

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = -2 nuclei.

Last updated 3/17/23

T-LL	1
ranie	
Table	

Observed and predicted β -delayed particle emission from the even Z, $T_z = -2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	Q_{ε}	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\varepsilon 2p}$	$BR_{\beta 2p}$	$Q_{\varepsilon 3p}$	$Q_{\varepsilon \alpha}$	Experimental
¹² O	0^{+}	< 72 keV	14.675(12)	14.075(12)	·	5.384(12)	·	-1.202(12)	6.666(12)	[2012Ja11]
¹⁶ Ne	0^+	< 80 keV	13.312(21)	13.842(20)		6.546(20)		-1.005(20)	4.224(20)	[2008Mu13]
²⁰ Mg	0^+	90.4(6) ms	10.627(2)	8.437(2)	30.0(12)%	2.027(2)		-3.580(2)	4.378(5)	1995Pi03, 2019Gl02,
C										2016Lu13, 2012Wa15]
²⁴ Si	0^+	141.4(15) ms	10.794(19)	8.930(19)	33.3(16)%	1.349(19)		-5.390(19)	1.469(19)	[2011Ic06 , 2020Lo05,
										2016Su22, 2015Su15,
										2001Ba07, 1998Cz01,
										1997Cz02]
²⁸ S	0^+	125(10) ms	11.22(16)	9.17(16)	20.7(20)%	1.702(160))	-4.604(160)	1.69(16)	[1989Po10]
³² Ar	0^+	98(2) ms	11.134(2)	9.553(2)	35.58(22)%	3.423(2)		-2.172(2)	2.523(2)	[2021Bl02, 2008Bh08,
										1985Bj01, 2002Fy01,
										2020Ar04, 1999Ad10,
										1999Th09, 1993Sc16,
										1985Bj01, 1977Ha29]
³⁶ Ca	0^+	100.8(20) ms	10.970(40)	9.310(40)	54.3(18)%	3.412(40)		-1.731(40)	4.46(4)	[2015Su01 , 2007Do17,
										2001Lo11, 1997Tr05,
										1995Tr02]
⁴⁰ Ti	0^+	52.4(3) ms	11.530(70)	11.000(70)	$99.0^{+10}_{-16}\%$	5.233(70)		0.091(70)	6.002(70)	[2007Do17, 2001Gi01,
										1990De43, 1998Bh12,
										1998Li46, 1998Le45,
										1997Tr11, 1997Li25]
⁴⁴ Cr	0^+	42.8(6) ms	10.390(50)	8.600(50)	14.0(9)%	4.123(50)		-0.149(50)	4.678(50)	[2007Do17, 2020Fu05,
										2014Po05]
⁴⁸ Fe	0^+	$51(3) \text{ ms}^{b}$	11.290(90)	9.270(90)#	14.4(7)%	4.488(90)		-0.867(90)	3.373(90)	[2016Or03, 2014Po05,
										2016Ru04]
										[2007Do17, 1996Fa09]
⁵² Ni	0^+	42.8(3) ms	11.780(80)	10.340(80)	31.1(5)%	5.489(80)		0.905(80)	4.312(80)	[2016Or03 , 2007Do17,
										1994Fa06]
⁵⁶ Zn	0^+	32.9(8) ms	13.24(40)#	12.66(40)#	88.5(26)%	8.04(40)	6.55(40)#	3.69(40)		[2016Or03 , 2015Or02,
										2014Or04, 2014Or03,
										2007Do17]
⁶⁰ Ge	0^{+}	25.0(3) ms	12.06(36)#	12.40(30)#	67(3)%	9.56(30)#	<14%	6.69(30)#	8.68(30)#	[2021Or01 , 2016Ci01]
⁶⁴ Se	0^{+}	>180 ns	12.67(54)#	12.77(50)#		10.55(50)#		7.62(50)#	10.31(54)#	[2005St34]
⁶⁸ Kr	0^+	21.6(33) ms	13.17(56)#	13.67(51)#	$89^{+11}_{-10}\%$	11.82(50)#		8.98(50)#	11.48(54)#	[2017GoZT, 2016Bl05]

Table 2

Particle emission from the even Z, $T_z = -2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	BR_{2p}	Qα	Experimental	
12 -						
¹² 0	-0.359(13)	-1.737(12)	100%	-5.476(22)	[2012Ja11]	
¹⁶ Ne	-0.131(25)	-1.401(20)		-10.451(24)		
²⁰ Mg	2.741(11)	2.418(2)		-8.934(21)		
²⁴ Si	3.292(19)	3.433(19)		-9.157(20)		
²⁸ S	2.56(16)	3.36(16)		-9.10(16)		
³² Ar	2.455(4)	2.719(2)		-8.70(16)		
³⁶ Ca	2.57(4)	2.65(4)		-6.68(4)		
⁴⁰ Ti	2.110(70)	1.510(70)		-4.970(80)		
⁴⁴ Cr	2.790(70)	2.900(50)		-6.850(90)		
⁴⁸ Fe	2.73(10)	3.110(90)		-7.010(110)		
⁵² Ni	2.51(10)	2.660(80)		-6.98(12)		
⁵⁶ Zn	1.04(43)#	0.69(40)#		-5.26(41)#		
⁶⁰ Ge	1.06(35)#	-0.19(30)#		-4.57(50)#		
⁶⁴ Se	0.65(54)#	-0.70(52)#		-1.75(58)#		
⁶⁸ Kr	0.64(40)#	-1.46(54)#		-1.19(71)#		

Table 3	
β-p emission from ${}^{20}Mg^a$, BR _{β p} = 30.3(14)%*.	

