.205(20)	0.11(1) 0.15(1)	10.030	6.9171(6)	6.120
2.12	0.293(20) 0.03(5)	0.13(1) 0.46(2)	9.430	6.0404(1)	0.129 **
2.0	0.93(3)	(.40(3)	9.430	7.11(0(1)	7 115
2.94	< 0.011	< 0.000	10.057	7.1109(1)	/.115
5.14 2.10	< 0.013	< 0.008	10.037	7 1160(1)	0.910
5.19	0.23(2) 0.034(10)	0.112(6) 0.017(5)	10.907	6 1200	/.115 6 120
3.3	0.034(10)	0.017(3) 0.45(2)	10.030	6.1299	0.129 **
3.38	0.90(3)	0.45(5)	10.030	0.0494(1)	(01(
5.39 2.476	0.12(2)	0.057(9)	10.907	0.9171(0)	0.910
3.470	0.57	0.18	11.195	7.1109(1)	/.115
3.070	0.009(3)	0.004(1)	11.195	6.9171(6)	6.120
5.95	< 0.07	< 0.035	10.000	6.1299	0.129 **
4.01	1.20(7)	14.1(8)	10.000	0.0494(1)	***
4.04	28.0(0)	14.1(6)	4.040	6 1200	6 120
4.18	< 0.07	< 0.035	10.910	0.1299	0.129
4.20	1.20(7)	0.59(5) 0.245(10)	10.910	6.0494(1)	6 120
4.405	0.30(2)	0.243(10) 0.045(2)	11.195	6.0404(1)	0.129 **
4.345	0.090(7)	0.045(5)	5 499	0.0494(1)	
4.888	100(5)	49.4(27)	5.488	0	
3.437 7.475	13.1(6) 0.7(5)	1.3(4)	0.057	0	
7.475	9.7(3)	4.0(3)	0.073 8 200	0	
7.0	1.39(3)	0.19(1)	0.200 9.426	0	
/.030	$\frac{1.23(7)}{0.81(5)}$	0.02(4)	0.430	0	
0.223	0.01(3)	0.40(2)	0.023	0	
0.03	0.043(4) 0.043(4)	0.022(2) 0.021(2)	9.450	0	
9.43 10.04	0.043(4)	0.021(2)	10.030	0	
10.06	0.004(2)	0.0021(2)	10.000	0	
10.51	0.020(4)	0.014(2)	10.910	0	
10.5924	0.13(1)	0.003(4)	11.195	0	
11.05	0.004(2)	0.0021(8)	12.250	0	

* All values taken from [2002Mo19], error bars for energies are not given. ** E0 transition *** Calculated from alpha energies and S_p (¹⁷F) = 600.27(25) keV [2021Wa16]. [@] [1988Bo39] [@] Walues from adopted levels in ENSDF [1993Ti07].

Table 7				
β - α emission from	17Ne*.	BRea	= 3.51	(16)%.

			17	12 @		
Eα	I_{α} (rel)	I_{α} (abs)	$E_{emitter} ({}^{1}{}^{r}\mathrm{F})^{***}$	$E_{daughter}(^{13}N)^{@}$	coincident γ -rays	
1.827	0.08(4)**	0.002(1)**	11.193	3.547(4)	3.547	
1.872			11.193	3.502(2)	3.502	
2.256	100(6)	2.7(2)	8.075	0		
2.381	10.3(8)	0.28(2)	8.2	0		
2.617	4.4(3)	0.12(1)	8.436	0		
3.006	8.5(6)	0.23(2)	8.825	0		
3.63	2.7(2)	0.074(5)	9.45	0		
4.21	2.4(2)	0.065(5)	10.03	0		
4.84	0.031(28)	0.00085(76)	10.66	0		
5.09	0.55(7)	0.025(2)	10.91	0		
5.374	0.12(3)	0.003(1)	11.193	0		

* All values taken from [2002Mo19], error bars for energies are not given.

** Sum of I_{α} for $E_{\alpha} = 1.827$ and 1.872.

*** Calculated from proton energies and S_{α} (¹⁷F) = 5818.7(4) keV [2021Wa16].

[@] Values from adopted levels in ENSDF [1991Aj01]

Table 8

 β - αp emission from ¹⁷Ne*, $Q_{\varepsilon \alpha p} = 6.787(1)$ MeV, $BR_{\beta \alpha p} = 0.0014(4)\%$.

Eα	$E_{\alpha-emitter}(^{17}F)$	E_p	$E_{p-emitter}(^{13}N)$	$E_{final}(^{12}C)$	coincident γ -rays
3.0089	11.193	0.422	2.365	0	

* All values taken from [2002Mo19], uncertainties for energies are not given.

Table 9

16	au									
β.	-p	emission	from	²¹ Mg*,	$T_{1/2} =$	118.6(5)	ms, BR	$\beta_{p} = 2$	0.9(1	3)%

E_p	$I_p(\text{rel})$	$I_p(abs)$	<i>E_{emitter}</i> (²¹ Na)***	$E_{daughter}(^{20}\mathrm{Ne})^{@}$	coincident γ-rays [@]	
0.396(10)	3 91(45)	0.22(3)	4 468(10)	1 6337	1 634	
0.906(10)	2.0(5)	0.11(3)	8.303(10)	4 9665(2)	1 634 3 333	
0.919(21)	0.28(3)	0.016(2)	$8.975(10)^a$	5 6214(17)	1 634 3 987	
0.937(10)	194(5)	1.10(3)	7 609(10)	4 2477(11)	1 634 2 614	
1.102(10)	3.34(6)	0.19(3)	3.544(10)	0		
1.316(10)	20.01(15)	1.13(1)	5.380(10)	1.6337	1 634	
1.427(10)	2.84(11)	0.16(1)	8.135(10)	4 2477(11)	1 634 2 614	
1.564(10)	4.66(9)	0.26(1)	$8.975(10)^a$	4.9665(2)	1.634, 3.333	
1.630(10)	2.95(17)	0.17(1)	8.303(10)	4.2477(11)	1.634, 2.614	
1.861(10)	44.05(24)	2.50(2)	4.294(10)	0		
2.037(10)	100.0(4)	5.66(2)	4.468(10)	0		
2.144(10)	4.58(14)	0.26(1)	6.165(10)	1.6337	1.634	
2.263(11)	3.79(55)	0.22(3)	6.341(11)	1.6337	1.634	
2.302(10)	0.73(20)	0.04(1)	$8.975(10)^a$	4.247(11)	1.634, 2.614	
2.587(10)	20.89(24)	1.18(2)	5.020(10)	0		
3.443(10)	34.6(31)	1.96(18)	5.884(10)	0		
3.585(11)	8.0(15)	0.45(9)	7.609(11)	1.6337	1.634	
4.055(10)	33.58(2.45)	1.90(14)	6.468(10)	0		
4.257(10)	1.99(20)	0.11(1)	8.303(10)	1.6337	1.634	
4.356(10)	1.94(19)	0.11(1)	8.397(10)	1.6337	1.634	
4.769(10)	10.9(8)	0.62(5)	8.827(10)	1.6337	1.634	
4.913(10)	24.29(176)	1.4(1)	8.975(10) ^a	1.6337	1.634	
5.171(12)	5.63(75)	0.32(4)	7.609(12)	0		
5.868(10)	1.56(18)	0.09(1)	8.303(10)	0		
5.983(10)	1.37(13)	0.078(7)	8.397(10)	0		
6.388(11)	2.86(29)	0.16(2)	8.827(11)	0		
6.537(10)	8.85(65)	0.50(4)	8.975(10) ^a	0		
7.20(30)	0.05(2)	0.003(1)	9.725(30)	0		

* All values are taken from [2015Lu12], except where noted.

*** Energy levels from 2015Lu12 based on proton energies and known resonances in ²⁰Ne [1981Fe05, 1969Bl03, 1964Va10, 2004Fi10].

[@] Values from adopted levels in ENSDF [1998Ti06].

^a IAS [2015Lu12].

Table 10 β - α emission from ²¹Mg*, $BR_{\beta\alpha} = 0.115(19)\%$.

Eα	I_{α} (rel)	I_{α} (abs)	$E_{emitter}$ (²¹ Na)	$E_{daughter}(^{17}\mathrm{F})$	coincident γ-rays
2.201(27)	0.11(1)	0.0062(5)	8.827(27)	0	
2.397(10)	1.79(5)	0.100(3)	8.975(10)	0	
2.700(43)	0.10(1)	0.0056(6)	9.725(30)	0.495	0.495
3.060(81)	0.04(1)	0.0022(6)	9.725(30)	0	

* Values are taken from [2015Lu12].

Table 11

 β -p α emission from ²¹Mg*, $Q_{\varepsilon p\alpha} = 5.927(1)$ MeV, $BR_{\beta p\alpha} = 0.016(3)\%$.

E_p (c.m.)	$E_{p-emitter}$ (²¹ Na)	$E_{\alpha}(c.m.)$	$E_{\alpha-emitter}$ (²⁰ Ne)	$E_{final}(^{16}O)$	coincident γ-rays
0.921(21)	8.975(10)	0.882(18)	8.054(18)	0	

* Values are taken from [2015Lu12].