			20	101	
$E_p(\text{c.m.})$	$I_p(\text{rel})\%$	$I_p(abs)\%$	$E_{emitter}$ (²⁰ Na)	$E_{daughter}$ (¹⁹ Ne) ^b	coincident γ -rays ^b
0.805(2)6	100(3)	$10.6(3)^{c}$	2,005(2)	0	
$1.067(18)^d$	6.6(0)	0.70(0)	2.993(2)	1 5360(4)	1 208 0 238
1.007(18) 1.210(250)f	0.0(9)	0.70(9)	7 422(250)	4.0320(24)	1.256, 0.256
1.210(250) ^d	0.14(3)	0.0149(33)	7.455(250)	4.0329(24)	4.033, 1.298, 0.238
1.423(10)"	0.4(1)	3.8(10)	3.855(10)	0.2383(1)	0.238
1.022(4)	18.0(28)	1.9(3)	4.087(4)	0.2751(1)	0.275
1.666(10)	48(3)	5.1(3) ^e	3.855(10)	0	
1.853(40)	0.3(2)	0.03(2)	5.533(17)	1.5360(4)	1.298, 0.238
1.905(5)	1.2(4)	0.13(4)	5.603(5)	1.5076(3)	1.232, 0.275
$1.907(3)^c$	4.5(4)	$0.48(4)^{c}$	4.097(3)	0	
2.120(70)	1.03(7)	0.11(1)	5.817(19)	1.5076(3)	1.232, 0.275
$2.335(14)^{e}$	5.2(7)	$0.6(1)^{e}$	4.800(14)	0.2751(1)	0.275
2.344(18)	2.9(8)	0.31(8)	4.772(18)	0.2383(1)	0.238
2.560(14)	3.1(9)	0.33(9)	6.286(14)	1.5360(4)	1.298, 0.238
2.567(4)	21.7(19)	2.3(2)	4.758(4)	0	
2.620(14)	3.8(19)	0.4(2)	6.318(14)	1.5076(3)	1.232, 0.275
2.700(230) ^f	2.0(1)	$0.212(7)^{f}$	6.505(250)	1.6156(5)	1.616, 1.377, 1.341, 0.275, 0.238
2.782(13)	4.4(7)	0.47(7)	6.508(13)	1.5360(4)	1.298, 0.238
2.830(16)	0.95(28)	0.10(3)	6.528(16)	1.5076(3)	1.232, 0.275
3.033(12)	4.4(8)	0.46(8)	5.498(12)	0.2751(1)	0.275
3.096(17)	5.1(8)	0.54(8)	5.532(17)	0.2383(1)	0.238
3.389(19)	3.5(6)	0.37(6)	5.817(19)	0.2383(1)	0.238
3.389(18)	0.76(19)	0.08(2)	5.854(18)	0.2751(1)	0.275
$3.813(14)^{c}$	2.7(8)	$0.28(8)^{c}$	6.281(14)	0.2751(1)	0.275
3.820(12)	4.2(5)	0.44(5)	6.242(12)	0.2383(1)	0.238
4.033(12)	2.9(7)	0.31(7)	6.496(4)	0.2751(1)	0.275
4.051(2)	8.3(9)	0.9(1) ^e	6.242(4)	0	
4.053(12)	2.8(19)	0.3(2)	6.481(12)	0.2383(1)	0.238
$4.305(4)^{c}$	9.7(6)	$1.02(7)^{c}$	6.496(4)	0	
4.347(20)	2.6(8)	0.27(8)	6.775(20)	0.2383(1)	0.238
4.544(15)	3.0(1)	0.319(10)	6.734(15)	0	
4.993(16)	0.75(28)	0.08(3)	7.183(16)	0	

^a Values taken from [2016Lu13], except where noted.
^b Values from adopted levels in ENSDF [1995Ti07].
^c Weighted average of [2016Lu13], [1995Pi03] and [2017Su05].
^d Weighted average of [1995Pi03] and [2017Su05].
^e Weighted average of [2016Lu13] and [2017Su05].
^f [2019Gl02].

Table 4	
β -p emission from ²⁴ Si, $T_{1/2} = 141.4(15)$ ms*, $BR_{\beta n} = 33.3(1)$	6)%**.

$E_{\rm p}(\rm c~m)^a$	L _r (rel)%	$I_{\rm p}({\rm abs})\%^b$	E_{amittar} (²⁴ Al)	$E_{daughtar}(^{23}Mg)^c$	coincident <i>v</i> -rays ^c
2p(eiiii)	<i>1p</i> (101)/0	1p(400)/0	Demuter (111)		
1.125(15)	50(4)	5.7(4)	2.989(15)	0	
1.497(13)	100(7)	11.3(8)	3.361(13)	0	
1.723(13)	38(4)	4.3(4)	5.944(13)	2.3570(7)	0.451, 1.906, 2.358
2.021(10)	9.2(9)	1.0(1)	6.242(10)	2.3570(7)	0.451, 1.906, 2.358
2.515(9)	5.8(7)	0.65(8)	4.379(9)	0	
2.826(7)	12(2)	1.4(2)	4.691(7)	0	
3.104(8)	8.7(9)	0.98(10)	4.968(8)	0	
$3.510(10)^d$	6(1)	$0.68(10)^d$	5.374(10)	0	
3.938(26) ^b	9.4(18)	1.1(2)	5.802(26)	0	
4.082(7)	59(5)	6.6(6)	5.947(7)	0	
4.370(9)	15(2)	1.7(2)	6.234(9)	0	
$4.615(11)^d$	2.3(4)	$0.26(4)^d$	6.479(11)	0	
$4.863(11)^d$	0.6(2)	$0.07(2)^d$	6.727(11)	0	

* Weighted average of 143.4(22)ms [2015Su15] and 140.5(15)ms [2011Ic06].

** [2011Ic06]

^a Weighted average of [2015Su22, 2015Su15], [2009Ic05, 2011Ic06], [1998Ba53] and [1998Cz01], except where noted.

^b Weighted average of [2015Su12] and [2009Ic05], except where noted.

^c Values from adopted levels in ENSDF [2021Ba01].
 ^d Only reported in [1998Ba53]. No I_p or energy error bars on the energy are assigned in the paper.

^e Only reported in [2009Ic05].

Table 5

 β -p emission from ²⁸S*, T_{1/2} = 125(10) ms, $BR_{\beta p} = 20.7(20)\%$.

$E_p(\text{c.m.})$	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (²⁵ Al)**	$E_{daughter}(^{24}Mg)^{@}$	coincident γ-rays [@]	
1.0(0/25)	20(2)	1 4(4)				
1.260(25)	20(3)	1.4(4)				
1.510(25)	30(5)	2.1(6)				
1.695(30)	24(3)	1.7(4)				
1.892(30)	19(3)	1.3(3)				
2.195(30)	15(3)	1.0(3)				
2.630(25)	22(3)	1.6(4)				
2.872(30)***	25(3)	1.75(4)	5.779(30)	0.9574(2)	0.957	
3.095(20)***	100	7.0(15)	5.817(20)	0.7809(2)	0.781	
3.570(30)	13(2)	0.9(2)				
3.835(20)***	28(3)	2.0(4)	5.750(20)	0		

* All values taken from [1989Po10], except where noted. ** Calculated from proton energies and S_p (²⁸P) = 2052.2(12) keV [2021Wa16].

*** [1989Po10] list these three transitions as depopulating a 5.900(21) MeV IAS.

[@] Values from adopted levels in ENSDF [2011Ba29].