Table 12

<u> β -p emission from ²⁵Si*, T_{1/2} = 220(4) ms[@], BR_{βp} = 35.0(20)%</u>

E_p	$I_p(\text{rel})\%^b$	$I_p(abs)\%$	$E_{emitter}$ (²⁵ Al)**	Edaughter(²⁴ Mg)***	coincident γ-rays**
0.4020(9)	59(17)	6.1(15)	2.6733(6)	0	
0.554(10)	4.8(25)	0.49(25)	4.192(4)	1.369	1.369
0.724(4)	0.3(15)	0.036(15)	7.240(3)	4.238	1.369, 2.870, 4.238
0.9437(11)	17(5)	1.7(5)	4.582(2)	1.369	1.369
1.037(16)	1.6(6)	0.16(6)	7.422(5)	4.123	1.369, 2.754
1.268(5)	4.0(22)	0.41(22)	4.906(4)	1.369	1.369
1.380(5)	3.7(14)	0.38(14)	7.901(2)	4.238	1.369, 2.870, 4.238
1.492(6)	2.5(13)	0.26(13)	7.901(2)	4.123	1.369, 2.754
1.584(3)	2.9(16)	0.30(16)	3.8591(8)	0	
1.684(12)	1.7(10)	0.18(10)	8186(3)	4.238	1.369, 2.870, 4.238
1.794(3)	5.0(20)	0.51(19)	8.186(3)	4.123	1.369, 2.754
1.9243(20)	25(8)	2.6(7)	4.192(4)	0	
2.164(3)	17(5)	1.7(4)	5804(4)	1.369	1.369
2.3100(9)	15(4)	1.5(3)	4.582(2)	0	
2.453(25)	0.40(12)	0.040(11)	6063(7)	1.369	1.369
2.486(25)	1.0(3)	0.10(3)	6.170(2)	1.369	1.369
2.632(10)	0.50(12)	0.048(10)	4.906(4)	0	
3.006(11)	4.1(25)	0.42(25)	6.650(5)	1.369	1.369
3.236(6)	4.1(16)	0.42(16)	6.877(7)	1.389	1.369
3.327(4)	5(3)	0.5(3)	5.597(6)	0	
3.464(3)	35(15)	3.6(15)	7.118(5)	1.369	1.369
3.606(4)	10(5)	1.0(5)	7.240(3)	1.369	1.369
3.896(8)	2.9(10)	0.3(1)	6.170(2)	0	
4.257(3)	100(14)	10.3(14)	7.901(2)	1.369	1.369
4.345(17)	4.4(16)	0.45(15)	7.936(20)	1.369	1.369
4.551(5)	2.9(10)	0.3(1)	8.186(3)	1.369	1.369
4.614(9)	0.30(12)	0.035(11)	6.909(10)	0	
4.614(9)	0.30(12)	0.035(11)	6.909(10)	0	
4.845(4)	11(8)	1.1(8)	7.118(5)	0	
4.980(4)	2.7(23)	0.28(23)	7.240(3)	0	
5.382(11)	2.2(14)	0.23(14)	7.646	0	
5.549(15)	3.1(10)	0.32(9)	7.819(20)	0	
5.6288(15)	21(7)	2.2(6)	7.901(2)	0	
6.798(5)	1.3(10)	0.13(10)	9.073(7)	0	
7.000(25)	0.10(2)	0.0127(17)	9.275(25)@@	0	
7.141(30)	0.10(2)	0.0127(17)	9.415(30)@@	0	

* average of all data from [2021Su03], [1993Ro06], [1992Ha28], [1985Zh05], taken from table 3 of [2021Su03],

** Values from adopted levels in ENSDF [2009Fi05] except where noted.

*** Values from adopted levels in ENSDF [2007Fi14].

[@] Weighted average of 225(6) ms [1965Mc01] and 218(4) ms [1966Re07].

@@ [1985Zh05].

Table 13
B-p emission from ²⁹ S*, $T_{1/2} = 187(6)$ ms, $BR_{\beta p} = 47(5)\%$.

$E_p(\text{c.m.})$	$I_p(\text{rel})\%$	$I_p(abs)\%^{@@}$	$E_{emitter}$ (²⁹ P)	Edaughter(²⁸ Si)**	coincident γ -rays**	
$0.766^{@}$	22(2)	3.4(3)	5.294(6)	1.779	1.779	
1.042(25)	1.0(4)	0.16(6)	8.389(13)	4.619	1.779, 2.838	
1.302(10)	24(3)	3.8(4)	5.826(8)	1.779	1.779	
1.829(15)	2.4(3)	0.38(5)	6.357(15)	1.779	1.779	
1.978(15)	1.9(3)	0.30(4)	6.506(15)	1.779	1.779	
2.206 [@]	75(3)	11.9(4)	4.955(9)	0		
2.545 [@]	3.4(3)	0.53(4)	5.294(6)	0		
2.621(10)	6.8(5)	1.08(7)	7.149(10)	1.779	1.779	
2.986(15)	0.52(10)	0.082(15)	7.514(15)	1.779	1.779	
3.067(15)	1.14(13)	0.18(2)	5.826(8)	0		
3.212(15)	1.14(13)	0.18(2)	5.961(15)	0		
3.326(15)	1.01(13)	0.16(2)	6.075(15)	0		
3.414(15)	2.2(2)	0.34(3)				
3.579(15)	2.4(3)	0.38(5)	6.328(15)	0		
3.715(15)	1.3(3)	0.21(4)	8.243(11)	1.779	1.779	
3.853 [@]	14.8(9)	2.34 12	8.389(13)	1.779	1.779	
3.905(15)	4.5(4)	0.71(6)	6.654(15)	0		
4.008(20)	1.7(4)	0.27(6)	8.535(14)	1.779	1.779	
4.335(20)	6.8(5)	1.08(7)	7.085(20)	0		
4.493(20)	2.1(3)	0.33(4)	7.242(20)	0		
4.640(25)	1.6(3)	0.25(4)	7.389(25)	0		
4.852(20)	1.7(3)	0.27(4)	9.394(17)	1.779	1.779	
5.008(20)	1.5(3)	0.23(4)	7.757(20)	0		
5.359(15)	4.4(5)	0.69(7)	8.108(15)	0		
5.493(15)	5.8(5)	0.92(7)	8.243(11)	0		
5.632 [@]	100(3)	15.8(4)	8.389(13)	0		
5.784(20)	5.5(5)	0.87(7)	8.535(14)	0		
6.062(30)	0.89(19)	0.14(3)	8.811(20)	0		
6.676(30)	1.0(2)	0.16(3)	9.394(17)	0		
6.965(50)***	0.10(2)***	0.016(3)	9.714(50)	0		
7.105(30)***	0.21(2)***	0.033(3)	9.854(30)	0		
7.343(30)***	0.12(1)***	0.019(2)	10.092(30)	0		
7.789(30)***	$0.18(1)^{***}$	0.028(2)	10.538(30)	0		

* All values taken from [1979Vi01] except where noted.
** Values from adopted levels in ENSDF [2013Ba53].
*** [1985Zh05].
[@] Proton peaks that were used as energy calibrations.
[@] Deduced by evaluator from beta branching (table 2 in [1979Vi01]) and proton branching ratios from these states (tables 3 and 4 in [1979Vi01]).

Table 14	
β -p emission from ³³ Ar*, T _{1/2} = 173(2) ms, $BR_{\beta p} = 38.8(14)\%^{**}$	