Table 6	
β -p emission from ³² Ar, T _{1/2} = 98(2) ms*, $BR_{\beta p}$ = 35.58(22)%**	

$E_p(\text{c.m.})^a$	$I_p(\text{rel})\%$	$I_p(abs)\%^g$	$E_{emitter}$ (³² Cl)	$E_{daughter}(^{31}S)^b$	coincident γ -rays ^b	
				· · ·		
0.6273(46)	1.876(39)	0.385(8)	2.2084(46)	0		
$0.9416(50)^c$	$0.070(40)^c$	0.014(8)	3.7716(50)	1.24887(9)	1.2489(1)	
1.2501(42)	1.557(112)	0.319(23)	4.0801(42)	1.24887(9)	1.2489(1)	
$1.731(12)^d$	$0.143(65)^d$	0.029(13)	4.561(12)	1.24887(9)	1.2489(1)	
2.1906(37) ^e	17.66(30) ^e	3.62(7)	3.7717(37)	0		
2.2152(36) ^f	$1.286(41)^{f}$	0.264(9)	5.0452(36)	1.24887(9)	1.2489(1)	
2.4729(32) ^f	$0.58(11)^{f}$	0.119(22)	5.3029(32)	1.24887(9)	1.2489(1)	
2.5016(37) ^e	35.28(47) ^e	7.24(11)	4.0827(37)	0		
2.5935(30)	3.26(25)	0.668(51)	5.4235(30)	1.24887(9)	1.2489(1)	
$2.7006(86)^d$	$0.247(63)^d$	0.051(13)	5.5306(86)	1.24887(9)	1.2489(1)	
2.8656(54)	0.429(80)	0.088(16)	5.6956(54)	1.24887(9)	1.2489(1)	
3.2178(43) ^e	$0.136(12)^{e}$	0.028(2)	4.7989(43)	0		
$3.218(11)^d$	$0.090(22)^d$	0.018(5)	6.0483(11)	1.24887(9)	1.2489(1)	
3.4621(22)	100	20.51(17)	5.0432(22)	0		
3.6996(44)	0.270(34)	0.055(7)	6.5296(44)	1.24887(9)	1.2489(1)	
$3.722.3(82)^d$	$0.394(58)^d$	0.081(12)	5.3034(82)	0		
3.7675(37)	0.325(23)	0.067(5)	6.5975(37)	1.24887(9)	1.2489(1)	
3.8481(44) ^e	0.413(46) ^e	0.085(9)	5.4292(44)	0		
3.9052(39) ^f	$0.300(98)^{f}$	0.062(20)	6.7352(39)	1.24887(9)	1.2489(1)	
4.1208(46)	0.926(50)	0.190(10)	5.7019(46)	0		
4.4825(41)	0.138(33)	0.028(7)	7.3125(41)	1.24887(9)	1.2489(1)	
4.4838(30)	0.496(18)	0.102(4)	6.0649(30)	0		
4.6728(30)	0.457(21)	0.094(4)	6.2539(30)	0		
4.7754(32)	0.165(30)	0.034(6)	7.6054(32)	1.24887(9)	12489(1)	
5.0246(43)	0.259(24)	0.053(5)	7.8546(43)	1.24887(9)	1.2489(1)	
5.1391(89)	0.063(17)	0.013(4)	6.7202(89)	0		
5.7403(40)	0.547(25)	0.112(5)	7.3214(40)	0		
5.8683(85)	0.022(8)	0.005(2)	7.4494(85)	0		
6.0116(60)	0.423(32)	0.087(7)	7.592(60)	0		
6.2677(88)	0.109(8)	0.022(2)	7.8488(88)	0		
6.572(13)	0.057(7)	0.012(1)	8.153(13)	0		

* [1985Bj01]

** [2008Bh08]

^{*a*} Values are a weighted average of [2021Bl02], [2008Bh08], and [1985Bj01] except as indicated.

^b Values from adopted levels in ENSDF [2013Ou01].

c [2008Bh08]

^d [2021Bl02]

^e Weighted average of [2021Bl02] and [1985Bj01]

f Weighted average of [2021Bl02] and [2008Bh08]

^{*g*} Absolute values were determined by setting the sum of the relative intensities equal to the measured β -p branching ratio. Note that if there are a significant amount of unobserved transitions in the measured β -p branching ratio, these values will be lower.

Table 7

 β -p emission from ³⁶Ca*, T_{1/2} = 100.8(20) ms**, *BR*_{βp} = 54.3(18)%

$E_p(\text{c.m.})^a$	$I_p(\text{rel})\%$	$I_p(abs)\%$	$E_{emitter} ({}^{36}\mathrm{K})^b$	$E_{daughter}(^{35}\mathrm{Ar})^c$	coincident γ -rays ^c
1.444(8)	<10.8	<4.1	4.290(23)	1.184	1.184
1.704(23)	25(3)	9.3(8)	3.358(23)	0	
2.628(8)	100(3)	37(1)	4.290(23)	0	
2.798(23)	9.7(14)	3.5(5)	4.457(23)	0	
3.011(37)	2.8(8)	1.0(3)	4.644(46)	0	
3.591(23)	1.7(6)	0.6(2)	$5.250(23)^d$	0	
4.102(69)	2.5(6)	0.9(2)	$5.761(69)^d$	0	
4.274(46)	4.7(8)	1.7(3)	5.919(46)	0	
5.136(69)	0.8(3)	0.3(1)	6.791(69)	0	

* All values from [2001Lo11], except where noted.

** Weighted average of 100.0(24) [2015Su01], 100.1(23) [2007Do11], and 102(2) [1997Tr05].

^{*a*} Calculated using $E_{emitter}$ energies from [2001Lo11] and $S_p(^{36}K) = 1.658.9(8)$ [2021Wa16].

^b Values taken from a weighted average of [2001Lo11] and [1997Tr05] except where noted.

^c Values from adopted levels in ENSDF [2011Ch48].

^d [2011Lo11]

Table 8	
β -p emission from ⁴⁰ Ti*, T _{1/2} = 52	2.4(3) ms**, $BR_{\beta p} = 95.8(13)\%^{**}$

$E_p(\text{c.m.})$	$I_p(\text{rel})\%$	$I_p(abs)\%$	$E_{emitter}$ (⁴⁰ Sc) ^a	$E_{daughter}(^{39}Ca)^c$	coincident γ -rays ^c	
0.248(80) ^b	4.4(14)	$1.3(4)^{b}$	3.246(80)	2.4685(9)	2.469	
$0.410(60)^{b}$	2.4(10)	$0.7(3)^{b}$	3.408(60)	2.4685(9)	2.469	
0.766(36)	1.6(6)	0.5(2)	3.764(36)	2.4685(9)	2.469	
$0.975(86)^{b}$	2.7(11)	$0.8(3)^{b}$	4.531(86)	3.026(3)	3.026	
1.139(20)	1.8(6)	0.53(18)	4.138(20)	2.4685(9)	2.469	
1.359(7)	12(2)	3.6(6)	4.357(8)	2.4685(9)	2.469	
1.649(17)	1.3(6)	0.38(19)	4.647(17)	2.4685(9)	2.469	
1.745(6)	80(2)	23.8(6)	2.274(7)	0		
1.896(14)	4.8(13)	1.4(4)	4.895(14)	2.4685(9)	2.469	
2.007(21)	2.9(14)	0.86(34)	5.005(21)	2.4685(9)	2.469	
2.079(28)	1.5(6)	0.44(17)	5.077(28)	2.4685(9)	2.469	
2.215(6)	100(2)	29.8(7)	2.754(7)	0		
2.401(10)	6.5(13)	1.95(41)	2.931(10)	0		
2.607(16)	3.1(7)	0.9(2)	3.137(16)	0		
$2.676(60)^{b}$	3.5(14)	$1.1(4)^{b}$	3.205(60)	0		
2.798(16)	2.0(6)	0.58(17)	3.328(16)	0		
3.033(47)	0.4(4)	0.1(1)	3511(40)	0		
3.117(8)	5.8(7)	1.7(2)	3.647(9)	0		
3.251(8)	7.0(10)	2.1(3)	3.781(9)	0		
$3.325(41)^d$	0.4(4)	0.1(1)	3.855(41)	0		
3.531(21)	1.4(5)	0.43(14)	4.061(21)	0		
3.576(25)	1.1(5)	0.33(16)	4.106(25)	0		
3.732(8)	6.9(7)	2.1(2)	4.262(9)	0		
3.830(7)	73(3)	22(1)	4.359(8)	0		
3.987(11)	6.2(9)	1.9(3)	4.516(11)	0		
4.120(10)	5.3(11)	1.6(3)	4.650(10)	0		
4.291(18)	2.4(7)	0.7(2)	4.821(18)	0		
4.483(23)	1.8(9)	0.53(26)	5.013(23)	0		
4.547(31)	1.4(9)	0.42(27)	5.076(31)	0		
$4.689(28)^d$	0.4(4)	0.1(1)	5.219(28)	0		
$4.823(60)^{b}$	1.8(7)	$0.55(21)^b$	5.352(60)	0		
$5.035(40)^{b}$	0.7(3)	$0.20(7)^{b}$	5.564(40)	0		
5.163(22)	0.8(3)	0.24(9)	5.693(22)	0		
5.473(19)	0.7(2)	0.21(7)	6.002(19)	0		
$5.588(60)^{b}$	0.6(4)	$0.17(10)^{b}$	6.117(60)	0		
$5.887(60)^{b}$	0.34(20)	$0.10(6)^{b}$	6.417(60)	0		

* Values are from [1998Bh12] except where indicated. Values from [1998Bh12] were preferentially used because of the better energy resolution than [1998Li46].

** [2007Do17]

^{*a*} Calculated from proton energies and S_p (⁴⁰Sc) = 529.6(29) keV [2021Wa16].

^b [1998Li46]

^c Values from adopted levels in ENSDF [2006Si02].

^{*d*} Transition is questionable, as I_p is consistent with zero.

Table 9

 β -p emission from ⁴⁴Cr^{*a*}, T_{1/2} = 42.8(6) ms, BR_{βp} = 14.0(9)%

E_p	$I_p(\text{rel})\%$	$I_p(abs)\%$	$E_{emitter} (^{44}\mathrm{V})^e$	$E_{daughter}(^{43}\mathrm{Ti})$	
$0.759(26)^b$	31(12)	$0.6(2)^{b}$			
0.908(11)	100(15)	$2.0(3)^{c}$	$2.689(14)^d$	0	
1.384(12)	63(19)	$1.3(3)^{c}$			
1.741(15)	28(18)	$0.6(3)^{c}$			

^a Values from [2007Do17] except where indicated. Many of the delayed protons have not been measured resulting in a total intensity for individual protons to be lower than the total β^+ -p intensity. Other experimental β^+ -p reference: [1992Bo37]. ^b [2014Po05]

^c Weighted average of [2007Do17] and [2014Po05]

^d Assigned as the IAS [2007Do17]

^{*e*} Calculated from proton energy and S_p (⁴⁴V) = 1781(9) keV [2021Wa16].

Table 10				
β -p emission	from ⁴⁸ Fe*. 7	$\Gamma_{1/2} = 51(3)$	ms**.BRen	$= 14.4(7)\%^{**}.$

$E_p(c.m.)$	$I_p(\text{rel})\%$	$I_p(abs)\%$	E _{emitter} (⁴⁸ Mn)***	$E_{daughter}(^{47}\mathrm{Cr})$	coincident γ-rays
1.018(10)	100	4.8(3)	3.041(12)	0	
1.186(10)	21(6)	1.0(3)	3.209(12)	0	
1.477(10)	38(6)	1.8(3)	3.500(12)	0	
1.601(10)	19(6)	0.9(3)	3.624(12)@	0@	
1.695(10)	27(4)	1.3(2)	3.718(12)	0	
2.281(10)	25(6)	1.2(3)	4.304(12)@	0@	
2.381(10)	19(8)	0.9(4)	4.404(12)	0	
2.499(10)	27(10)	1.3(5)	4.522(12)	0	
2.737(10)	17(3)	0.8(1)	4.760(12)	0	

* All values taken from [2016Or03], except as noted. ** From [2016Or03]. Others: 15.9(6)% [2007Do17], > 2.5% [1996Fa09]. *** Calculated from proton energy and S_p (⁴⁸Mn) = 2023(6) keV [2021Wa16]. [@] Possibly decaying to 98 keV state in ⁴⁷Cr, with resulting E_{level} (emitter) 98 keV higher [2016Or03].

Table 11

 β -p emission from ⁵²Ni*, $BR_{\beta p} = 31.1(5)\%$.

$E_p(c.m.)$	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (⁵² Co)**	$E_{daughter}(^{51}\mathrm{Fe})$	coincident γ -rays	
1.048(10)	53.3(7)	7.30(9)	2.492(11)	0		
1.352(10)	100	13.7(2)	2.796(11)	0		
1.575(10)	8.5(3)	1.17(4)	3.019(11)	0		
1.681(10)	11.0(3)	1.50(4)	3.125(11)	0		
1.836(10)	3.1(2)	0.42(3)	3.280(11)	0		
1.949(10)	9.3(2)	1.28(3)	3.393(11)	0		
2.061(10)	8.3(2)	1.14(3)	3.505(11)	0		
2.802(10)	7.4(2)	1.01(3)	4.246(11)	0		
2.888(10)	1.3(2)	0.18(2)	4.332(11)	0		
3.451(10)	0.80(7)	0.11(1)	4.895(11)	0		

* All values taken from [2016Or03], except as noted. ** Calculated from proton energy and S_p (⁵²Co) = 1444(5) keV [2021Wa16].

Table 12

 β -p emission from ⁵⁶Zn*, $BR_{\beta p} = 88.5(26)\%$.

$E_p(\text{c.m.})$	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (⁵⁶ Cu)**	$E_{daughter}(^{55}Ni)$	coincident γ -rays	
0.821(10)	12(2)	2.0(4)	1 414(12)	0		
1.131(10)	100	23.8(11)	1.714(12)	0		
1.977(10)	19(4)	4.6(8)	2.560(12)	0		
2.101(10)	72(5)	17.1(9)	2.684(12)	0		
2.863(10)	89(6)	21.2(10)	3.446(12)	0		
2.948(10)	79(6)	18.8(10)	3.531(12)	0		

* All values taken from [2016Or03], except where noted. ** Calculated from proton energy and S_p (⁵⁶Cu) = 583(6) keV [2021Wa16].