E_p	$I_p(rel)$	$I_p(abs)$	E _{emitter} (³³ Cl)***	$E_{daughter}(^{32}\mathrm{S})^{@}$	coincident γ-rays [@]	
0.786(10)	0.065(6)	0.0202(17)	5.307(4)	2.2306(2)	2.230	
1.358(8)	0.54(4)	0.168(9)	5.866(8)	2.2306(2)	2.230	
1.696(2)	1.33(64)	0.41(20)	3 973(2)	0		
1.090(2) 1.717(6)	0.019(4)	0.0060(11)	7 762(3)	3 7784(10)	1 549 2 230	
1.744(6)	0.017(4) 0.107(11)	0.0000(11) 0.0332(32)	6 254(3)	2 2306(2)	2 230	
1.744(0)	0.026(4)	0.0332(32)	6 326(5)	2.2306(2)	2.230	
1.019(3)	1.52(10)	0.0081(13) 0.471(22)	0.320(3)	2.2300(2)	2.250	
1.657(2)	1.32(10)	0.4/1(22) 0.0042(7)	4.115(2)	0	2,220	
2.087(5)	0.014(2)	0.0043(7)	0.595(5)	2.2306(2)	2.230	
2.166(3)	8.81(56)	2.73(12)	4.442(3)	0	1.540, 2.220	
2.442(6)	0.004(1)	0.0012(3)	8.491(5)	3.7784(10)	1.549, 2.230	
2.444(5)	0.049(4)	0.0153(12)	6.951(5)	2.2306(2)	2.230	
2.559(2)	1.17(8)	0.362(17)	4.835(2)	0		
2.795(7)	0.022(4)	0.0069(12)	7.292(3)	2.2306(2)	2.230	
2.830(3)	0.156(16)	0.0483(44)	5.107(3)	0		
2.898(10)	0.045(5)	0.00141(14)	7.405(10)	2.2306(2)	2.230	
2.976(7)	0.121(13)	0.0376(35)	7.484(7)	2.2306(2)	2.230	
3.033(4)	0.24(2)	0.0748(55)	5.310(4)	0		
3.049(7)	0.116(12)	0.0359(32)	7.557(7)	2.2306(2)	2.230	
3.110(10)	0.0023(7)	0.0007(2)	9.153(4)	3.7784(10)	1.549, 2.230	
3.162(6)	0.0145(65)	0.0045(20)	7.666(3)	2.2306(2)	2.230	
3.272(3)	100	31.0(14)	5.549(3)	0		
3.455(4)	0.296(16)	0.0918(48)	5.731(4)	0		
3.577(6)	0.171(15)	0.0531(40)	8 077(3)	2.2306(2)	2.230	
3 625(6)	0.048(8)	0.0150(25)	8 132(6)	2.2306(2)	2.230	
3 688(5)	0.07((5))	0.0190(29) 0.0085(16)	8 183(3)	2.2306(2)	2 230	
3.078(3)	2 37(15)	0.735 (34)	6 254(3)	0	2.230	
3.978(3) 4.049(5)	2.37(13) 0.026(4)	0.733(34) 0.0082(13)	8 558(4)	2 2306(2)	2 230	
4.049(5)	0.020(4)	0.0062(13)	8.558(4)	2.2300(2)	2.230	
4.341(3)	0.021(3) 0.0046(13)	0.00043(80) 0.00142(40)	8.646(5)	2.2300(2) 2.2306(2)	2.230	
4.405(8)	0.0040(13)	0.00142(40) 0.002(7(55))	0.110(4)	2.2300(2)	2.230	
4.014(5)	0.0118(19)	0.00367(55)	9.119(4)	2.2306(2)	2.230	
4.646(6)	0.0151(21)	0.00467(62)	9.153(4)	2.2306(2)	2.230	
4.866(5)	0.0025(3)	0.000/9(10)	7.143(5)	0		
5.012(4)	0.031(3)	0.0097(8)	7.292(3)	0		
5.077(6)	0.0021(5)	0.00066(16)	9.584(6)	2.2306(2)	2.230	
5.196(4)	0.723(51)	0.224(12)	7.473(4)	0		
5.260(4)	0.152(18)	0.047(5)	7.537(4)	0		
5.388(4)	0.0742(84)	0.0234(24)	7.666(3)	0		
5.483(3)	0.0268(41)	0.0083(12)	7.760(3)	0		
5.799(3)	0.400(29)	0.124(7)	8.077(3)	0		
5.902(3)	0.297(21)	0.092(5)	8.183(3)	0		
6.038(9)	0.0092(14)	0.00284(40)	8.315(9)	0		
6.199(10)	0.0032(5)	0.00100(15)	8.491(5)	0		
6.291(10)	0.0445(52)	0.0138(15)	8.558(4)	0		
6.542(8)	0.0017(3)	0.00053(9)	8.819(8)	0		
6.589(10)	0.0009(3)	0.00027(8)	8.865(10)	0		
6.683(10)	0.0332(39)	0.0103(10)	8.969(5)	0		
6.835(10)	0.0055(8)	0.00170(23)	9.119(4)	0		
6.865(9)	0.0016(3)	0.00049(10)	9.142(9)	0		
6 925(9)	0.00012(3)	0.0032(4)	9 202(9)	0		
7 01-7 12	0.00012(3)	0.00023(9)	9.202(9)	0		
7 12-7 22	0.00073(10)	0.00023(3)		0		
7 22-7 32	0.00023(10)	0.00037(3)		0		
7 43 7 52	0.00103(14)	0.00032(4)		0		
7 52 7 62	0.00039(10)	0.00012(3)		0		
1.33-1.03 7 62 7 72	0.00032(10)	0.00010(3)		0		
1.03-1.13	0.00026(10)	0.00008(3)		0		
1.15-8.25	0.00019(10)	0.00006(3)		0		
8.25-9.28	0.00013(10)	0.00004(3)		0		

* All values taken from [2010Ad03], except where noted. ** From [2010Ad03]. Other: 38.7(10)% [1987Bo21]. *** Energy calculated from proton energies and S_p (³³Cl) = 2276.8(4) keV [2021Wa16]. For levels de-excited by more than one proton transition, E_{level} (emitter) is the weighted average. [@] Values from adopted levels in ENSDF [20110u01].

Table 15		
β -p emission from ³⁷ Ca,	$T_{1/2} = 181.1(10) \text{ ms*},$	$BR_{\beta p} = 82.1(8)\%^{**}$

E_{p}^{***}	$I_p(rel)^{@@}$	$I_p(abs)^@$	<i>E_{emitter}</i> (³⁷ K)**	$E_{daughter}(^{36}\mathrm{Ar})^{@@@}$	coincident γ-rays ^{@@@@}	
0.418(5)	a@	a@	6.6040(47)	4.3291(7)	2.359, 1.970	
0.585(2)	b [@]	b [@]	4.4128(13)	1.9704(1)	2.359, 1.970	
0.893(2)	11(1)	5.2(5)	2.7501(8)	0		
1.223(2)	c [@]	c@	5.0506(13)	1.9704(1)	1.970	
1.293(2)	d [@]	d [@]	5.1202(16)	1.9704(1)	1.970	
1.382(2)	≈ 0.4	≈ 0.2	3.2394(18)	0		
1.438(4)	e [@]	e [@]	7.4733(33)	4.1783(1)	2.208, 1.970	
1.496(2)	$f^{@}$	$f^{@}$	5.3230(18)	1.9704(1)	1.970	
1.596(3)	0.124(28)	0.058(13)	5.423.7(30)	1.9704(1)	1.970	
1.765(3)	6.9(4)	3.2(2)	3.6222(25)	0		
1.796(3)	g [@]	g [@]	5.6234(24)	1.9704(1)	1.970	
1.983(3)	7.5(4)	3.5(2)	3.8402(31)	0		
2.187(3)	h [@]	h [@]	6.0142(28)	1.9704(1)	1.970	
2.264(3)	i [@]	i [@]	6.0915(28)	1.9704(1)	1.970	
2.334(9)	0.13(4)	0.06(2)	4.191(9)	0		
2.566(2)	2.4(1)-b [@]	1.10(5)-b [@]	4.4128(13)	0		
2.604(4)	j [@]	j [@]	6.4313(33)	1.9704(1)	1.970	
2.638(4)	3.0(2)	1.4(1)	4.4955(39)	0		
3.159(5)	2.1(21)	1.0(10)	5.0161(43)	0		
3.194(2)	100-c [@]	46.7-c [@]	5.0506(13)	0		
3.263(2)	18.2(9)-d [@]	8.5(4)-d [@]	5.1202(16)	0		
3.411(5)	k [@]	k [@]	7.2380(47)	1.970	1.970	
3.466(2)	1.20(9)-f [@]	0.56(4)-f [@]	5.3230(18)	0		
3.500(7)	0.11(2)	0.052(7)	5.3570(66)	0		
3.541(4)	1@	1 [@]	7.2380(47)	1.9704(1)	1.970	
3.589(5)	0.28(2)	0.13(1)	5.4459(47)	0		
3.608(5)	0.47(4)	0.22(2)	5.4648(46)	0		
3.646(4)	e' [@]	e' @	7.4733(33)	1.9704(1)	1.970	
3.712(5)	0.084(15)	0.039(7)	5.5693(45)	0		
3.766(3)	0.32(4)-g@	0.15(2)-g [@]	5.6234(24)	0		
3.804(5)	0.21(2)	0.10(1)	7.6315(47)	1.9704(1)	1.970	
3.931(5)	0.12(2)	0.054(8)	5.7882(49)	0		
3.978(4)	m [@]	m [@]	7.8053(37)	1.9704(1)	1.970	
4.007(5)	0.21(2)	0.1(1)	7.8343(46)	1.9704(1)	1.970	
4.075(5)	0.39(4)	0.18(2)	5.9316(46)	0		
4.157(3)	1.24(9)-h [@]	0.58(4)-h [@]	6.0142(28)	0		
4.234(3)	0.80(6)-i [@]	0.37(3)-i [@]	6.0915(28)	0		
4.466(5)	0.30(2)	0.14(1)	6.3228(48)	0		
4.557(5)	0.163(3)	0.076(12)	6.4144(48)	0		
4.574(4)	0.28(4)-j [@]	0.13(2)-j [@]	6.4313(33)	0		
4.747(5)	0.13(6)-a [@]	0.06(3)-a [@]	6.6040(47)	0		
4.826(5)	0.043(9)	0.020(4)	6.6827(47)	0		
4.882(5)	0.017(4)	0.008(2)	6.7389(47)	0		
4.966(5)	0.032(9)	0.015(4)	6.8229(47)	0		
5.116(5)	0.34(4)	0.16(2)	6.9729(47)	0		
5.216(5)	0.24(2)	0.11(1)	7.0727(47)	0		
5.325(4)	0.64(15)	0.30(7)	7.1823(35)	U		
5.381(5)	0.099(15)-k [®]	0.046(7)-k ^w	7.238(5)	U		
5.511(4)	0.45(4)-1	0.21(2)-1	7.3685(33)	0		
5.616(4)	0.75(9)-e-e'"	0.35(4)-e-e [*]	7.4733(33)	0		
5.685(5)	0.045(9)	0.021(4)	7.5423(47)	0		
5.803(5)	0.073(15)	0.034(7)	7.6598(49)	0		
5.948(4)	0.34(4)-m ^w	0.16(2)-m ^w	7.8053(37)	0		
0.170(5)	0.084(15)	0.039(7)	8.02/3(53)	0		

* [1997Tr05]. ** [1991Ga23]. *** E_p values deduced from ³⁷K level [1991Ga23] and S(p)=1857.0(14) [2021Wa16] for ³⁷K. [@] Sum of unresolved proton intensities from the emitting state. [1991Ga23] recorded multiple decays from the state with B(GT) values, but did not record individual proton branching ratios. [@] @ I_p values from [2012Ni01] based on B(GT) values [1991Ga23]. [@] @ @</sup> Values from adopted levels in ENSDF [2012Ni01].

Fable 16	
B-p emission from ⁴¹ Ti*, $T_{1/2} = 81.9(5) \text{ ms}^{@}$, $BR_{\beta p} = 92.4(6)\%^{@@}$.	