$E_{\rm p}({\rm c.m.})$	$I_{\rm p}(\rm rel)$	$I_{\rm p}({\rm abs})$	Equittar (⁶⁰ Ga)**	$E_{daughtar}(^{59}$ Zn)	coincident <i>Y</i> -rays	
p(++++)	-p()	-p()		-uuugmer ()		
0.820(13)	8.5(12)	2.8(4)	0.910(20)	0		
1.076(23)	12.1(15)	4.0(5)	1.166(27)	0		
1.359(19)	15.5(12)	5.1(4)	1.449(24)	0		
1.684 (17)	12.7(9)	4.2(3)	1.774(23)	0		
2.067(15)	30.9(15)	10.2(5)	2.620(21)	0.4633(1)	0.4633(1)	
2.522 (15)	100(3)	33(1)	2.612(21)	0		
2.981(23)	9.7(9)	3.2(3)	3.071(27)	0		
3.490(22)	5.8(6)	1.9(2)	3.580(27)	0		

Table 13 β -p emission from ⁶⁰Ge*, $BR_{\beta p} = 67(3)\%^*$.

* All values taken from [2021Or01], except where noted.

** Calculated from proton energy and S_p (⁶⁰Ga) = 90(15) keV [20210r01].

References used in the Tables

- [1] 1977Ha29 E. Hagberg, P. G. Hansen, J. C. Hardy, A. Huck, B. Jonson, S. Mattsson, H. L. Ravn, P. Tidemand-Petersson, G. Walter, Phys. Rev. Lett. 39, 792 (1977). https://doi.org/10.1103/PhysRevLett.39.792
- [2] 1985Bj01 T. Bjornstad, M. J. G. Borge, P. Dessagne, R. -D. Von Dincklage, G. T. Ewan, P. G. Hansen, A. Huck, B. Jonson, G. Klotz, A. Knipper, P. O. Larsson, G. Nyman, H. L. Ravn, C. Richard-Serre, K. Riisager, D. Schardt, G. Walter, and the ISOLDE Collaboration, Nucl. Phys. A443, 283 (1985). https://doi.org/10.1016/0375-9474(85)90264-7
- [3] 1989Po10 F. Pougheon, V. Borrel, J. C. Jacmart, R. Anne, C. Detraz, D. Guillemaud-Mueller, A. C. Mueller, D. Bazin, R. Del Moral, J. P. Dufour, F. Hubert, M. S. Pravikoff, G. Audi, E. Roeckl, B. A. Brown, Nucl. Phys. A500, 287 (1989). https://doi.org/10.1016/0375-9474(89)90424-7
- [4] 1990De43 C. Detraz, R. Anne, P. Bricault, D. Guillemaud-Mueller, M. LewitowiCz, A. C. Mueller, Y. H. Zhang, V. Borrel, J. C. Jacmart, F. Pougheon, A. Richard, D. Bazin, J. P. Dufour, A. Fleury, F. Hubert, M. S. Pravikoff, Nucl. Phys. A519, 529 (1990). https://doi.org/10.1016/0375-9474(90)90445-R
- [5] 1993Sc16 D. Schardt, K. Riisager, Z. Phys. A345, 265 (1993). https://doi.org/10.1007/BF01280833
- [6] 1994Fa06 L. Faux, M. S. Pravikoff, S. Andriamonje, B. Blank, R. Del Moral, J. -P. Dufour, A. Fleury, C. Marchand, K. -H. Schmidt, K. Summerer, T. Brohm, H. -G. Clerc, A. Grewe, E. Hanelt, B. Voss, C. Ziegler, Phys. Rev. C49, 2440 (1994). https://doi.org/10.1103/PhysRevC.49.2440
- [7] 1995Pi03 A. PiechaCzek, M. F. Mohar, R. Anne, V. Borrel, B. A. Brown, J. M. Corre, D. Guillemaud-Mueller, R. Hue, H. Keller, S. Kubono, V. Kunze, M. LewitowiCz, P. Magnus, A. C. Mueller, T. Nakamura, M. Pfutzner, E. Roeckl, K. Rykaczewski, M. G. Saint-Laurent, W. -D. Schmidt-Ott, O. Sorlin, Nucl. Phys. A584, 509 (1995). https://doi.org/10.1016/0375-9474(94)00791-K
- [8] 1995Tr02 W. Trinder, E. G. Adelberger, B. A. Brown, Z. Janas, H. Keller, K. Krumbholz, V. Kunze, P. Magnus, F. Meissner, A. Piechaczek, M. Pfutzner, E. Roeckl, K. Rykaczewski, W. -D. Schmidt-Ott, M. Weber, Phys. Lett. 348B, 331 (1995). https://doi.org/10.1016/0370-2693(95)00130-D
- [9] 1996Fa09 L. Faux, S. Andriamonje, B. Blank, S. Czajkowski, R. Del Moral, J. P. Dufour, A. Fleury, T. Josso, M. S. Pravikoff, A. PiechaCzek, E. Roeckl, K. -H. Schmidt, K. Summerer, W. Trinder, M. Weber, T. Brohm, A. Grewe, E. Hanelt, A. Heinz, A. Junghans, C. Rohl, S. Steinhauser, B. Voss, Z. Janas, M. Pfutzner, Nucl. Phys. A602, 167 (1996). https://doi.org/10.1016/0375-9474(96)00109-1
- [10] 1997Cz02 S. Czajkowski, S. Andriamonje, B. Blank, F. Boue, R. Del Moral, J. P. Dufour, A. Fleury, E. Hanelt, N. A. Orr, P. Pourre, M. S. Pravikoff, K. -H. Schmidt, Nucl. Phys. A616278c (1997). https://doi.org/10.1016/S0375-9474(97)00098-5
- [11] 1997Li25 W. Liu, M. Hellstrom, R. Collatz, J. Benlliure, L. Chulkov, D. Cortina Gil, F. Farget, H. Grawe, Z. Hu, N. Iwasa, M. Pfutzner, A. Piechaczek, R. Raabe, I. Reusen, E. Roeckl, G. Vancraeynest, A. Wohr, Z.Phys. A359, 1 (1997). https://doi.org/10.1007/s002180050355
- [12] 1997Tr05 W. Trinder, E. G. Adelberger, B. A. Brown, Z. Janas, H. Keller, K. Krumbholz, V. Kunze, P. Magnus, F. Meissner, A. PiechaCzek, M. Pfutzner, E. Roeckl, K. Rykaczewski, W. -D. Schmidt-Ott, M. Weber, Nucl. Phys. A620, 191 (1997). https://doi.org/10.1016/S0375-9474(97)00163-2
- [13] 1997Tr11 W. Trinder, R. Anne, M. Lewitowicz, M. G. Saint-Laurent, C. Donzaud, D. Guillemaud-Mueller, S. Leenhardt, A. C. Mueller, F. Pougheon, O. Sorlin, M. Bhattacharya, A. Garcia, N. I. Kaloskamis, E. G. Adelberger, H. E. Swanson, Phys. Lett. 415B, 211 (1997). https://doi.org/10.1016/S0370-2693(97)01243-4