E_p	$I_p(rel)$	$I_p(abs)$	E _{emitter} (⁴¹ Sc)**	Edaughter(⁴⁰ Ca)***	coincident γ-rays***	
0.771(12)	3.3(25)	0.86(66)	5.762(12)	3.9044	3.904	
1.011(2)	19.78(12)	5.15(3)	2.096(2)	0		
1.280(15)	3 92(73)	1.02(19)	6.270(15)	3 9044		
1.581(2)	18 28(19)	4.76(5)	2,666(2)	0		
1.627(10)	2.61(8)	0.68(2)	2.712(10)	0		
1.888(40)	2.99(12)	0.78(3)	6.893(28)	3.9044	3.904	-
2.026(10)	1.98(69)	0.52(18)	6.464(10)	3.3526(1)	3.353	
2.131(25)	2.99(8)	0.78(2)	6.953(25)	3.7367(1)	3.737	
2.328(3)	15.67(8)	4.08(2)	3.413(3)	0		
2.472(3)	8.96(8)	2.33(2)	3.559(3)	0		
2.604(13)	2.35(50)	0.61(13)	3.689(13)	0		
2.721(8)	4.10(12)	1.07(3)	3.806(8)	0		
2.873(8)	2.5(6)	0.66(16)	3.958(8)	0		
3.159(4)	62.7(3)	16.33(6)	4.244(4)	0		
3.232(19)	3.0(7)	0.78(18)	4.317(19)	0		
3.422(9)	2.61(8)	0.68(2)	4.507(9)	0		-
3.570(9)	2.5(2)	0.65(6)	4.655(9)	0		
3.690(5)	5.9(6)	1.55(16)	4.775(5)	0		
3.750(8)	11.6(4)	3.01(10)	4.868(4)	0		
3.843(4)	28.4(3)	7.39(7)	4.928(5)	0		
3.928(8)	3.0(5)	0.78(14)	5.013(8)	0		-
3.987(18)	2.7(5)	0.71(12)	5.072(18)	0		
4.294(4)	13.8(7)	3.59(17)	5.379(4)	0		
4.410(12)	1.49(8)	0.39(2)	5.495(12)	0		
4.495(6)	5.8(6)	1.5(2)	5.580(6)	0		
4.683(7)	2.4(4)	0.62(9)	5.768(7)	0		
4.754(4)	14.93(19)	3.89(5)	5.839(4)	0		
4.800(10)	4.48(12)	1.17(3)	5.885(10)	0		
4.853(3)	100.00(8)	26.05(2)	5.938(3)	0		
4.951(10)	7.84(19)	2.04(5)	6.036(10)	0		
4.999(17)	3.3(4)	0.86(9)	6.084(15)	0		-
5.068(11)	3.2(4)	0.83(10)	6.153(11)	0		
5.288(14)	3.0(4)	0.79(10)	6.373(14)	0		
5.349(40)	2.4(5)	0.63(13)	6.434(40)	0		
5.498(60)	1.40(8)	0.36(2)	6.583(60)	0		
5.587(40)	2.2(5)	0.58(13)	6.672(40)	0		
5.743(14)	2.8(15)	0.73(38)	6.828(14)	0		
5.861(14)	1.0(4)	0.27(10)	6.946(14)	0		
6.096(20)	0.75(19)	0.19(5)	7.181(20)	0		
6.274(19)	0.56(19)	0.15(5)	7.359(19)	0		
6.530(38)	0.37(12)	0.10(3)	7.615(38)	0		
6.893(60)	0.28(10)	0.073(25)	7.978(60)	0		

* Values are from a weighted average of [1998Bh12, 1998Li46, 1997Ho12, 1974Se11, 2015Sh16], except where noted. ** Energy calculated from proton energies and S_p (⁴¹Sc) = 1084.93(7) keV [2021Wa16].

*** Values from adopted levels in ENSDF [2017Ch09].

[@] [2015Sh16]. [@] Weighted average of 91.6(6)% [2007Do17], 95.3(23)% [1998Bh12], and 100.3(22)% [1997Tr11].

Table 17

 β -p emission from ⁴⁵Cr*, T_{1/2} = 60.9(4) ms, $BR_{\beta p}$ = 34.4(8)%

E_p	$I_p(\text{rel})$	<i>I_p</i> (abs)	$E_{emitter}$ (⁴⁵ V)**	$E_{daughter}(^{44}\mathrm{Ti})^{***}$	coincident γ-rays***	
0.945(31)	2.0(15)	0.4(3)				
1.303(25)	2.6(10)	0.5(2)				
1.468(27)	2.0(15)	0.4(2)				
1.609(28)	2.0(15)	0.4(2)				
2.087(9)	100	19.6(15)	4.796(9)	1.0831(1)	1.083	

* All values taken from [2007Do17] except where noted. ** Energy calculated from proton energies and S_p (⁴⁵V) = 1626.8(11) keV [2021Wa16].

*** Values from adopted levels in ENSDF [2011Ch39].

Table 18	
β -p emission from ⁴⁹ Fe*, T _{1/2} = 64.7(3) ms, BR _{βp} = 56.7(4)%	

E_p	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (⁴⁹ Mn)	$E_{daughter}(^{48}\mathrm{Cr})^{**}$	coincident γ-rays**
1.120(39)	3.8(14)	1.3(5)	3.921	0.7522(1)	0.752
1.321(24)	0.6(3)	0.2(1)			
1.544(17)	4.3(7)	1.5(3)	4.380	0.7522(1)	0.752
1.975(13)	100	34.5(2)	4.809	0.7522(1)	0.752

* Values are taken from [2007Do17], energy and intensity values are from a weighted average of [2007Do17, 1996Fa09, 1970Ce02]: ** Values from adopted levels in ENSDF [2006Bu08].

 β -p emission from ⁵³Ni*, T_{1/2} = 55.2(7) ms, $BR_{\beta p} = 22.7(10)\%^{@@}$

E_p	$I_p(rel)$	$I_p(abs)$	<i>E_{emitter}</i> (⁵³ Co)***	$E_{daughter}(^{52}\mathrm{Fe})^{@}$	coincident γ-rays [@]
1.077(28)	15(4)	0.8(2)			
1.251(27)	15(4)	0.8(2)			
1.639(22)	33(4)	1.8(2)			
1.921(7)**	100	5.5(4)	4.395(7)	0.8495(1)	0.849
2.111(24)	44(6)	2.4(3)			
2.399(26)	59(9)	3.2(5)			

* Values are from [2007Do17], except where noted.

** [2016Su10].

*** Energy calculated from proton energies and S_p (⁵³Co) = 1616.3(17) keV [2021Wa16].

[@] Values from adopted levels in ENSDF [2015Ya15].

[@][@] Weighted average of 23.4(10)% [2007Do17] and 22.0(10)% [2016Su10].

Table 20

 β -p emission from ⁵⁷Zn*, T_{1/2} = 38(2) ms, $BR_{\beta p} = 90(10)\%$ **.

E_p	$I_p(\text{rel})$	$I_p(abs)$	E _{emitter} (⁵⁷ Cu)***	$E_{daughter}(^{56}\mathrm{Ni})^{@}$	coincident γ-rays [@]	
1.168(15)	16(4)	3.5(12)	4.559(15)	2.7006(7)	2.701	
1.685(17)	4(2)	0.9(5)	2.375(17)	0		
1.836(15)	36(6)	8(2)	2.526(15)	0		
1.902(12)	100(10)	22(5)	5.293(12)	2.7006(7)	2.701	
2.531(16)	66(8)	14.5(36)	3.221(16)	0		
3.092(21)	25(5)	5.5(16)	3.782(21)	0		
3.514(24)	11(3)	2.4(8)	4.204(24)	0		
3.684(25)	6(2)	1.3(5)	4.374(25)	0		
3.871(26)	3(2)	0.7(5)	4.561(26)	0		
4.474(30)	7(3)	1.5(7)	5.164(30)	0		
4.595(29)	81(9)	18(4)	5.300(29)	0		

* Values are taken from [2002Jo09] except where noted.

** From [2007B109]. Other: >65% [1979Vi01].

*** Energy calculated from proton energies and S_p (⁵⁷Cu) = 690.3(4) keV [2021Wa16].

[@] Values from adopted levels in ENSDF [2011Hu08].

Table 21

 β -p emission from ⁶¹Ge*, T_{1/2} = 40.7(4) ms, $BR_{\beta p} = 78(3)\%$ **.

E_p	$I_p(abs)$	E _{emitter} (⁶¹ Ga)***	$E_{daughter}(^{60}\mathrm{Zn})$	coincident γ -rays	
3.169(11)	62(4)	3.419(50)	0		

* All values taken from [2017GoZT], except where noted.

** Weighted ave of [2017GoZT] and [2007B109].

*** Energy calculated from proton energy and S_p (⁶¹Ga) = 250(40) keV [2021Wa21].

Table 22

E_p	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (⁶⁵ As)***	$E_{daughter}(^{64}\text{Ge})^{@}$	coincident γ-rays [@]
2.642(15)	40(5)	18(2)	3.448(57)	0.9017(3)	0.902
3.532(16) 3.77(3)**	100(5)	44(2)	3.448(57)	0	

<u> β -p emission from ⁶⁵Se*, T_{1/2} = 34.2(2) ms, $BR_{\beta p} = 94^{+6}_{-4}\%$.</u>

* All values taken from [2017GoZT], except where noted.

** from [2011Ro47] only

*** Energy calculated from proton energies and S_p (⁶⁵As) = -90(80) keV [2021Wa16]. Value shown is the weighted average of the two transitions. ^(a) Values from adopted levels in ENSDF [2011Hu08].

Table 23

 β -p emission from ⁶⁹Kr, T_{1/2} = 28(1) ms*, BR_{βp} = 100%.