- [14] 1998Bh12 M. Bhattacharya, A. Garcia, N. I. Kaloskamis, E. G. Adelberger, H. E. Swanson, R. Anne, M. LewitowiCz, M. G. Saint-Laurent, W. Trinder, C. Donzaud, D. Guillemaud-Mueller, S. Leenhardt, A. C. Mueller, F. Pougheon, O. Sorlin, Phys. Rev. C58, 3677 (1998). https://doi.org/10.1103/PhysRevC.58.3677
- [15] 1998Cz01 S. Czajkowski, S. Andriamonje, B. Blank, F. Boue, R. Del Moral, J. P. Dufour, A. Fleury, P. Pourre, M. S. Pravikoff, E. Hanelt, K. -H. Schmidt, N. A. Orr, Nucl. Phys. A628, 537 (1998). https://doi.org/10.1016/S0375-9474(97)00655-6
- [16] 1998Le45 M. Lewitowicz, W. Trinder, M. Bhattacharya, E. G. Adelberger, J. C. Angelique, R. Anne, J. Aysto, C. Borcea, J. M. Daugas, C. Donzaud, A. Garcia, S. Grevy, R. Grzywacz, D. Guillemaud-Mueller, A. Jokinen, N. I. Kaloskamis, S. Leenhardt, M. J. Lopez, A. C. Mueller, F. de Oliveira, A. Ostrowski, F. Pougheon, M. G. Saint-Laurent, T. Siiskonen, O. Sorlin, H. E. Swanson, Nuovo Cim. 111A, 835 (1998)
- [17] 1998Li46 W. Liu, M. Hellstrom, R. Collatz, J. Benlliure, L. Chulkov, D. Cortina Gil, F. Farget, H. Grawe, Z. Hu, N. Iwasa, M. Pfutzner, A. Piechaczek, R. Raabe, I. Reusen, E. Roeckl, G. Vancraeynest, A. Wohr, Phys. Rev. C58, 2677 (1998). https://doi.org/10.1103/PhysRevC.58.2677
- [18] 1999Ad10 E. G. Adelberger, C. Ortiz, A. Garcia, H. E. Swanson, M. Beck, O. Tengblad, M. J. G. Borge, I. Martel, H. Bichsel, and the ISOLDE Collaboration, Phys. Rev. Lett. 83, 1299 (1999); Erratum Phys. Rev. Lett. 83, 3101 (1999). https://doi.org/10.1103/PhysRevLett.83.1299
- [19] 1999Th09 J. Thaysen, L. Axelsson, J. Aysto, M. J. G. Borge, L. M. Fraile, H. O. U. Fynbo, A. Honkanen, P. Hornshoj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, K. Riisager, T. Siiskonen, M. H. Smedberg, O. Tengblad, F. Wenander, and the ISOLDE Collaboration, Phys. Lett. 467 B, 194 (1999). https://doi.org/10.1016/S0370-2693(99)01172-7
- [20] 2001Ba07 V. Banerjee, T. Kubo, A. Chakrabarti, H. Sakurai, A. Bandyopadhyay, K. Morita, S. M. Lukyanov, K. Yoneda, H. Ogawa, D. Beaumel, Phys. Rev. C63, 024307 (2001). https://doi.org/10.1103/PhysRevC.63.024307
- [21] 2001Gi01 J. Giovinazzo, B. Blank, C. Borcea, M. Chartier, S. Czajkowski, G. de France, R. Grzywacz, Z. Janas, M. LewitowiCz, F. de Oliveira Santos, M. Pfutzner, M. S. Pravikoff, J. C. Thomas, Eur. Phys. J. A 10, 73 (2001). https://doi.org/10.1007/s100500170146
- [22] 2001Lo11 M. J. Lopez-Jimenez, M. G. Saint-Laurent, J. C. Angelique, R. Anne, J. Aysto, C. Borcea, J. M. Daugas, D. Guillemaud-Mueller, S. Grevy, R. Grzywacz, A. Jokinen, M. LewitowiCz, F. Nowacki, F. de Oliveira Santos, A. N. Ostrowski, T. Siiskonen, W. Trinder, Eur. Phys. J. A 10, 119 (2001). https://doi.org/10.1007/s100500170121
- [23] 2002Fy01 H. O. U. Fynbo, L. Axelsson, J. Aysto, U. C. Bergmann, M. J. G. Borge, L. M. Fraile, A. Honkanen, P. Hornshoj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, K. Riisager, T. Siiskonen, M. H. Smedberg, J. Thaysen, O. Tengblad, F. Wenander, and the ISOLDE Collaboration, Nucl. Phys. A701, 394c (2002). https://doi.org/10.1016/S0375-9474(01)01617-7
- [24] 2005St34 A Stolz, T Baumann, N H Frank, T N Ginter, G W Hitt, E Kwan, M Mocko, WPeters, ASchiller, C S Sumithrarachchi, M Thoennessen, Eur Phys J A25, Supplement 1, 335 (2005). https://doi.org/10.1140/epjad/i2005-06-192-y
- [25] 2007Do17 C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, B. Blank, C. Borcea, R. Borcea, A. Boston, M. Caamano, G. Canchel, M. Chartier, D. Cortina, S. Czajkowski, G. de France, F. de Oliveira Santos, A. Fleury, G. Georgiev, J. Giovinazzo, S. Grevy, R. Grzywacz, M. Hellstrom, M. Honma, Z. Janas, D. Karamanis, J. KurcewiCz, M. LewitowiCz, M. J. Lopez Jimenez, C. Mazzocchi, I. Matea, V. Maslov, P. Mayet, C. Moore, M. Pfutzner, M. S. Pravikoff, M. Stanoiu, I. Stefan, J. C. Thomas, Nucl. Phys. A792, 18 (2007). 10.1016/j.nuclphysa.2007.05.004
- [26] 2008Bh08 M. Bhattacharya, D. Melconian, A. Komives, S. Triambak, A. Garcia, E. G. Adelberger, B. A. Brown, M. W. Cooper, T. Glasmacher, V. Guimaraes, P. F. Mantica, A. M. Oros-Peusquens, J. I. Prisciandaro, M. Steiner, H. E. Swanson, S. L. Tabor, M. Wiedeking, Phys. Rev. C77, 065503. https://doi.org/10.1103/PhysRevC.77.065503
- [27] 2008Mu13 I. Mukha, L. Grigorenko, K. Summerer, L. Acosta, M. A. G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J. M. Espino, A. Fomichev, J. E. Garcia-Ramos, H. Geissel, J. Gomez-Camacho, J. Hofmann, O. Kiselev, A. Korsheninnikov, N. Kurz, Yu. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfutzner, C. Rodriguez-Tajes, E. Roeckl, M. Stanoiu, H. Weick, P. J. Woods, Phys. Rev. C 77, 061303 (2008). https://doi.org/10.1103/PhysRevC.77.061303
- [28] 2011Ic06 Y. Ichikawa, T. K. Onishi, D. Suzuki, H. Iwasaki, T. Kubo, V. Naik, A. Chakrabarti, N. Aoi, B. A. Brown, N. Fukuda, S. Kubono, T. Motobayashi, T. Nakabayashi, T. Nakamura, T. Nakao, T. Okumura, H. J. Ong, H. Suzuki, M. K. Suzuki, T. Teranishi, K. N. Yamada, H. Yamaguchi, H. Sakurai, J. Phys. Conf. Ser. 312, 092031 (2011). https://doi.org/10.1088/1742-6596/312/9/092031
- [29] 2012Ja11 M. F. Jager, R. J. Charity, J. M. Elson, J. Manfredi, H. Mohammad, L. G. Sobotka, M. McCleskey, R. G. Pizzone, B. T. Roeder, A. Spiridon, E. Simmons, L. Trache, M. Kurokawa, Phys. Rev. C 86, 011304 (2012); Erratum Phys.Rev. C 86, 059902 (2012). https://doi.org/10.1103/PhysRevC.86.011304

- [30] 2012Wa15 J. P. Wallace, P. J. Woods, G. Lotay, A. Alharbi, A. Banu, H. M. David, T. Davinson, M. McCleskey, B. T. Roeder, E. Simmons, A. Spiridon, L. Trache, R. E. Tribble, Phys. Lett. B 712, 59 (2012). https://doi.org/10.1016/j.physletb.2012.04.046
- [31] 2014Or03 S. E. A. Orrigo, B. Rubio, J. Agramunt, A. Algora, F. Molina, Y. Fujita, B. Blank, P. Ascher, M. Gerbaux, J. Giovinazzo, S. Grevy, T. Kurtukian-Nieto, W. Gelletly, B. Bilgier, R. B. Cakirli, E. Ganioglu, H. C. Kozer, L. Kucuk, G. Susoy, L. Caceres, O. Kamalou, C. Stodel, J. C. Thomas, H. Fujita, T. Suzuki, A. Tamii, L. Popescu, A. M. Rogers, Acta Phys. Pol. B45, 355 (2014).
- [32] 2014Or04 S. E. A. Orrigo, B. Rubio, Y. Fujita, B. Blank, W. Gelletly, J. Agramunt, A. Algora, P. Ascher, B. Bilgier, L. Caceres, R. B. Cakirli, H. Fujita, E. Ganioglu, M. Gerbaux, J. Giovinazzo, S. Grevy, O. Kamalou, H. C. Kozer, L. Kucuk, T. Kurtukian-Nieto, F. Molina, L. Popescu, A. M. Rogers, G. Susoy, C. Stodel, T. Suzuki, A. Tamii, J. C. Thomas, Phys. Rev. Lett. 112, 222501 (2014). https://doi.org/10.1103/PhysRevLett.112.222501
- [33] 2014Po05 M. Pomorski, M. Pfutzner, W. Dominik, R. Grzywacz, A. Stolz, T. Baumann, J. S. Berryman, H. Czyrkowski, R. Dabrowski, A. Fijalkowska, T. Ginter, J. Johnson, G. Kaminski, N. Larson, S. N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K. P. Rykaczewski, S. Suchyta, Phys. Rev. C 90, 014311 (2014). https://doi.org/10.1103/PhysRevC.90.014311
- [34] 2015Or02 S. E. A. Orrigo, B. Rubio, Y. Fujita, B. Blank, W. Gelletly, J. Agramunt, A. Algora, P. Ascher, B. Bilgier, L. Caceres, R. B. Cakirli, H. Fujita, E. Ganioglu, M. Gerbaux, J. Giovinazzo, S. Grevy, O. Kamalou, H. C. Kozer, L. Kucuk, T. Kurtukian-Nieto, F. Molina, L. Popescu, A. M. Rogers, G. Susoy, C. Stodel, T. Suzuki, A. Tamii, J. C. Thomas, Acta Phys. Pol. B46, 709 (2015). https://doi.org/10.5506/APhysPolB.46.709
- [35] 2015Su01 L. -J. Sun, C. -J. Lin, X. -X. Xu, J. -S. Wang, H. -M. Jia, F. Yang, Y. -Y. Yang, L. Yang, P. -F. Bao, H. -Q. Zhang, s. -L. Jin, Z. -D. Wu, N. -T. Zhang, S. -Z. Chen, J. -B. Ma, P. Ma, N. -R. Ma, Z. -H. Liu, Chin. Phys. Lett. 32, 012301 (2015). https://doi.org/10.1088/0256-307X/32/1/012301
- [36] 2015Su15 L. J. Sun, X. X. Xu, C. J. Lin, J. S. Wang, D. Q. Fang, Z. H. Li, Y. T. Wang, J. Li, L. Yang, N. R. Ma, K. Wang, H. L. Zang, H. W. Wang, C. Li, C. Z. Shi, M. W. Nie, X. F. Li, H. Li, J. B. Ma, P. Ma, S. L. Jin, M. R. Huang, Z. Bai, J. G. Wang, F. Yang, H. M. Jia, H. Q. Zhang, Z. H. Liu, P. F. Bao, D. X. Wang, Y. Y. Yang, Y. J. Zhou, W. H. Ma, J. Chenb, Nucl Instrum Methods Phys Res A 804, 1 (2015). https://doi.org/10.1016/j.nima.2015.09.039
- [37] 2015Ya15 D. Yang, J. Huo, Nucl. Data Sheets 128, 185 (2015). https://doi.org/10.1016/j.nds.2015.08.003
- [38] 2016Bl05 B. Blank, T. Goigoux, P. Ascher, M. Gerbaux, J. Giovinazzo, S. Grevy, T. Kurtukian Nieto, C. Magron, J. Agramunt, A. Algora, V. Guadilla, A. Montaner-Piza, A. I. Morales, S. E. A. Orrigo, B. Rubio, D. S. Ahn, P. Doornenbal, N. Fukuda, N. Inabe, G. Kiss, T. Kubo, S. Kubono, S. Nishimura, V. H. Phong, H. Sakurai, Y. Shimizu, P. -A. Soderstrom, T. Sumikama, H. Suzuki, H. Takeda, J. Wu, Y. Fujita, M. Tanaka, W. Gelletly, P. Aguilera, F. Molina, F. Diel, D. Lubos, G. de Angelis, D. Napoli, C. Borcea, A. Boso, R. B. Cakirli, E. Ganioglu, J. Chiba, D. Nishimura, H. Oikawa, Y. Takei, S. Yagi, K. Wimmer, G. de France, S. Go, Phys. Rev. C 93, 061301 (2016). https://doi.org/10.1103/PhysRevC.93.061301
- [39] 2016CI01 A. A. Ciemny, W. Dominik, T. Ginter, R. Grzywacz, Z. Janas, M. Kuich, C. Mazzocchi, K. Miernik, M. Pfutzner, M. Pomorski, D. Bazin, T. Baumann, A. Bezbakh, B. P. Crider, M. Cwiok, S. Go, G. Kaminski, K. Kolos, A. Korgul, E. Kwan, S. N. Liddick, S. V. Paulauskas, J. Pereira, K. P. Rykaczewski, C. Sumithrarachchi, Y.Xiao, Eur. Phys. J. A 52, 89 (2016). https://doi.org/10.1140/epja/i2016-16089-x
- [40] 2016Lu13 M. V. Lund, A. Andreyev, M. J. G. Borge, J. Cederkäll, H. De Witte, L. M. Fraile, H. O. U. Fynbo, P. T. Greenlees, L. J. Harkness-Brennan, A. M. Howard, M. Huyse, B. Jonson, D. S. Judson, O. S. Kirsebom, J. Konki, J. Kurcewicz, I. Lazarus, R. Lica, S. Lindberg, M. Madurga, N. Marginean, R. Marginean, I. Marroquin, C. Mihai, M. Munch, E. Nacher, A. Negret, T. Nilsson, R. D. Page, S. Pascu, A. Perea, V. Pucknell, P. Rahkila, E. Rapisarda, K. Riisager, F. Rotaru, C. Sotty, M. Stanoiu, O. Tengblad, A. Turturica, P. Van Duppen, V. Vedia, R. Wadsworth, N. Warr, Eur.Phys.J. A 52, 304 (2016). https://doi.org/10.1140/epja/i2016-16304-x
- [41] 2016Or03 S. E. A. Orrigo, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, A. Algora, P. Ascher, B. Bilgier, B. Blank, L. Caceres, R. B. Cakirli, E. Ganioglu, M. Gerbaux, J. Giovinazzo, S. Grevy, O. Kamalou, H. C. Kozer, L. Kucuk, T. Kurtukian-Nieto, F. Molina, L. Popescu, A. M. Rogers, G. Susoy, C. Stodel, T. Suzuki, A. Tamii, J. C. Thomas, Phys. Rev. C 93, 044336 (2016). https://doi.org/10.1103/PhysRevC.93.044336
- [42] 2016Ru04 B. Rubio, S. E. A. Orrigo, A. Algora, B. Blank, Y. Fujita, H. Fujita, E. Ganioglu, W. Gelletly, A. Montaner-Piza, A. Poves, Nucl. Phys. Rev. 33, 225 (2016). https://doi.org/10.11804/NuclPhysRev.33.02.225
- [43] 2016Su22 L. Sun, X. Xu, C. Lin, J. Wang, D. Fang, Z. Li, Y. Wang, J. Li, L. Yang, N. Ma, K. Wang, H. Zhang, H. Wang, C. Li, C. Shi, M. Nie, X. Li, H. Li, J. Ma, P. Ma, S. Jin, M. Huang, Z. Bai, J. Wang, F. Yang, H. Jia, H. Zhang, Z. Liu, P. Bao, S. Wang, Z. Wu, Y. Yang, Z. Chen, J. Su, Y. Shen, Y. Zhou, W. Ma, J. Chen, Yuan. Wul. Ping. 33, 230 (2016); Nucl. Phys. Rev. 33, 230 (2016). https://doi.org/10.11804/NuclPhysRev.33.02.230