E_p	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (⁶⁹ Br)	$E_{daughter}(^{68}\mathrm{Se})^{@}$	coincident γ-rays [@]	
0.641(42)*	3.6(9)	1.9(5)*	0*	0		
$\begin{array}{c} 0.751^{**+.132} \\ 2.939(22)^{*} \end{array}$	1.0(2) 100	0.5(1)** 52.5(65)*	0+x** 3.153(45)***	0 0.8538(2)	0.854	

^{* [2014}De41].

*** Energy calculated from proton energies and S_p (⁶⁹Br) = -640(40) keV [2021Wa16].

Table 24

 β -p emission from ⁷³Sr*, T_{1/2} = 23.1(14) ms, BR_{βp} = 100%**.

E_p	$I_p(rel)\%$	$I_p(absb)\%$	$E_{emitter}$ (⁷³ Rb)***	$E_{daughter}(^{72}\mathrm{Kr})$	coincident γ -rays	
0.64(4)	5(3) [@]	2(1) [@]	0.0	0.0		
1.15(4)	10(5) [@]	4(2) [@]				
3.14(2)	61(6)	24(9)	3.21(5)	0.709	0.709	
3.85(2)	100	39(7)	3.21(5)	0		

* All values taken from [2019Si33], except where noted.

** Expected to be 100% as the daughter $^{\overline{73}}$ Rb is unbound by 570(20) keV [2017Wa10].

*** Energy calculated from proton energies and S_p (⁷³Rb) = -640(40) keV [2021Wa16].

[@] Estimated from Fig 1 of [2020Ho17].

References used in the Tables

- [1] 1963Ba63 R. Barton, R. McPherson, R. E. Bell, W. R. Frisken, W. T. Link, R. B. Moore, Can. J.Phys. 41, 2007 (1963). https://doi.org10.1139/p63-201
- [2] 1963Ka36 V. A. Karnaukhov, G. M. Ter-Akopyan, L. A. Petrov, V. G. Subbotin, Zh. Eksp. Teor. Fiz. 45, 1280 (1963); Soviet Phys. JETP 18, 879 (1964).
- [3] 1963Mc08 R. McPherson, R. Barton, Phys. Canada 19, No. 3, 36, Abstr. 8. 3 (1963).
- [4] 1964Da13 J. M. D'Auria, I. L. Preiss, Phys. Letters 10, 300 (1964). https://doi.org/10.1016/0031-9163(64)90515-3
- [5] 1964Fl03 G. N. Flerov, V. A. Karnaukhov, G. M. Ter-Akopyan, L. A. Petrov, V. G. Subbotin, Nucl. Phys. 60, 129(1964). https://doi.org/10.1016/0029-5582(64)90010-0
- [6] 1964Ha42 J. C. Hardy, R. I. Verrall, Phys. Rev. Letters 13, 764 (1964). https://doi.org/10.1103/PhysRevLett.13.764
- [7] 1964Ha45 J. C. Hardy, R. I. Verrall, Phys. Lett. 13, 148 (1964). https://doi.org/10.1103/PhysRevLett.13.764
- [8] 1964Mc16 R. McPherson, J. C. Hardy, R. E. Bell, Phys.Letters 11, 65 (1964). https://doi.org/10.1016/0031-9163(64)90261-6
- [9] 1964Re08 P. L. Reeder, A. M. Poskanzer, R. A. Esterlund, Phys. Rev. Letters 13, 767 (1964). https://doi.org/10.1103/PhysRevLett.13.767
- [10] 1965Ha08 J.C.Hardy, R.I.Verrall, Can. J.Phys. 43, 418 (1965). https://doi.org/10.1139/p65-038

^{** [2011}Ro47]

[@] Values from adopted levels in ENSDF [2012Mc02].

- [11] 1965Ha09 J.C. Hardy, R.I. Verrall, R. Barton, R.E. Bell, Phys. Rev. Letters 14, 376 (1965). https://doi.org/10.1103/PhysRevLett.14.376
- [12] 1965Ha20 J. C. Hardy, R. E. Bell, Can. J. Phys. 43, 1671 (1965). https://doi.org/10.1139/p65-156
- [13] 1965Mc01 R. McPherson, J. C. Hardy Can. J. Phys. 43, 1 (1965). https://doi.org/10.1139/p65-001
- [14] 1965Mc09 R. McPherson, R. A. Esterlund, A. M. Poskanzer, P. L. Reeder, Phys. Rev. B 140, B1513 (1965). https://doi.org/10.1103/PhysRev.140.B1513
- [15] 1966Ce02 J. Cerny, R. H. Pehl, G. Butler, D. G. Fleming, C. Maples, C. Detraz, Phys. Letters 20, 35 (1966). https://doi.org/10.1016/0031-9163(66)91037-7
- [16] 1966Es04 R. A. Esterlund, R. McPherson, A. M. Poskanzer, P. L. Reeder, BNL-10520 (1966).
- [17] 1966Ha22 J. C. Hardy, R. I. Verrall, R. E. Bell, Nucl. Phys. 81, 113(1966). https://doi.org/10.1016/0029-5582(66)90645-6
- [18] 1966Po12 A. M. Poskanzer, R. McPherson, R. A. Esterlund, P. L. Reeder, Phys. Rev. 152, 995 (1966). https://doi.org/10.1103/PhysRev.152.995
- [19] 1966Re07 P. L. Reeder, A. M. Poskanzer, R. A.Esterlund, R. McPherson, Phys. Rev. 147781 (1966). https://doi.org/10.1103/PhysRev.147.781
- [20] 1966Re15 P. L. Reeder, A. M. Poskanzer, R. A. Esterlund, R. McPherson, Phys. Rev. 147, 781 (1966). https://doi.org/10.1103/PhysRev.147.781
- [21] **1967Fi10** R. W. Fink, T. H. Braid, A. W. Friedman, Arkiv Fysik **36**, 471 (1967).
- [22] 1970Ce02 J. Cerny, C. U. Cardinal, H. C. Evans, K. P. Jackson, N. A. Jelley, Phys. Rev. Lett. 24, 1128 (1970). https://doi.org/10.1103/PhysRevLett.24.1128
- [23] 1967Es02 R. A. Esterlund, R. McPherson, A. M. Poskanzer, P. L. Reeder, Phys. Rev. 156, 1094 (1967). https://doi.org/10.1103/PhysRev.156.1094
- [24] 1970Es03 J. E. Esterl, J. C. Hardy, R. G. Sextro, J. Cerny, Phys. Lett. 33B, 287 (1970). https://doi.org/10.1016/0370-2693(70)90271-6
- [25] 1971EsZW J. E. Esterl, REPT UCRL-20426, P53,9/14/71.
- [26] 1971EsZR J. E. Esterl, Thesis, Univ.California (1971); UCRL-20480 (1971)
- [27] 1971Ha05 J. C. Hardy, J. E. Esterl, R. G. Sextro, J. Cerny, Phys. Rev. C3, 700 (1971). https://doi.org/10.1103/PhysRevC.3.700
- [28] 1972Es05 J. E. Esterl, D. Allred, J. C. Hardy, R. G. Sextro, and J. Cerny, Phys. Rev. C 6, 373. https://doi.org/10.1103/PhysRevC.6.373
- [29] 1973Go06 R. A. Gough, R. G. Sextro, J. Cerny, Phys. Lett. 43B, 33 (1973). https://doi.org/10.1016/0370-2693(73)90537-6
- [30] 1973Se08 R. G. Sextro, R. A. Gough, J. Cerny, Phys. Rev. C8, 258 (1973). https://doi.org/10.1103/PhysRevC.8.258
- [31] 1973SeYM R. G. Sextro, Thesis, Univ. California (1973); LBL-2360 (1973)
- [32] 1974Ja10 K. P. Jackson, J. C. Hardy, H. Schmeing, R. L. Graham, J. S. Geiger, K. W. Allen, Phys. Lett. 49B, 341 (1974). https://doi.org/10.1016/0370-2693(74)90176-2
- [33] 1974Se11 R. G. Sextro, R. A. Gough, J. Cerny, Nucl. Phys. A234, 130 (1974). https://doi.org/10.1016/0375-9474(74)90383-2
- [34] 1978ViZT D. J. Vieira, Thesis, Univ. California (1978); LBL-7161 (1978).
- [35] 1978ViZZ D. J. Vieira, R. A. Gough, and Joseph Cerny, REPT LBL-6575, P3.
- [36] 1979Vi01 D. J. Vieira, R. A. Gough, J. Cerny, Phys. Rev. C19, 177 (1979). https://doi.org/10.1103/PhysRevC.19.177
- [37] 1985Zh05 Z. Y. Zhou, E. C. Schloemer, M. D. Cable, M. Ahmed, J. E. Reiff, J. Cerny, Phys. Rev. C31, 1941 (1985). https://doi.org/10.1103/PhysRevC.31.1941
- [38] 1987Bo21 M. J. G. Borge, P. Dessagne, G. T. Ewan, P. G. Hansen, A. Huck, B. Jonson, G. Klotz, A. Knipper, S. Mattsson, G. Nyman, C. Richard-Serre, K. Riisager, G. Walter, and the ISOLDE Collaboration, Phys. Scr. 36, 218 (1987). https://doi.org/10.1088/0031-8949/36/2/005
- [39] 1987Ho01 M. A. C. Hotchkis, J. E. Reiff, D. J. Vieira, F. Blonnigen, T. F. Lang, D. M. Moltz, X. Xu, J. Cerny, Phys. Rev. C35, 315 (1987). https://doi.org/10.1103/PhysRevC.35.315
- [40] 1987Ki14 R. Kirchner, O. Klepper, D. Schardt, T. Sekine, Nucl. Instrum. Methods Phys. Res. B26, 235 (1987). https://doi.org/10.1016/0168-583X(87)90756-7
- [41] 1988B039 M. J. G. Borge, H. Cronberg, M. Cronqvist, H. Gabelmann, P. G. Hansen, L. Johannsen, B. Jonson, S. Mattsson,

G. Nyman, A. Richter, K. Riisager, O. Tengblad, M. Tomaselli, Nucl. Phys. A **490**, 287 (1988). https://doi.org/10.1016/0375-9474(88)90507-6

- [42] 1988Mi03 D Mikolas, B A Brown, W Benenson, L H Harwood, E Kashy, J A Nolen, Jr, B Sherrill, J Stevenson, J S Winfield, Z Q Xie, R Sherr, Phys Rev C37, 766 (1988). https://doi.org/10.1103/PhysRevC.37.766
- [43] 1990As01 K. Asahi, K. Matsuta, K. Takeyama, K. H. Tanaka, Y. Nojiri, T. Minamisono, Phys. Rev. C 41, 358 (1990). https://doi.org/10.1103/PhysRevC.41.358
- [44] 1991Aj01 F. Ajzenberg-Selove, Nucl. Phys. A523, 1 (1991). https://doi.org/10.1016/0375-9474(91)90446-D
- [45] 1991Ga23 A. Garcia, E. G. Adelberger, P. V. Magnus, H. E. Swanson, O. Tengblad, D. M. Moltz, and the ISOLDE Collaboration, Phys. Rev. Lett. 67, 3654 (1991). https://doi.org/10.1103/PhysRevLett.67.3654
- [46] 1992Go10 J. Gorres, M. Wiescher, K. Scheller, D. J. Morrissey, B. M. Sherrill, D. Bazin, J. A. Winger, Phys. Rev. C46, R833 (1992).
- [47] 1992Ha28 S. Hatori, H. Miyatake, S. Morinobu, K. Katori, M. Fujiwara, I. Katayama, N. Ikeda, T. Fukuda, T. Shinozuka, K. Ogawa, Nucl. Phys. A549, 327 (1992). https://doi.org/10.1016/0375-9474(92)90083-V
- [48] 1993Ba12 J. C. Batchelder, D. M. Moltz, T. J. Ognibene, M. W. Rowe, J. Cerny, Phys. Rev. C47, 2038 (1993). https://doi.org/10.1103/PhysRevC.47.2038
- [49] 1993Ba61 J. C. Batchelder, D. M. Moltz, T. J. Ognibene, M. W. Rowe, R. J. Tighe, J. Cerny, Phys. Rev. C48, 2593 (1993). https://doi.org/10.1103/PhysRevC.48.2593
- [50] 1993Ro06 J. D. Robertson, D. M. Moltz, T. F. Lang, J. E. Reiff, J. Cerny, B. H. Wildenthal Phys. Rev. C47, 1455 (1993). https://doi.org/10.1103/PhysRevC.47.1455
- [51] 1993Sc16 D. Schardt, K. Riisager, Z. Phys. A345, 265 (1993). https://doi.org/10.1007/BF01280833
- [52] 1993Ti07 D. R.Tilley, H. R.Weller, C. M.Cheves, Nucl. Phys. A564, 1 (1993). https://doi.org/10.1016/0375-9474(93)90073-7
- [53] 1993Xu04 X. Xu, J. Guo, Y. Guo, X. Ou, H. Liu, X. Lei, X. Sun, Y. Luo, J. Wang, J. Yu, T. Wang, Y. Wang, X. Zhou, L. Xu, S. Zhou, Chin. J. Nucl. Phys. 15, 18 (1993).
- [54] 1995Tr03 W Trinder, E G Adelberger, Z Janas, H Keller, K Krumbholz, V Kunze, P Magnus, F Meissner, A PiechaCzek, M Pfutzner, E Roeckl, K Rykaczewski, W -D Schmidt-Ott, M Weber, Phys Lett 349B, 267 (1995). https://doi.org/10.1016/0370-2693(95)00282-P
- [55] 1996Fa09 L. Faux, S. Andriamonje, B. Blank, S. Czajkowski, R. Del Moral, J. P. Dufour, A. Fleury, T. Josso, M. S. Pravikoff, A. PiechaCzek, E. Roeckl, K. -H. Schmidt, K. Summerer, W. Trinder, M. Weber, T. Brohm, A. Grewe, E. Hanelt, A. Heinz, A. Junghans, C. Rohl, S. Steinhauser, B. Voss, Z. Janas, M. Pfutzner, Nucl. Phys. A602, 167 (1996). https://doi.org/10.1016/0375-9474(96)00109-1
- [56] 1996Ho24 A. Honkanen, L. Axelsson, J. Aysto, M. J. G. Borge, B. Jonson, A. Jokinen, I. Martel, G. Martinez-Pinedo, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, A. Poves, M. H. Smedberg, A. Teijeiro, O. Tengblad, and the ISOLDE Collaboration, Nucl. Phys. A611, 47 (1996). https://doi.org/10.1016/S0375-9474(96)00313-2
- [57] 1997Ho12 A. Honkanen, P. Dendooven, M. Huhta, G. Lhersonneau, P. O. Lipas, M. Oinonen, J. -M. Parmonen, H. Penttila, K. Perajarvi, T. Siiskonen, J. Aysto, Nucl. Phys. A621, 689 (1997). https://doi.org/10.1016/S0375-9474(97)00180-2
- [58] 1997Ka10 N I Kaloskamis, A Garcia, S E Darden, E Miller, W Haeberli, P A Quin, B P Schwartz, E Yacoub, E G Adelberger, Phys Rev C55, 640 (1997). https://doi.org/10.1103/PhysRevC.55.640
- [59] 1997Tr05 W Trinder, E G Adelberger, B A Brown, Z Janas, H Keller, K Krumbholz, V Kunze, P Magnus, F Meissner, A PiechaCzek, M Pfutzner, E Roeckl, K Rykaczewski, W -D Schmidt-Ott, M Weber, Nucl Phys A620, 191 (1997). https://doi.org/10.1016/S0375-9474(97)00163-2
- [60] 1997Tr11 W. Trinder, R. Anne, M. Lewitowicz, M. G. Saint-Laurent, C. Donzaud, D. Guillemaud-Mueller, S. Leenhardt, A. C. Mueller, F. Pougheon, O. Sorlin, M. Bhattacharya, A. Garcia, N. I. Kaloskamis, E. G. Adelberger, H. E. Swanson, Phys. Lett. 415B, 211 (1997). https://doi.org/10.1016/S0370-2693(97)01243-4
- [61] 1998Bh12 M. Bhattacharya, A. Garcia, N. I. Kaloskamis, E. G. Adelberger, H. E. Swanson, R. Anne, M. LewitowiCz, M. G. Saint-Laurent, W. Trinder, C. Donzaud, D. Guillemaud-Mueller, S. Leenhardt, A. C. Mueller, F. Pougheon, O. Sorlin, Phys. Rev. C58, 3677 (1998). https://doi.org/10.1103/PhysRevC.58.3677
- [62] 1998Jo20 A. Jokinen, J. Aysto, P. Dendooven, S. Hankonen, A. Honkanen, J. Huikari, G. Lhersonneau, P. O. Lipas, H. Penttila, K. Perajarvi, M. Oinonen, A. Nieminen, T. Siiskonen, J. C. Wang, Nuovo Cim. 111A, 1083 (1998). https://doi.org/10.1007/BF03035996

- [63] 1998Li46 W. Liu, M. Hellstrom, R. Collatz, J. Benlliure, L. Chulkov, D. Cortina Gil, F. Farget, H. Grawe, Z. Hu, N. Iwasa, M. Pfutzner, A. Piechaczek, R. Raabe, I. Reusen, E. Roeckl, G. Vancraeynest, A. Wohr, Phys. Rev. C58, 2677 (1998). https://doi.org/10.1103/PhysRevC.58.2677
- [64] 1998Ti06 D. R. Tilley, C. M. Cheves, J. H. Kelley, S. Raman, H. R. Weller, NPA636, 249 (1998). https://doi.org/10.1016/S0375-9474(98)00129-8
- [65] 1999Th09 J. Thaysen, L. Axelsson, J. Aysto, M. J. G. Borge, L. M. Fraile, H. O. U. Fynbo, A. Honkanen, P. Hornshoj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, K. Riisager, T. Siiskonen, M. H. Smedberg, O. Tengblad, F. Wenander, and the ISOLDE Collaboration, Phys. Lett. 467 B, 194 (1999). https://doi.org/10.1016/S0370-2693(99)01172-7
- [66] 2000Ga61 A. Garcia, E. G. Adelberger, C. Ortiz, H. E. Swanson, M. Beck, O. Tengblad, M. J. G. Borge, I. Martel, H. Bichsel, and the ISOLDE Collaboration, Hyperfine Interactions 129, 237 (2000). https://doi.org/10.1023/A:1012605731737
- [67] 2000Ge09 E. Gete, L. Buchmann, R. E. Azuma, D. Anthony, N. Bateman, J. C. Chow, J. M. D'Auria, M. Dombsky, U. Giesen, C. Iliadis, K. P. Jackson, J. D. King, D. F. Measday, A. C. Morton, Phys. Rev. C61, 064310 (2000). https://doi.org/10.1103/PhysRevC.61.064310
- [68] 2001Be51 U. C. Bergmann, M. J. G. Borge, R. Boutami, L. M. Fraile, H. O. U. Fynbo, P. Hornshoj, B. Jonson, K. Markenroth, I. Martel, I. Mukha, T. Nilsson, G. Nyman, A. Oberstedt, Y. Prezado Alonso, K. Riisager, H. Simon, O. Tengblad, F. Wenander, K. Wilhelmsen Rolander, and the ISOLDE Collaboration, Nucl. Phys. A692, 427 (2001). https://doi.org/10.1016/S0375-9474(01)00650-9
- [69] 2001Bu05 L. Buchmann, E. Gete, J. C. Chow, J. D. King, D. F. Measday, Phys. Rev. C63, 034303 (2001). https://doi.org/10.1103/PhysRevC.63.034303
- [70] 2002Ch61 J. C. Chow, J. D. King, N. P. T. Bateman, R. N. Boyd, L. Buchmann, J. M. D'Auria, T. Davinson, M. Dombsky, E. Gete, U. Giesen, C. Iliadis, K. P. Jackson, A. C. Morton, J. Powell, A. Shotter, Phys.Rev. C 66, 064316 (2002). https://doi.org/10.1103/PhysRevC.66.064316
- [71] 2002Fy01 H. O. U. Fynbo, L. Axelsson, J. Aysto, U. C. Bergmann, M. J. G. Borge, L. M. Fraile, A. Honkanen, P. Hornshoj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, K. Riisager, T. Siiskonen, M. H. Smedberg, J. Thaysen, O. Tengblad, F. Wenander, and the ISOLDE Collaboration, Nucl. Phys. A701, 394c (2002). https://doi.org/10.1016/S0375-9474(01)01617-7
- [72] 2002J009 A. Jokinen, A. Nieminen, J. Aysto, R. Borcea, E. Caurier, P. Dendooven, M. Gierlik, M. Gorska, H. Grawe, M. Hellstrom, M. Karny, Z. Janas, R. Kirchner, M. La Commara, G. Martinez-Pinedo, P. Mayet, H. Penttila, A. Plochocki, M. Rejmund, E. Roeckl, M. Sawicka, C. Schlegel, K. Schmidt, R. Schwengner, EPJdirect 4, A3, 1-11 (2002); Erratum Eur. Phys. J. 28, s02, 1 (2006). https://doi.org/10.1007/s1010502a0003
- [73] 2002Lo13 M. J. Lopez Jimenez, B. Blank, M. Chartier, S. Czajkowski, P. Dessagne, G. de France, J. Giovinazzo, D. Karamanis, M. Lewitowicz, V. Maslov, C. Miehe, P. H. Regan, M. Stanoiu, M. Wiescher, Phys. Rev. C66, 025803 (2002). https://doi.org/10.1103/PhysRevC.66.025803
- [74] 2002Mo19 A. C. Morton, J. C. Chow, J. D. King, R. N. Boyd, N. P. T. Bateman, L. Buchmann, J. M. D'Auria, T. Davinson, M. Dombsky, W. Galster, E. Gete, U. Giesen, C. Iliadis, K. P. Jackson, J. Powell, G. Roy, A. Shotter, Nucl. Phys. A706, 15 (2002). https://doi.org/10.1016/S0375-9474(02)00862-X
- [75] 2002Pf03 M. Pfutzner, E. Badura, R. Grzywacz, Z. Janas, M. Momayezi, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, M. Hellstrom, J. KurcewiCz, A. S. Lalleman, C. Mazzocchi, I. Mukha, C. Plettner, E. Roeckl, K. P. Rykaczewski, K. Schmidt, R. S. Simon, M. Stanoiu, J. C. Thomas, Nucl. Instrum. Methods Phys. Res. A493, 155 (2002). https://doi.org/10.1016/S0168-9002(02)01567-X
- [76] 2004Th09 J. C. Thomas, L. Achouri, J. Aysto, R. Beraud, B. Blank, G. Canchel, S. Czajkowski, P. Dendooven, A. Ensallem, J. Giovinazzo, N. Guillet, J. Honkanen, A. Jokinen, A. Laird, M. LewitowiCz, C. Longour, F. de Oliveira Santos, K. Perajarvi, M. Stanoiu, Eur. Phys. J. A 21, 419 (2004). https://doi.org/10.1140/epja/i2003-10218-8
- [77] 2004Ti06 D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. E. Purcell, C. G. Sheu, H. R. Weller, Nucl. Phys. A745, 155 (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.059
- [78] 2005Kn02 H. H. Knudsen, H. O. U. Fynbo, M. J. G. Borge, R. Boutami, P. Dendooven, C. Aa. Diget, T. Eronen, S. Fox, L. M. Fraile, B. Fulton, J. Huikary, H. B. Jeppesen, A. S. Jokinen, B. Jonson, A. Kankainen, I. Moore, A. Nieminen, G. Nyman, H. Penttila, K. Riisager, S. Rinta-Antila, O. Tengblad, Y. Wang, K. Wilhelmsen, J. Aysto, Phys. Rev. C 72, 044312 (2005). https://doi.org/10.1103/PhysRevC.72.044312
- [79] 2006Bu08 T.W. Burrows, Nucl. Data Sheets 107, 1747 (2006). https://doi.org/10.1016/j.nds.2006.05.005

- [80] 2007Bl09 B. Blank, C. Borcea, G. Canchel, C. -E. Demonchy, F. de Oliveira Santos, C. Dossat, J. Giovinazzo, S. Grevy, L. Hay, P. Hellmuth, S. Leblanc, I. Matea, J. -L. Pedroza, L. Perrot, J. Pibernat, A. Rebii, L. Serani, J. C. Thomas, Eur. Phys. J. A 31, 267 (2007). https://doi.org/10.1140/epja/i2006-10236-0
- [81] 2007Do17 C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, B. Blank, C. Borcea, R. Borcea, A. Boston, M. Caamano, G. Canchel, M. Chartier, D. Cortina, S. Czajkowski, G. de France, F. de Oliveira Santos, A. Fleury, G. Georgiev, J. Giovinazzo, S. Grevy, R. Grzywacz, M. Hellstrom, M. Honma, Z. Janas, D. Karamanis, J. KurcewiCz, M. LewitowiCz, M. J. Lopez Jimenez, C. Mazzocchi, I. Matea, V. Maslov, P. Mayet, C. Moore, M. Pfutzner, M. S. Pravikoff, M. Stanoiu, I. Stefan, J. C. Thomas, Nucl. Phys. A792, 18 (2007). https://doi.org/10.1016/j.nuclphysa.2007.05.004
- [82] 2007Fi14 R. B. Firestone, Nucl. Data Sheets 108, 2319 (2007). https://doi.org/10.1016/j.nds.2007.10.001
- [83] 2009Fi05 R. B. Firestone, Nucl. Data Sheets 110, 1691 (2009). https://doi.org/10.1016/j.nds.2009.06.001
- [84] 2010Ad03 N. Adimi, R. Dominguez-Reyes, M. Alcorta, A. Bey, B. Blank, M. J. G. Borge, F. de Oliveira Santos, C. Dossat, H. O. U. Fynbo, J. Giovinazzo, H. H. Knudsen, M. Madurga, I. Matea, A. Perea, K. Summerer, O. Tengblad, J. C. Thomas, Phys. Rev. C 81, 024311 (2010). https://doi.org/10.1103/PhysRevC.81.024311
- [85] 2011Hu08 J. Huo, S. Huo, Y. Dong, Nucl. Data Sheets 112, 1513 (2011). https://doi.org/10.1016/j.nds.2011.04.004
- [86] 2011Ou01 C. Ouellet, B. Singh, Nucl. Data Sheets 112, 2199 (2011). https://doi.org/10.1016/j.nds.2011.08.004
- [87] 2011Ro47 A. M. Rogers, J. Giovinazzo, C. J. Lister, B. Blank, G. Canchel, J. A. Clark, G. de France, S. Grevy, S. Gros, E. A. McCutchan, F. de Oliveira Santos, G. Savard, D. Seweryniak, I. Stefan, J. -C. Thomas, Phys. Rev. C 84, 051306 (2011). https://doi.org/10.1103/PhysRevC.84.051306
- [88] 2012Mc02 E. A. McCutchan, Nucl. Data Sheets 113, 1735 (2012). https://doi.org/10.1016/j.nds.2012.06.002
- [89] 2012Ni01 N. Nica, J. Cameron and B. Singh, Nucl. Data Sheets 113, 1 (2012). https://doi.org/10.1016/j.nds.2012.01.001
- [90] 2013Ba53 M. S. Basunia, Nucl. Data Sheets 114, 1189 (2013). https://doi.org/10.1016/j.nds.2013.10.001
- [91] 2013Su07 J. Su, W. P. Liu, N. C. Shu, S. Q. Yan, Z. H. Li, B. Guo, W. Z. Huang, S. Zeng, E. T. Li, S. J. Jin, X. Liu, Y. B. Wang, G. Lian, Y. J. Li, Y. S. Chen, X. X. Bai, J. S. Wang, Y. Y. Yang, R. F. Chen, S. W. Xu, J. Hu, S. Z. Chen, S. B. Ma, J. L. Han, P. Ma, Q. Hu, J. B. Ma, X. G. Cao, S. L. Jin, Z. Bai, K. Yang, F. D. Shi, W. Zhang, Z. Chen, L. X. Liu, Q. Y. Lin, X. S. Yan, X. H. Zhang, F. Fu, J. J. He, X. Q. Li, C. He, M. S. Smith, Phys. Rev. C 87, 024312 (2013). https://doi.org/10.1103/PhysRevC.87.024312
- [92] 2014De41 M. Del Santo, Z. Meisel, D. Bazin, A. Becerril, B. A. Brown, H. Crawford, R. Cyburt, S. George, G. F. Grinyer, G. Lorusso, P. F. Mantica, F. Montes, J. Pereira, H. Schatz, K. Smith, M. Wiescher, Phys. Lett. B 738, 453 (2014). https://doi.org/10.1016/j.physletb.2014.10.023
- [93] 2014Ka01 A. Kankainen, A. Honkanen, K. Perajarvi, A. Saastamoinen, Hyperfine Interactions 223, 121 (2014). https://doi.org/10.1007/s10751-012-0625-4
- [94] 2014Ko17 G. T. Koldste, B. Blank, M. J. G. Borge, J. A. Briz, M. Carmona-Gallardo, L. M. Fraile, H. O. U. Fynbo, J. Giovinazzo, B. D. Grann, J. G. Johansen, A. Jokinen, B. Jonson, T. Kurturkian-Nieto, J. H. Kusk, T. Nilsson, A. Perea, V. Pesudo, E. Picado, K. Riisager, A. Saastamoinen, O. Tengblad, J. -C. Thomas, J. Van de Walle, Phys. Rev. C 89, 064315 (2014). https://doi.org/10.1103/PhysRevC.89.064315
- [95] 2015Lu12 M. V. Lund, M. J. G.Borge, J. A. Briz, J. Cederkall, H. O. U. Fynbo, J. H. Jensen, B. Jonson, K. L. Laursen, T. Nilsson, A. Perea, V. Pesudo, K. Riisager, O. Tengblad, Eur. Phys. J. A 51, 113 (2015). https://doi.org/10.1140/epja/i2015-15113-1
- [96] 2015Lu13 M. V. Lund, M. J. G. Borge, J. A. Briz, J. Cederkall, H. O. U. Fynbo, J. H. Jensen, B. Jonson, K. L. Laursen, T. Nilsson, A. Perea, V. Pesudo, K. Riisager, O. Tengblad, Phys. Lett. B 750, 356 (2015). https://doi.org/10.1016/j.physletb.2015.09.044
- [97] 2015Sh16 Y. P. Shen, W. P. Liu, J. Su, N. T. Zhang, L. Jing, Z. H. Li, Y. B. Wang, B. Guo, S. Q. Yan, Y. J. Li, S. Zeng, G. Lian, X. C. Du, L. Gan, X. X. Bai, J. S. Wang, Y. H. Zhang, X. H. Zhou, X. D. Tang, J. J. He, Y. Y. Yang, S. L. Jin, P. Ma, J. B. Ma, M. R. Huang, Z. Bai, Y. J. Zhou, W. H. Ma, J. Hu, S. W. Xu, S. B. Ma, S. Z. Chen, L. Y. Zhang, B. Ding, Z. H. Li, Phys. Rev. C 91, 047304 (2015). https://doi.org/10.1103/PhysRevC.91.047304
- [98] 2015Su01 L -J Sun, C -J Lin, X -X Xu, J -S Wang, H -M Jia, F Yang, Y -Y Yang, L Yang, P -F Bao, H -Q Zhang, s -L Jin, Z -D Wu, N -T Zhang, S -Z Chen, J -B Ma, P Ma, N -R Ma, Z -H Liu, Chin Phys Lett 32, 012301 (2015). https://doi.org/10.1088/0256-307X/32/1/012301
- [99] 2015Ya15 D. Yang, J. Huo, Nucl. Data Sheets 128, 185 (2015). https://doi.org/10.1016/j.nds.2015.08.003
- [100] 2016Su10 J. Su, W. P. Liu, N. T. Zhang, Y. P. Shen, Y. H. Lam, N. A. Smirnova, M. MacCormick, J. S. Wang, L. Jing, Z. H. Li, Y. B. Wang, B. Guo, S. Q. Yan, Y. J. Li, S. Zeng, G. Lian, X. C. Du, L. Gan, X. X. Bai, Z. C. Gao, Y. H. Zhang, X. H. Zhou, X. D. Tang, J. J. He, Y. Y. Yang, S. L. Jin, P. Ma, J. B. Ma, M. R. Huang, Z. Bai, Y. J. Zhou, W. H. Ma, J. Hu, S. W. Xu, S. B. Ma, S.

Z. Chen, L. Y. Zhang, B. Ding, Z. H. Li, G. Audi, Phys. Lett. B 756, 323 (2016). https://doi.org/10.1016/j.physletb.2016.03.024

- [101] 2017Ch09 J. Chen, Nucl.Data Sheets 140, 1 (2017). https://doi.org/10.1016/j.nds.2017.02.001
- [102] 2017GoZT T. Goigoux, Thesis, University of Bordeaux (2017) (unpublished).
- [103] **2017Ke05** I H. Kelley, J. E. Purcell, C. G. Sheu, A968. 71 (2017). Nucl. Phys. https://doi.org/10.1016/j.nuclphysa.2017.07.015
- [104] 2017Su26 H. Suzuki, T. Kubo, N. Fukuda, N. Inabe, D. Kameda, H. Takeda, K. Yoshida, K. Kusaka, Y. Yanagisawa, M. Ohtake, H. Sato, Y. Shimizu, H. Baba, M. Kurokawa, K. Tanaka, O. B. Tarasov, D. Bazin, D. J. Morrissey, B. M. Sherrill, K. Ieki, D. Murai, N. Iwasa, A. Chiba, Y. Ohkoda, E. Ideguchi, S. Go, R. Yokoyama, T. Fujii, D. Nishimura, H. Nishibata, S. Momota, M. Lewitowicz, G. De France, I. Celikovic, K. Steiger, Phys. Rev. C 96, 034604 (2017). https://doi.org/10.1103/PhysRevC.96.034604
- [105] 2019Si33 L. Sinclair, R. Wadsworth, J. Dobaczewski, A. Pastore, G. Lorusso, H. Suzuki, D. S. Ahn, H. Baba, F. Browne, P. J. Davies, P. Doornenbal, A. Estrade, Y. Fang, N. Fukuda, J. Henderson, T. Isobe, D. G. Jenkins, S. Kubono, Z. Li, D. Lubos, S. Nishimura, I. Nishizuka, Z. Patel, S. Rice, H. Sakurai, Y. Shimizu, P. Schury, H. Takeda, P. -A. Soderstrom, T. Sumikama, H. Watanabe, V. Werner, J. Wu, Z. Y. Xu, Phys. Rev. C 100, 044311 (2019). https://doi.org/10.1103/PhysRevC.100.044311
- [106] 2020Ci04 A. A. Ciemny, W. Dominik, T. Ginter, R. Grzywacz, Z. Janas, M. Kuich, C. Mazzocchi, M. Pfutzner, M. Pomorski, D. Bazin, T. Baumann, A. Bezbakh, B. P. Crider, M. Cwiok, S. Go, G. Kaminski, K. Kolos, A. Korgul, E. Kwan, S. Liddick, K. Miernik, S. V. Paulauskas, J. Pereira, T. Roginski, K. Rykaczewski, C. Sumithrarachchi, Y. Xiao, H. Schatz, P. Sarriguren, Phys. Rev. C 101, 034305 (2020). https://doi.org/10.1103/PhysRevC.101.034305
- [107] 2020Ho06 D. E. M. Hoff, A. M. Rogers, S. M. Wang, P. C. Bender, K. Brandenburg, K. Childers, J. A. Clark, A. C. Dombos, E. R. Doucet, S. Jin, R. Lewis, S. N. Liddick, C. J. Lister, Z. Meisel, C. Morse, W. Nazarewicz, H. Schatz, K. Schmidt, D. Soltesz, S. K. Subedi, S. Waniganeththi, Nature(London) 580, 52 (2020). https://doi.org/10.1038/s41586-020-2123-1
- [108] 2020Ho17 D. E. M. Hoff, A. M. Rogers, Z. Meisel, P. C. Bender, K. Brandenburg, K. Childers, J. A. Clark, A. C. Dombos, E. R. Doucet, S. Jin, R. Lewis, S. N. Liddick, C. J. Lister, C. Morse, H. Schatz, K. Schmidt, D. Soltesz, S. K. Subedi, S. M. Wang, S. Waniganeththi, Phys. Rev. C 102, 045810 (2020). https://doi.org/10.1103/PhysRevC.102.045810
- [109] 2021Su03 L. J. Sun, M. Friedman, T. Budner, D. Perez-Loureiro, E. Pollacco, C. Wrede, B. A. Brown, M. Cortesi, C. Fry, B. E. Glassman, J. Heideman, M. Janasik, A. Kruskie, A. Magilligan, M. Roosa, J. Stomps, J. Surbrook, P. Tiwari, Phys. Rev. C 103, 014322 (2021). https://doi.org/10.1103/PhysRevC.103.014322
- [110] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf
- [111] 2022Sa20 M. Saxena, W. -J. Ong, Z. Meisel, D. E. M. Hoff, N. Smirnova, P. C. Bender, S. P. Burcher, M. P. Carpenter, J. J. Carroll, A. Chester, C. J. Chiara, R. Conaway, P. A. Copp, B. P. Crider, J. Derkin, A. Estrae, G. Hamad, J. T. Harke, R. Jain, H. Jayatissa, S. N. Liddick, B. Longfellow, M. Mogannam, F. Montes, N. Nepal, T. H. Ogunbeku, A. L. Richard, H. Schatz, D. Soltesz, S. K. Subedi, I. Sultana, A. S. Tamashiro, V. Tripathi, Y. Xiao, R. Zink, Phys. Lett. B 829, 137059 (2022). https://doi.org/10.1016/j.physletb.2022.137059
- [112] 2023Bi03 J. Bishop, G. V. Rogachev, S. Ahn, M. Barbui, S. M. Cha, E. Harris, C. Hunt, C. H. Kim, D. Kim, S. H. Kim, E. Koshchiy, Z. Luo, C. Park, C. E. Parker, E. C. Pollacco, B. T. Roeder, M. Roosa, A. Saastamoinen, D. P. Scriven, Phys. Rev. Lett. 130, 222501 (2023). https://doi.org/10.1103/PhysRevLett.130.222501