- [44] 2017GoZT T. Goigoux, Thesis, University of Bordeaux (2017) (unpublished).
- [45] 2019Gl02 B. E. Glassman, D. Perez-Loureiro, C. Wrede, J. Allen, D. W. Bardayan, M. B. Bennett, K. A. Chipps, M. Febbraro, M. Friedman, C. Fry, M. R. Hall, O. Hall, S. N. Liddick, P. O'Malley, W. -J. Ong, S. D. Pain, S. B. Schwartz, P. Shidling, H. Sims, L. J. Sun, P. Thompson, H. Zhang, Phys. Rev. C 99, 065801 (2019). https://doi.org/10.1103/PhysRevC.99.065801
- [46] 2020Ar04 V. Araujo-Escalona, D. Atanasov, X. Flechard, P. Alfaurt, P. Ascher, B. Blank, L. Daudin, M. Gerbaux, J. Giovinazzo, S. Grevy, T. Kurtukian-Nieto, E. Lienard, G. Quemener, N. Severijns, S. Vanlangendonck, M. Versteegen, D. Zakoucky, Phys. Rev. C 101, 055501 (2020). https://doi.org/10.1103/PhysRevC.101.055501
- [47] 2020Fu05 C. Y. Fu, Y. H. Zhang, M. Wang, X. H. Zhou, Yu. A. Litvinov, K. Blaum, H. S. Xu, X. Xu, P. Shuai, Y. H. Lam, R. J. Chen, X. L. Yan, X. C. Chen, J. J. He, S. Kubono, M. Z. Sun, X. L. Tu, Y. M. Xing, Q. Zeng, X. Zhou, W. L. Zhan, S. Litvinov, G. Audi, T. Uesaka, T. Yamaguchi, A. Ozawa, B. H. Sun, Y. Sun, F. R. Xu, Phys. Rev. C 102, 054311 (2020). https://doi.org/10.1103/PhysRevC.102.054311
- [48] 2020L005 B. Longfellow, A. Gade, J. A. Tostevin, E. C. Simpson, B. A. Brown, A. Magilligan, D. Bazin, P. C. Bender, M. Bowry, B. Elman, E. Lunderberg, D. Rhodes, M. Spieker, D. Weisshaar, S. J. Williams, Phys. Rev. C 101, 031303 (2020). https://doi.org/10.1103/PhysRevC.101.031303
- [49] 2021Bl02 B. Blank, N. Adimi, M. Alcorta, A. Bey, M. J. G. Borge, B. A. Brown, F. de Oliveira Santos, C. Dossat, H. O. U. Fynbo, J. Giovinazzo, H. H. Knudsen, M. Madurga, A. Magilligan, I. Matea, A. Perea, K. Summerer, O. Tengblad, J. C. Thomas, Eur. Phys. J. A 57, 28 (2021). https://doi.org/10.1140/epja/s10050-020-00341-3
- [50] 2021Or01 S. E. A. Orrigo, B. Rubio, W. Gelletly, P. Aguilera, A. Algora, A. I. Morales, J. Agramunt, D. S. Ahn, P. Ascher, B. Blank, C. Borcea, A. Boso, R. B. Cakirli, J. Chiba, G. de Angelis, G. de France, F. Diel, P. Doornenbal, Y. Fujita, N. Fukuda, E. Ganioglu, M. Gerbaux, J. Giovinazzo, S. Go, T. Goigoux, S. Grevy, V. Guadilla, N. Inabe, G. G. Kiss, T. Kubo, S. Kubono, T. Kurtukian-Nieto, D. Lubos, C. Magron, F. Molina, A. Montaner-Piza, D. Napoli, D. Nishimura, S. Nishimura, H. Oikawa, V. H. Phong, H. Sakurai, Y. Shimizu, C. Sidong, P. -A. Soderstrom, T. Sumikama, H. Suzuki, H. Takeda, Y. Takei, M. Tanaka, J. Wu, S. Yagi, Phys. Rev. C 103, 014324 (2021). https://doi.org/10.1103/PhysRevC.103.014324
- [51] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf