Direct heavy charged particle emitters (through Tz=+49/2). 10/21/2024

Table 1

Summary of known direct p emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclide	J^{π}	$T_{1/2}$	\mathbf{S}_p	$\mathrm{BR}_{p}\left(\% ight)$	other decays	T_z	
⁴ Li	2^{-}		-3.10(21)	100%		-1	
⁷ B	$(3/2^{-})$	801(20) keV	-2.013(26)	100%		-3/2	
10 N	(1 ⁻)	$2.5^{+2.0}_{-1.5}$ MeV	-2.60(40)	100%		-2	
^{11}N	1/2+	830(30) keV	-1.378(5)	100%		-3/2	
¹³ F			-2.73(50)#	100%		-5/2	
^{14}F	2^{-}	0.91(10) MeV	-1.560(40)	100%		-2	
¹⁵ F	$1/2^{+}$	660(20) keV	-1.27(14)	100%		-3/2	
¹⁰ F	0^{-}	40 (20) keV	-0.531(5)	100%		-1	
¹⁷ Na	(1)-		-3.44(6)	100%		-5/2	
¹⁸ Na 19N	$(1)^{-}$	<0.2 MeV	-1.250(90)	100%		-2	
²¹ Na	(5/2 ')	<40 keV	-0.323(11) 1 15 ± 0.10	100%		-3/2	
²⁵ D		< 10 ps	$-1.13_{-0.07}$ 2 16(40)#	100%		-512	
²⁹ Cl		≤ 33 lis ≤ 20 ns	-2.10(40)#	100%		-5/2	
²⁸ Cl		< 20 113	-1.60(8)	100%		-3	
³⁹ Sc	(7/2-)	<300ns	-0.597(24)	100%		-3/2	
⁴⁴ Mn		< 105 ns	-2.14(36)	100%		-3	
^{53m} Co	$(19/2^{-})$	245(102) ms	-1.580(30)	1.3(1)%	γ	-1/2	
^{54m} Ni	10^{+}	155(3) ns	-2.549(5)	49.5(21)%	γ	-1	
⁶⁸ Br		35(5) ns	-0.50(25)#	100%		-1	
⁶⁹ Br	3/2-	< 24 ns	0.640(40)	100%		-1/2	
⁷² Rb	(5 ⁺)	103(22) ns	-0.71(52)#	100%		-1	
⁷³ Rb	(3/2 ⁻)	< 81 ns	-0.640(40)	100%		-1/2	
⁸¹ Nb		< 40 ns	-1.11(50)#	100%		-1/2	
⁸⁵ Tc		< 43 ns	1.03(50)#	100%		-1/2	
⁸⁹ Rh 92		< 120 ns	-1.40(20)#	100%		-1/2	
⁹³ A g	$(0/2^{+})$	228(16) m	1.33(38)#	100%		-1 1/2	
94m ² A g	$(9/2^+)$ $(21/2^+)$	228(10) lis	-1.09(33)#	100%	ß 2n	-1/2	
⁹⁶ In	(21/2)	0.57(4) 3	-1 68(76)#	100%	p_p, z_p	-1	
^{97m} In	$(1/2^{-})$	120(110) µs	-1.50(60)#	100%		-1/2	
¹⁰³ Sb	()	< 46 ns	-0.98(32)#	100 %		+1/2	
¹⁰⁹ I	$1/2^{+}$	93.5(3) μs	-0.820(4)	99.846(4)%	α	+3/2	
¹¹² Cs	(1^{+})	486(37) µs	-0.816(4)	100%		+1	
¹¹³ Cs	(3/2+)	17.1(2) µs	-0.9728(22)	100%		+3/2	
¹¹⁶ La		50(22) ms	-0.734(9)	60(18)%		+1	
¹¹⁷ La	(3/2)	20.1(25) ms	-0.820(3)	100%		+3/2	
^{11/m} La	$(9/2^+)$	10(5) ms	-0.970(3)	100%		+3/2	
¹²¹ Pr	(3/2)	10^{+6}_{-3} ms	-0.890(10)	$\approx 100\%$		+3/2	
¹³⁰ Eu	2 /2 +	0.90^{+49}_{-29} ms	-1.028(15)	100%		+2	
¹³¹ Eu	3/2+	17.8(19) ms	-0.947(5)	89(9)%		+5/2	
14011-	(7/2)	$0.94_{-0.22}^{+0.05}$ ms	-1.188(7)	$\approx 100\%$		+5/2	
141 Ho		0(3) ms	-1.094(10) 1.177(7)	100%		+3	
¹⁴¹ <i>m</i> Ho		7.4(3) µs	-1.177(7) -1.243(14)	100%		+112 +7/2	
⁻¹⁴⁴ Tm	0 +	$\frac{1.9^{+1.2}}{1.9^{+1.2}}$	-1.243(14)	100%		+7/2	
¹⁴⁵ Tm	$(11/2^{-})$	3.17(20) µs	-1.736(7)	100%		+7/2	
¹⁴⁶ Tm	(5^{-})	68(3) ms	-0.896(6)#	100%		+4	
^{146m} Tm	(10+)	198(3) ms	-1.078(7)#	71%	γ	+4	
¹⁴⁷ Tm	11/2-	615(45) ms	-1.059(3)	15(5)%	· ·	+9/2	
^{147m} Tm	3/2+	0.36(4) ms	-1.127(7)	100%		+9/2	
¹⁴⁹ Lu		$0.45^{+0.17}_{-0.10} \ \mu s$	-1.933(20)	100%		+7/2	
¹⁵⁰ Lu	(2^+)	45(3) ms	-1.292(2)	$\approx 71\%$		+4	
^{150m} Lu	$(1^{-}, 2^{-})$	$39^{+8}_{-6}\mu s$	-1.292(2)#	100%		+4	
¹⁵¹ Lu	11/2-	78(1) ms	-1.241(2)	obs		+9/2	
^{151m} Lu	3/2+	$17(1) \mu s$	-1.319(10)	100%		+9/2	
¹⁵⁵ Ta	$[1/2^+]$	$2.9^{+1.5}_{-1.1}$ ms	-1.453(15)	100%		+9/2	
^{155m} Ta	$11/2^{-}$	$12^{+4}_{-3} \ \mu s$	-1.453(15)-x	100%		+9/2	

Table 1		
Summary of known direct	p emitters. Detailed references for each nucleus can be found in their respective T_z tab	oles.

¹⁵⁶ Ta	(2^{-})	106(4) ms	-1.020(4)	71(3) %		+5	
^{156m} Ta	(9 ⁺)	333^{+25}_{-22} ms	-1.122(4)	4.2(9) %	α	+5	
¹⁵⁷ Ta	$1/2^{+}$	10.1(4) ms	-0.935(10)	3.4(12) %	α	+11/2	
^{159m} Re	$11/2^{-}$	21(4) µs	-1.599(53)#-x	92.5(35)%	α	+9/2	
¹⁶⁰ Re		611(7) µs	-1.267(7)	89(1) %	α	+5	
¹⁶¹ Re	$1/2^{+}$	0.44(1) ms	-1.197(5)	100%	α	+11/2	
^{161m} Re	11/2-	14.8(3) ms	-1.300(14)	7.0(3) %	α	+11/2	
164m Ir	(9^{+})	70(10) µs	-1.56(10)#-x	96(2) %	α	+5	
165mIr	$(11/2^{-})$	340(40) µs	-1.721(71)#	88(2)%	α	+11/2	
¹⁶⁶ Ir	(2^{-})	10.5(22) ms	-1.152(8)	6.9(29)%	α	+6	
166mIr	(9+)	15.1(9) ms	-1.324(10)	1.76(58)%	α	+6	
¹⁶⁷ Ir	$(1/2^+)$	29.3(6) ms	-1.070(4)	39.3(13)%	α	+13/2	
167mIr	$(11/2^{-})$	28.5(6) ms	-1.185(6)	0.42(8)%	α	+13/2	
¹⁶⁹ Au		<5 µs	-1.93(33)#	$\approx 100\%$		+11/2	
¹⁷⁰ Au	(2^{-})	$286^{+50}_{-40} \ \mu s$	-1.472(12)	89(10)%	α	+6	
^{170m} Au	(9+)	$617^{+50}_{-40} \ \mu s$	-1.754(16)	58(5)%	α	+6	
¹⁷¹ Au	$(1/2^+)$	$22^{+3}_{-2} \mu s$	-1.448(10)	100%	α	+13/2	
171m Au	$(11/2^{-})$	1.09(3) ms	-1.706(16)	40(4)%	α	+13/2	
¹⁷⁶ Tl		$5.2^{+3.0}_{-1.4}$ ms	-1.265(18)	100%		+7	
¹⁷⁷ Tl	$(1/2^+)$	18(5) ms	-1.156(19)	27(13)%	α	+15/2	
177m Tl	$(11/2^{-})$	230(40) µs	-1.963(26)	51(8)%	α	+15/2	
¹⁸⁵ Bi	$(1/2^+)$	$2.8^{+23}_{-10} \ \mu s$	-1.592(5)	91(2)%	α	+19/2	

Table 2

Summary of known direct 2p emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclide	J^{π}	$T_{1/2}$	S_{2p}	BR_{2p} (%)	other decays	T_z	
110	$(2/2^{-})$	1 20 MoV	4 25(6)	100%		5/2	
¹² O	(3/2)	< 72 keV	-4.23(0)	100%		-3/2	
¹⁵ Ne	(3/2-)	0.59 MeV	-2.52(7)	100%		-5/2	
¹⁹ Mg	(3/2-)	4.0(15) ps	-0.760(50)	100%		-5/2	
³⁰ Ar	0^+	< 10 ps	-2.45(10)	100%		-3	
⁴⁸ Ni	0^+	$2.1^{+1.4}_{-0.6}$ ms	-2.39(30)#	70(20)%	β_p	-4	
⁵⁴ Zn	0^+	$1.59^{+0.60}_{-0.35}$ ms	-2.28(20)	$90^{+5}_{-10}\%$		-3	
⁶⁷ Kr		7.4(30) ms	-2.89(30)#	37(14)%	β_p	-5/2	
^{94m2} Ag	$(21/2^+)$	0.39(4) s	-2.50(75)#	0.5(3)%	$\hat{\beta_p}$, p	0	

Table 3

Summary of known direct α emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclida	īπ	T	0	DD (0/-)	other deceve	т	
INUCIILLE	J	11/2	Qα	$BR_{\alpha}(\%)$	other decays	1_{Z}	
¹⁰⁴ Te	0^+	<18 ns	5.10(21)	100%		0	
¹⁰⁵ Te	$(5/2^+)$	0.62(7) µs	5.069(3)	100%		+1/2	
¹⁰⁶ Te	0+	70^{+20}_{-10} µs	4.290(9)	100%		+1	
¹⁰⁷ Te	$(5/2^+)$	3.1(1) ms	4.004(6)	70(30)%		+3/2	
^{108}I		26.4(8) ms	4.099(5)	100%		+1	
¹⁰⁸ Te	0^{+}	2.1(1) s	3.445(4)	49(4)%		+2	
¹⁰⁸ Xe	0^{+}	58^{+106}_{-23} µs	4.57(21)	100%		0	
¹⁰⁹ I	$1/2^{+}$	93.5(3) μs	3.918(21)	0.014(4)%	р	+3/2	
¹⁰⁹ Xe	$(7/2^+)$	13(2) ms	4.217(7)	100%	1	+1/2	
¹⁰⁹ Te	$(5/2^+)$	4.3(1) s	3.198(6)	3.9(13)%	β_p, β_α	+5/2	
¹¹⁰ Xe	0^{+}	93(3) ms	3.872(9)	64(35)%	·	+1	
¹¹⁰ Te	0^{+}	18.4(8) s	2.723(15)	$\approx 0.00076\%$		+3	
^{110}I	(1^{+})	664(24) ms	3.536(10)	17(4)%	β_p, β_α	+2	
¹¹¹ Xe	$(7/2^+)$	0.81(20) s	3.719(10)	10.4(19)%		+3/2	
¹¹² Xe	0^{+}	2.7(8) s	3.330(6)	$0.8^{+1.1}_{-0.5}$ %		+2	
¹¹² I	(1^{+})	3.34(8)s	2.957(12)	≈0.0012%	β_p, β_α	+3	
¹¹³ Xe	$(5/2^+)$	2.74(8) s	3.087(8)	≈0.011%	β_p, β_α	+5/2	
¹¹⁴ Cs	(1+)	0.57(2) s	3.360(60)	0.018(6)%	β_p, β_α	+2	

Table 3
Summary of known direct α emitters. Detailed references for each nucleus can be found in their respective T _z tables.

¹¹⁴ Ba	0^{+}	380^{+190} ms	3.592(19)	0.9(3)% β _n	+1
144Nd	0^{+}	$24(2) \times 10^{15}$ v	1.901(1)	100%	+12
145 D m	5/2+	17.7(4) y	2 222(2)	$\frac{100\%}{2.8(6)\times 10^{-7}\%}$	+ 12
1466	0 [±]	17.7(4) y	2.522(3)	2.8(0)×10 %	+23/2
147 D	0 ·	6.8(7)×10 ⁻ y	2.529(3)	100%	+11
148 G J	5/2 '	24.1(6) d	2.991(3)	0.0022(6)%	+21/2
148 Gd	0^+	72.1(10) y	3.2/1(0)	100%	+10
¹⁴⁸ Eu	5-	55.6(2) d	2.694(10)	9.4(28)×10 ⁻⁷ %	+11
¹⁴⁸ Sm	0^+	$6.4^{+1.2}_{-1.3} \times 10^{15} \text{ y}$	1.987(1)	100%	+12
¹⁴⁹ Tb	$1/2^{+}$	4.13(5) h	4.078(2)	17.6(14)%	+19/2
^{149m} Tb	$11/2^{-}$	4.16(4) m	4.114(2)	0.022(3)%	+19/2
¹⁴⁹ Gd		7/2-	9.25(10) d	$4.3(12) \times 10^{-4}\%$	+21/2
¹⁵⁰ Dv	0^{+}	2.17(2) m	4.351(2)	34(3)%	+9
150Gd	0+	$\frac{1.78(8) \times 10^6}{1.78(8) \times 10^6}$ v	2 807(6)	100%	+11
15110	$(11/2^{-})$	$\frac{1.76(0)}{10}$	2.607(0)	21(2)%	117/2
151m11-	(11/2)	55.1(2) s	4.095(2)	21(2)/0	+17/2
151D	$(1/2^{+})$	47.0(13) s	4.730(2)	80 ₋₂₀ %	+1//2
151 Dy	112-	17.8(2) m	4.180(3)	5.6(4)%	+19/2
¹³¹ Tb	1/26+	17.609(14) h	3.496(4)	0.0095(15)%	+21/2
¹⁵¹ Gd	$7/2^{-}$	123.9(10) d	2.652(3)	$8^{+8}_{-4} \times 10^{-7}\%$	+23/2
¹⁵¹ Eu	5/2+	4.6(12)×10 ¹⁸ y	1.964(1)	100%	+25/2
¹⁵² Er	0^+	10.3(1) s	4.934(2)	92(4)%	+8
¹⁵² Ho	2^{-}	161.8(3) s	4.507(1)	11(3)%	+9
^{152m} Ho	9+	49.7(3) 8	4.667(1)	10.8(17)%	+9
152Dv	0+	2 37(2) h	3 727(4)	1.0(7)%	+10
152 Gd	0+	$1.08(8) \times 10^{14} \text{ v}$	2.727(4)	100%	+12
153 Tm	$(11/2^{-})$	$1.00(0) \times 10^{-3}$ y	5.248(1)	01(2)%	+12
153mm	(11/2)	1.7(2) \$	5.246(1)	91(3)%	+15/2
153 D	$(1/2^+)$	2.5(2) s	5.291(1)	92(3)%	+15/2
155 Er	(7/2)	37.1(2) s	4.802(1)	53(3)%	+1//2
¹⁵⁵ Ho	11/2-	2.02(3) m	4.052(4)	0.039(14)%	+19/2
^{153m} Ho	$1/2^{+}$	9.3(5) m	4.121(4)	0.14(4)%	+19/2
¹⁵³ Dy	7/2-	6.29(10) h	3.557(5)	0.0113(17)%	+21/2
¹⁵⁴ Yb	0^+	409(2) ms	5.474(2)	92.6(20)%	+7
¹⁵⁴ Tm	(2^{-})	8.3(3) s	5.094(3)	54(5)%	+8
^{154m} Tm	(9 ⁺)	3.35(5) s	5.094(3)+x	58(5)%	+8
¹⁵⁴ Er	0^{+}	3.75(12) m	4.280(3)	0.52(13)%	+9
154Ho	2-	11 75(20 m	4 041(4)	0.028(9)%	+10
154mHo	2 9+	2.80(13) m	4.280(28)	<0.01%	+10
154 Du	0 0 ⁺	2.00(15) m	4.200(20)	1000	+10
 	(7/0-)	3.0(13)×10 y	2.945(5)	0.06%	+11
155 HI	(1/2)	840(30) ms	4.81(43)#	0.06%	+11/2
155 Lu	(11/2)	70(1) ms	5.802(2)	90(2)%	+13/2
^{155m1} Lu	$(1/2^+)$	136(9) ms	5.822(6)	76(16)%	+13/2
^{155m2} Lu	$(25/2^{-})$	2.71(3) ms	7.583(6)	obs	+13/2
¹⁵⁵ Er	$(7/2^{-})$	5.3(3) m	4.118(5)	<0.022(7)%	+19/2
¹⁵⁵ Yb	$(7/2^{-})$	1.79(2) s	5.339(2)	90(5)%	+15/2
¹⁵⁵ Tm	$(11/2^{-})$	21.6(2) s	4.572(5)	0.84(20)%	+17/2
^{155m} Tm	$(1/2^+)$	44(4) s	4.613(8)	obs	+17/2
¹⁵⁶ Hf	0^{+}	23(1) ms	6.026(3)	100%	+6
^{156m} Hf	1.952(6)**	8+	7.978(7)	100%	+6
156Lu	(2-)	494(12) ms	5 596(3)	≈ 100%	+7
156m L 11	(10^+)	108(2) ms	5 506(3)	08+20%	 +7
156 x1-	(10) 0 ⁺	170(2) IIIS 25 2(5) -	3.350(3) + x	90_9 /0 0(2) 0/	τ/
156 Y D	0 '	25.3(5) s	4.810(4)	9(2)%	+8
156 m	2	82(3) s	4.345(7)	0.064(10)%	+9
¹⁵⁰ Er	0+	19.5(10) m	3.481(25)	$7(2) \times 10^{-6}\%$	+10
¹⁵⁷ Ta	$1/2^{+}$	10.1(4) ms	6.355(6)	96.6(12)% p	+11/2
¹⁵⁷ Hf	$(7/2^{-})$	115(1) s	5.880(3)	94(5)%	+13/2
¹⁵⁷ Lu	$(1/2^+, 3/2^+)$	6.8(5) s	5.108(3)	obs	+15/2
^{157m} Lu	$(11/2^{-})$	4.75(10) s	5.140(3)	6(2)%	+15/2
¹⁵⁷ Yb	7/2-	37.9(9) s	4.622(6)	obs	+17/2
¹⁵⁸ W	0^{+}	1.5(2) ms	6.612(3)	100 %	+5
158mW	(8^+)	143(19) 118	8.503(8)	100 %	+5
158 Ta	(2^{-})	46(4) ms	6 124(4)	≈ 100%	+6
158m1 To	(2^{+})	35(1) mg	6 265(10)	$\sim 100\%$	т о 16
1a 158m2 - -	(9^{-})	53(1) IIIS 6 1(1) $u=$	0.203(10)	$\sim 100\%$	+0
1a	(19)	$0.1(1) \ \mu s$	8.930(4)	$\frac{1.4(2)\%}{\sqrt{\gamma}}$	+0
150 Hf	0-	2.85(7) s	5.405(3)	45(3)%	+7
¹³⁰ Lu	(2-)	10.6(3) s	4.790(5)	0.91(20)%	+8
138Yb	0^+	1.65(20) m	4.170(7)	0.0021(12)%	+9

Table 3	
Summary of known direct α emitters.	Detailed references for each nucleus can be found in their respective T_z tables.

^{159m} Re	$11/2^{-}$	$21(4) \ \mu s$	6.76(55)#+x	7.5(35)%	р	+9/2
¹⁵⁹ W	$(7/2^{-})$	82(7) ms	6 451(4)	92^{+8} %	r	+11/2
159Ta	$(1/2^+)$	1 10(10) s	5.681(6)	34(5)%		+13/2
159mTo	$(1/2^{-})$	514(0) mg	5.001(0)	55(1)%		+13/2
159116	(11/2)	514(9) ms	5.745(0)	12(1)%		+15/2
159T	(7/2)	5.2(1) \$	5.225(3)	12(1)%		+15/2
¹⁵⁹ Lu	a 1	12.1(10) s	4.492(39)	<0.15(3)%		+17/2
¹⁰⁰ Os	0+	97^{+37}_{-32} µs	7.724(15)	100%		+4
^{160m} Os	(8^+)	$41^{+15}_{-9} \ \mu s$	9.18(10)	100%		+4
¹⁶⁰ Re		611(7) μs	6.698(4)	11(1) %	р	+5
^{160}W	0^+	91(5) ms	6.066(5)	87(8)%		+6
¹⁶⁰ Ta		1.7(2) s	5.451(5)	obs		+7
^{160m} Ta		1.55(4) s	5.451(5)+x	obs		+7
¹⁶⁰ Hf	0^+	13.6(2) s	4 902(3)	0.7(2)%		+8
160 L II	ů.	34 5(15) s	4 140(59)	$\leq 10^{-4}\%$		+9
¹⁶¹ Os	$(7/2^{-})$	640(60) 48	7.069(11)#	5 9(27)%		+9/2
161 P o	$(1/2)^+$	0.44(1) ms	$(11)^{\pi}$	5.9(27)%		+ 11/2
161mp -	1/2	14.8(2) ms	0.102(15)	93.0(3)%	Р	+11/2
lelw	11/2	14.8(3) ms	6.162(15)	93.0(3)%	р	+11/2
161 W		409(18) ms	5.923(4)	73(3)%		+13/2
^{101m} Ta	$(11/2^{-})$	3157^{+74}_{-79} ms	5.332(37)	7(3)%		+15/2
¹⁶¹ Hf	$(7/2^{-})$	18.7(5) s	4.718(7)	0.30(5)%		+17/2
¹⁶² Os	0^+	2.05(10) ms	6.768(3)	100 %		+5
¹⁶² Re	(2^{-})	107(13) ms	6.240(5)	$\approx 100\%$		+6
¹⁶² W	0^{+}	1.13(3) s	5.678(2)	44(2)%		+7
162m Re	(9^{+})	76(6) ms	6.412(9)	91(5)%	γ	+6
¹⁶² Ta		3 60(15) 8	5.008(5)	0.074(13)%	,	+8
¹⁶² Hf	0^{+}	39 8(4) s	4 416(5)	0.008(1)%		+9
¹⁶³ Os	$(7/2^{-})$	$62^{\pm 1.3}$ ms	6 673(7)	100%		+11/2
163 p	(1/2)	0.2_0.9 ^{IIIS}	0.073(7)	100 %		+11/2
¹⁶³ Re	$(1/2^+)$	390(72) ms	6.012(8)	32(3)%		+13/2
¹⁶³ Re	(11/2)	214(5) ms	6.12/(9)	66(4)%		+13/2
163 W	112-	2.7(1) s***	5.519(5)	14(2)%		+15/2
¹⁰⁵ Ta		10.9(12) s	4.749(5)	<0.28(4)%		+17/2
^{164m} Ir	(9+)	70(10) µs	6.97(10)#+x	4(2) %	р	+5
¹⁶⁴ Os	0^{+}	21(1) ms	6.479(5)	$96^{+4}_{-5}\%$		+6
¹⁶⁴ Re		848^{+140}_{-105} ms	5.926(5)	obs		+7
164m Re		864^{+150} ms	5.926(5) + x	3(1)%		+7
		001 <u>-</u> 110 mb	5 278(2)	4 4(9)%		+8
164 W	0^{+}	60(3) \$	1 / / 01 / 1			
¹⁶⁴ W 165mIr	0^+ (11/2 ⁻)	6.0(3) s 340(40) µs	5.278(2) 7.003(71)#	12(2)%	n	+11/2
$\frac{^{164}W}{^{165m}Ir}$	$\frac{0^+}{(11/2^-)}$	$\frac{6.0(3) \text{ s}}{340(40) \mu \text{s}}$	7.003(71)#	12(2)%	р	+11/2
$\frac{164W}{165m}$	$ \begin{array}{r} 0^+ \\ (11/2^-) \\ \hline (7/2^-) \\ (7/2^-) \\ \end{array} $	$ \frac{6.0(3) \text{ s}}{340(40) \mu \text{s}} \\ 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) $	7.003(71)# 7.453(14)# (225(6)	12(2)% 100%	р	+11/2 +9/2
$\frac{^{164}W}{^{165m}Ir}$	$ \begin{array}{r} 0^+ \\ (11/2^-) \\ (7/2^-) \\ (7/2^-) \\ (12$	$ \begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(2) \end{array} $	7.453(14)# 6.335(6)	12(2)% 100% 90(2)%	р	+11/2 +9/2 +13/2
¹⁶⁴ W <u>165mIr</u> <u>165Pt</u> <u>165Os</u> <u>165Re</u>	$\begin{array}{c} 0^+ \\ (11/2^-) \\ (7/2^-) \\ (7/2^-) \\ (1/2^+) \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \end{array}$	7.003(71)# 7.453(14)# 6.335(6) 5.694(6)	12(2)% 100% 90(2)% 14(8)%	р	+11/2 +9/2 +13/2 +15/2
¹⁶⁴ W <u>165mIr</u> <u>165Pt</u> <u>165</u> Re <u>165</u> Re	$\begin{array}{c} 0^+ \\ (11/2^-) \\ (7/2^-) \\ (7/2^-) \\ (1/2^+) \\ (11/2^-) \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ 1.74(6) \text{ s} \end{array}$	7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.694(6)	12(2)% 100% 90(2)% 14(8)% 14(8)%	р	+11/2 +9/2 +13/2 +15/2 +15/2
¹⁶⁴ W ^{165m} Ir ¹⁶⁵ Pt ¹⁶⁵ Os ¹⁶⁵ Re ^{165m} Re ^{165m} Re	0^{+} (11/2 ⁻) (7/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻)	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ 1.74(6) \text{ s} \\ 5.1(5) \text{ s} \end{array}$	7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.694(6) 5.031(5)	$ \begin{array}{r} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ < 1.5\% \\ \end{array} $	р	+11/2 +9/2 +13/2 +15/2 +15/2 +17/2
¹⁶⁴ W ^{165m} Ir ¹⁶⁵ Pt ¹⁶⁵ Os ¹⁶⁵ Re ^{165m} Re ¹⁶⁵ W ¹⁶⁶ Pt	0^{+} (11/2 ⁻) (7/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺	$ \begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ 1.74(6) \text{ s} \\ 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \end{array} $	7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.694(6) 5.031(5) 7.292(7)	$ \begin{array}{r} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ < 1.5\% \\ 100\% \\ \end{array} $	р	+11/2 +9/2 +13/2 +15/2 +15/2 +15/2 +17/2 +5
¹⁶⁴ W ¹⁶⁵ <i>m</i> Ir ¹⁶⁵ Pt ¹⁶⁵ Os ¹⁶⁵ Re ¹⁶⁵ <i>m</i> Re ¹⁶⁵ W ¹⁶⁶ Pt ¹⁶⁶ Ir	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ \hline 0^{+} \\ (2^{-}) \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ 10.5(22) \text{ ms} \end{array}$	7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6)	$ \begin{array}{r} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ < 1.5\% \\ 100\% \\ 93.1(29)\% \\ \end{array} $	p	+11/2 +9/2 +13/2 +15/2 +15/2 +15/2 +17/2 +5 +6
¹⁶⁴ W ¹⁶⁵ <i>m</i> Ir ¹⁶⁵ Pt ¹⁶⁵ Os ¹⁶⁵ Re ¹⁶⁵ <i>m</i> Re ¹⁶⁵ <i>m</i> ¹⁶⁶ <i>p</i> t ¹⁶⁶ <i>p</i> t ¹⁶⁶ <i>I</i> r ¹⁶⁶ <i>m</i> Ir	0^{+} (11/2 ⁻) (7/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺)	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ \hline 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ \hline 10.5(22) \text{ ms} \\ \hline 15.1(9) \text{ ms} \end{array}$	7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6) 6.894(8)	12(2)% $100%$ $90(2)%$ $14(8)%$ $14(8)%$ $< 1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$	p p p	+11/2 +9/2 +13/2 +15/2 +15/2 +15/2 +17/2 +5 +6 +6 +6
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 165W 166Pt 166Ir 166MIr 166Os	0^{+} (11/2 ⁻) (7/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺	$\begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ 1.74(6) \ \text{s} \\ 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \end{array}$	$\begin{array}{r} 5.278(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ 6.335(6) \\ 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ 6.722(6) \\ 6.894(8) \\ 6.143(3) \end{array}$	12(2)% $100%$ $90(2)%$ $14(8)%$ $14(8)%$ $< 1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$ $84(4)%$	p p p	+11/2 +11/2 +13/2 +13/2 +15/2 +15/2 +17/2 +5 +6 +6 +6 +7
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 165W 166Pt 166Ir 166MIr 166Os 166Re	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ (9^{+}) \\ 0^{+} \\ (3^{-}) \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ \hline 1.74(6) \ \text{s} \\ \hline 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \end{array}$	$\begin{array}{c} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ 6.335(6) \\ 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ 6.722(6) \\ 6.894(8) \\ 6.143(3) \\ 5.663(4) \\ \end{array}$	12(2)% $100%$ $90(2)%$ $14(8)%$ $14(8)%$ $< 1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$ $84(4)%$ obs	p p p	+11/2 +11/2 +13/2 +13/2 +15/2 +15/2 +17/2 +5 +6 +6 +6 +7 +8
164W 165mIr 165Pt 165Os 165Re 165mRe 165mRe 165mV 166Pt 166Ir 166Os 166Os 166Re 166W	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ \hline 1.74(6) \ \text{s} \\ \hline 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \\ \hline 18 \ 8(4) \ \text{s} \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ 6.335(6) \\ 5.694(6) \\ 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ 6.722(6) \\ 6.894(8) \\ 6.143(3) \\ 5.663(4) \\ \hline 4.856(4) \end{array}$	12(2)% $100%$ $90(2)%$ $14(8)%$ $<1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$ $84(4)%$ obs $0 6(2)%$	p p p	
164W 165mIr 165Pt 165Os 165Re 165mRe 165mRe 166Pt 166Ir 166Os 166Re 166Re 167Pt	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (3^{-}) \\ \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ \hline 1.74(6) \ \text{s} \\ \hline 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \\ \hline 18.8(4) \ \text{s} \\ 0.90(13) \ \text{ms} \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ 6.335(6) \\ 5.694(6) \\ 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ 6.722(6) \\ 6.894(8) \\ 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \end{array}$	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ <14(8)\% \\ <1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ \hline 0.6(2)\% \\ 100\% \end{array}$	p p p	
164W 165mIr 165Pt 165Os 165Re 165mRe 165mRe 166Pt 166Pt 166MIr 166Os 166Re 166W 167Pt 167Ir	$ \begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ (9^{+}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (1/2^{+}) \\ \end{array} $	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ 10.5(22) \text{ ms} \\ 15.1(9) \text{ ms} \\ 214(6) \text{ ms} \\ 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ 0.90(13) \text{ ms} \\ 20.3(6) \text{ ms} \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ 6.335(6) \\ 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ 6.722(6) \\ 6.894(8) \\ 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \hline 6.595(2) \\ \end{array}$	12(2)% $100%$ $90(2)%$ $14(8)%$ $14(8)%$ $< 1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$ $84(4)%$ obs $0.6(2)%$ $100%$ $42(2)%$	p p p	+11/2 +11/2 +13/2 +13/2 +15/2 +15/2 +15/2 +17/2 +5 +6 +6 +6 +6 +7 +8 +9 +11/2 +13/2
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 165mRe 166Pt 166Ir 166MIr 166Os 166Re 166W 167Pt 167Ir 167mL	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ (9^{+}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (1/2^{+}) \\ (11/2^{-}) \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \text{ ms} \\ 15.1(9) \text{ ms} \\ 214(6) \text{ ms} \\ 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ 0.90(13) \text{ ms} \\ 29.3(6) \text{ ms} \\ 29.3(6) \text{ ms} \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ 6.335(6) \\ 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ 6.722(6) \\ 6.894(8) \\ 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ 6.505(3) \\ \hline 6.20(5) \end{array}$	12(2)% $100%$ $90(2)%$ $14(8)%$ $14(8)%$ $< 1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$ $84(4)%$ obs $0.6(2)%$ $100%$ $43(2)%$ $00(2)%$	p p p	
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 165W 166Pt 166Ir 166MIr 166Os 166Re 166W 167Pt 167Ir 167mIr 167mIr	0^{+} (11/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (11/2 ⁻) (7/2 ⁻)	$\begin{array}{c} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ \hline 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ \hline 10.5(22) \text{ ms} \\ \hline 15.1(9) \text{ ms} \\ 214(6) \text{ ms} \\ \hline 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ \hline 0.90(13) \text{ ms} \\ 29.3(6) \text{ ms} \\ 28.5(6) \text{ ms} \\ 220(5) \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ \hline 6.335(6) \\ \hline 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ \hline 6.722(6) \\ \hline 6.894(8) \\ \hline 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \hline 6.505(3) \\ \hline 6.620(5) \\ \hline 5.079(6) \\ \hline \end{array}$	12(2)% $100%$ $90(2)%$ $14(8)%$ $14(8)%$ $<1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$ $84(4)%$ obs $0.6(2)%$ $100%$ $43(2)%$ $90(3)%$ $5070%$	p p p p	
164 W 165 mIr 165 Pt 165 Os 165 Re 165 Re 165 m Re 165 W 166 Pt 166 Ir 166 M 166 Os 166 Re 166 Re 167 Ir 167 Ir 167 Ir 167 Jr 167 Jr 166 Jr 167 Jr	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ (9^{+}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (1/2^{+}) \\ (11/2^{-}) \\ (7/2^{-}) \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ 1.74(6) \ \text{s} \\ 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \\ \hline 18.8(4) \ \text{s} \\ 0.90(13) \ \text{ms} \\ 29.3(6) \ \text{ms} \\ 28.5(6) \ \text{ms} \\ 839(5) \ \text{ms} \end{array}$	$\begin{array}{r} 5.278(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ 6.335(6) \\ 5.694(6) \\ 5.694(6) \\ 5.031(5) \\ \hline 7.292(7) \\ 6.722(6) \\ 6.894(8) \\ 6.143(3) \\ 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ 6.505(3) \\ 6.620(5) \\ 5.978(5) \\ \hline \end{array}$	12(2)% $100%$ $90(2)%$ $14(8)%$ $14(8)%$ $<1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$ $84(4)%$ obs $0.6(2)%$ $100%$ $43(2)%$ $90(3)%$ $58(7)%$	p p p p	
164 W 165 mIr 165 Pt 165 Os 165 Re 165 Re 165 m 166 Pt 166 Ir 166 M 166 Os 166 Re 166 Re 167 Pt 167 Ir 167 MIr 167 Os 167 Re 167 Re	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ (9^{+}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (1/2^{+}) \\ (11/2^{-}) \\ (7/2^{-}) \\ \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ 10.5(22) \text{ ms} \\ 15.1(9) \text{ ms} \\ 214(6) \text{ ms} \\ 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ 0.90(13) \text{ ms} \\ 29.3(6) \text{ ms} \\ 28.5(6) \text{ ms} \\ 839(5) \text{ ms} \\ \hline 3.4(4) \text{ s} \end{array}$	3.278(2) 7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6) 6.894(8) 6.143(3) 5.663(4) 4.856(4) 7.160(60) 6.505(3) 6.620(5) 5.978(5)	12(2)% $100%$ $90(2)%$ $14(8)%$ $< 1.5%$ $100%$ $93.1(29)%$ $98.24(58)%$ $84(4)%$ obs $0.6(2)%$ $100%$ $43(2)%$ $90(3)%$ $58(7)%$ obs	р р р р	
164W 165mIr 165 Pt 165 Os 165 Re 165 Re 165 W 166 Pt 166 Ir 166 Os 166 Re 166 Re 167 Pt 167 Ir 167 Os 167 Re 167 Re 167 Re	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ (9^{+}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (1/2^{+}) \\ (11/2^{-}) \\ (7/2^{-}) \\ \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ \hline 1.74(6) \ \text{s} \\ \hline 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \\ \hline 18.8(4) \ \text{s} \\ 0.90(13) \ \text{ms} \\ 29.3(6) \ \text{ms} \\ 28.5(6) \ \text{ms} \\ 839(5) \ \text{ms} \\ \hline 3.4(4) \ \text{s} \\ 6.1(2) \ \text{s} \end{array}$	3.278(2) 7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6) 6.894(8) 6.143(3) 5.663(4) 4.856(4) 7.160(60) 6.505(3) 6.620(5) 5.978(5) 5.276(13)# 5.276(13)#+x	$12(2)\%$ 100% $90(2)\%$ $14(8)\%$ $< 1.5\%$ 100% $93.1(29)\%$ $98.24(58)\%$ $84(4)\%$ obs $0.6(2)\%$ 100% $43(2)\%$ $90(3)\%$ $58(7)\%$ obs $\approx 1\%$	p p p p	
164W 165mIr 165 Pt 165 Os 165 Re 165 Re 165 W 166 Pt 166 Ir 166 Os 166 Re 167 Pt 167 Ir 167 Os 167 Re 167 Re 167 mRe 167 W	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (1/2^{+}) \\ (11/2^{-}) \\ (7/2^{-}) \\ (5/2^{-}) \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \ \text{ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ \hline 1.74(6) \ \text{s} \\ \hline 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \\ \hline 18.8(4) \ \text{s} \\ 0.90(13) \ \text{ms} \\ 29.3(6) \ \text{ms} \\ 28.5(6) \ \text{ms} \\ 839(5) \ \text{ms} \\ \hline 3.4(4) \ \text{s} \\ 6.1(2) \ \text{s} \\ 19.9(5) \ \text{s} \\ \end{array}$	3.278(2) 7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6) 6.894(8) 6.143(3) 5.663(4) 4.856(4) 7.160(60) 6.505(3) 6.620(5) 5.978(5) 5.276(13)# 5.276(13)#+x 4.751(30)	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ <1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ \hline 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ \hline obs \\ \approx 1\% \\ <0.04(1)\% \\ \end{array}$	p p p p	
164W 165mIr 165Pt 165Os 165Re 165mRe 165mRe 165W 166Pt 166Ir 166MIr 166Os 166Re 167Pt 167Ir 167Os 167Re 167mRe 167mRe 167mRe 167W 168Pt	$\begin{array}{c} 0^{+} \\ (11/2^{-}) \\ (7/2^{-}) \\ (7/2^{-}) \\ (1/2^{+}) \\ (11/2^{-}) \\ (5/2^{-}) \\ 0^{+} \\ (2^{-}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (3^{-}) \\ 0^{+} \\ (1/2^{+}) \\ (11/2^{-}) \\ (7/2^{-}) \\ \end{array}$	$\begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ 1.74(6) \ \text{s} \\ 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \\ \hline 18.8(4) \ \text{s} \\ 0.90(13) \ \text{ms} \\ 29.3(6) \ \text{ms} \\ 28.5(6) \ \text{ms} \\ 839(5) \ \text{ms} \\ \hline 3.4(4) \ \text{s} \\ 6.1(2) \ \text{s} \\ 19.9(5) \ \text{s} \\ 2.04(16) \ \text{ms} \end{array}$	3.278(2) 7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6) 6.894(8) 6.143(3) 5.663(4) 4.856(4) 7.160(60) 6.505(3) 6.620(5) 5.978(5) 5.276(13)# 5.276(13)#+x 4.751(30) 6.990(3)	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ <1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ 0bs \\ 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ \hline 0bs \\ \approx 1\% \\ <0.04(1)\% \\ \approx 100\% \\ \end{array}$	p p p p	
164W 165mIr 165Pt 165Os 165Re 165Re 165W 166Pt 166Ir 166Gr 166Gs 166Re 167Pt 167Ir 167Tr 167MIr 167Re 167Re 167Re 167Re 167Re 167Re 167Re 167Re 167Re	0^{+} (11/2 ⁻) (7/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺	$\begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ 1.74(6) \ \text{s} \\ 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \\ \hline 18.8(4) \ \text{s} \\ 0.90(13) \ \text{ms} \\ 29.3(6) \ \text{ms} \\ 28.5(6) \ \text{ms} \\ 839(5) \ \text{ms} \\ \hline 3.4(4) \ \text{s} \\ 6.1(2) \ \text{s} \\ 19.9(5) \ \text{s} \\ 2.04(16) \ \text{ms} \\ 155(40) \ \text{ms} \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ \hline 6.335(6) \\ \hline 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ \hline 6.722(6) \\ \hline 6.894(8) \\ \hline 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \hline 6.505(3) \\ \hline 6.620(5) \\ \hline 5.978(5) \\ \hline 5.276(13)\# \\ $	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 4(8)\% \\ < 1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ \hline obs \\ \approx 1\% \\ < 0.04(1)\% \\ \approx 100\% \\ obs \\ \end{array}$	р р р р	
164W 165mIr 165Pt 165Os 165Re 165mRe 165mRe 166Pt 166Pt 166Gr 166Gs 166Re 166W 167Pt 167Ir 167MIr 167MRe 167m	0^{+} (11/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺	$\begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \ \text{ms} \\ 1.6(6) \ \text{s} \\ 1.74(6) \ \text{s} \\ 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \ \text{ms} \\ 15.1(9) \ \text{ms} \\ 214(6) \ \text{ms} \\ 2.4(2) \ \text{s} \\ \hline 18.8(4) \ \text{s} \\ 0.90(13) \ \text{ms} \\ 29.3(6) \ \text{ms} \\ 28.5(6) \ \text{ms} \\ 839(5) \ \text{ms} \\ \hline 3.4(4) \ \text{s} \\ 6.1(2) \ \text{s} \\ 19.9(5) \ \text{s} \\ 2.04(16) \ \text{ms} \\ 155(40) \ \text{ms} \\ \hline 161(21) \ \text{ms} \\ \hline \end{array}$	3.278(2) 7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6) 6.894(8) 6.143(3) 5.663(4) 4.856(4) 7.160(60) 6.505(3) 6.620(5) 5.978(5) 5.276(13)# 5.276(13)#+x 4.751(30) 6.990(3) 6.381(9)	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ <14(8)\% \\ <1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ obs \\ \approx1\% \\ <0.04(1)\% \\ \approx100\% \\ obs \\ 78(11)\% \end{array}$	p p p p	
164W 165mIr 165Pt 165Os 165Re 165mRe 165mRe 166Pt 166Pt 166Gr 166Gs 166Re 166W 167Pt 167Tr 167mIr 167mRe 167Re 167Re 167Re 167W 168Pt 168Ir 168MIr 168Os	0^{+} (11/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺ 0 ⁺ (5/2 ⁻) 0 ⁺	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ \hline 21(1) \text{ ms} \\ \hline 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ \hline 10.5(22) \text{ ms} \\ \hline 10.5(22) \text{ ms} \\ \hline 15.1(9) \text{ ms} \\ \hline 214(6) \text{ ms} \\ \hline 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ \hline 0.90(13) \text{ ms} \\ \hline 29.3(6) \text{ ms} \\ \hline 28.5(6) \text{ ms} \\ \hline 839(5) \text{ ms} \\ \hline 3.4(4) \text{ s} \\ \hline 6.1(2) \text{ s} \\ \hline 19.9(5) \text{ s} \\ \hline 2.04(16) \text{ ms} \\ \hline 155(40) \text{ ms} \\ \hline 161(21) \text{ ms} \\ \hline 2.2(1) \text{ s} \\ \end{array}$	3.278(2) 7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6) 6.894(8) 6.143(3) 5.663(4) 4.856(4) 7.160(60) 6.505(3) 6.620(5) 5.978(5) 5.276(13)# 5.276(13)#+x 4.751(30) 6.990(3) 6.381(9) 6.381(9)+x 5.816(3)	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ < 1.5\% \\ \hline 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ \hline 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ \hline 58(7)\% \\ \hline obs \\ \approx 1\% \\ < 0.04(1)\% \\ \approx 100\% \\ obs \\ \hline 78(11)\% \\ 43(3)\% \\ \end{array}$	p p p p	$ \begin{array}{r} +3 \\ +11/2 \\ +9/2 \\ +13/2 \\ +15/2 \\ +15/2 \\ +15/2 \\ +17/2 \\ \hline +5 \\ +6 \\ +6 \\ +6 \\ +7 \\ +8 \\ \hline +9 \\ +11/2 \\ +13/2 \\ +13/2 \\ +13/2 \\ +13/2 \\ +15/2 \\ \hline +17/2 \\ +17/2 \\ +19/2 \\ +6 \\ +7 \\ \hline +7 \\ +8 \\ \end{array} $
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 165mRe 166Pt 166MIr 166MIr 166Os 166Re 166W 167Pt 167Tr 167Os 167Re 167Re 167mRe 167W 168Pt 168Ir 168MIr 168MIr 168NS 168Re	0^{+} (11/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ \hline 21(1) \text{ ms} \\ \hline 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ \hline 10.5(22) \text{ ms} \\ \hline 10.5(22) \text{ ms} \\ \hline 15.1(9) \text{ ms} \\ \hline 214(6) \text{ ms} \\ \hline 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ \hline 0.90(13) \text{ ms} \\ \hline 29.3(6) \text{ ms} \\ \hline 28.5(6) \text{ ms} \\ \hline 3.4(4) \text{ s} \\ \hline 6.1(2) \text{ s} \\ \hline 19.9(5) \text{ s} \\ \hline 2.04(16) \text{ ms} \\ \hline 155(40) \text{ ms} \\ \hline 161(21) \text{ ms} \\ \hline 2.2(1) \text{ s} \\ \hline 4.4(1) \text{ s} \\ \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ 6.335(6) \\ \hline 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ \hline 6.722(6) \\ \hline 6.894(8) \\ \hline 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \hline 6.505(3) \\ \hline 6.620(5) \\ \hline 5.978(5) \\ \hline 5.276(13)\# \\ \hline 5.276(3) \\ \hline 9.00(3) \\ \hline 6.381(9) + x \\ \hline 5.816(3) \\ \hline 5.063(13) \\ \end{array}$	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ < 1.5\% \\ \hline 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ \hline 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ \hline obs \\ \approx 1\% \\ < 0.04(1)\% \\ \approx 100\% \\ obs \\ \hline 78(11)\% \\ 43(3)\% \\ \approx 0.005\% \\ \end{array}$	p p p p	
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 166Pt 166Pt 166MIr 166Os 166Re 166W 167Pt 167Pt 167Tr 167Os 167Re 167mRe 167W 168Ir 168Ir 168NIr 168NIr 168V 168W	0^{+} (11/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺	$\begin{array}{r} 6.0(3) \text{ s} \\ \hline 340(40) \ \mu\text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ \hline 21(1) \text{ ms} \\ \hline 1.6(6) \text{ s} \\ \hline 1.74(6) \text{ s} \\ \hline 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu\text{s} \\ \hline 10.5(22) \text{ ms} \\ \hline 10.5(22) \text{ ms} \\ \hline 15.1(9) \text{ ms} \\ \hline 214(6) \text{ ms} \\ \hline 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ \hline 0.90(13) \text{ ms} \\ \hline 29.3(6) \text{ ms} \\ \hline 28.5(6) \text{ ms} \\ \hline 3.4(4) \text{ s} \\ \hline 6.1(2) \text{ s} \\ \hline 19.9(5) \text{ s} \\ \hline 2.04(16) \text{ ms} \\ \hline 155(40) \text{ ms} \\ \hline 161(21) \text{ ms} \\ \hline 2.2(1) \text{ s} \\ \hline 4.4(1) \text{ s} \\ \hline 51(2) \text{ s} \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ \hline 6.335(6) \\ \hline 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ \hline 6.722(6) \\ \hline 6.894(8) \\ \hline 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \hline 6.505(3) \\ \hline 6.620(5) \\ \hline 5.978(5) \\ \hline 5.276(13)\# \\ \hline 5.263(13) \\ \hline 6.381(9) + x \\ \hline 5.816(3) \\ \hline 5.063(13) \\ \hline 4.501(11) \\ \end{array}$	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ <1.5\% \\ \hline 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ \hline 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ \hline obs \\ \approx 1\% \\ <0.04(1)\% \\ \approx 100\% \\ obs \\ \hline 78(11)\% \\ 43(3)\% \\ \approx 0.005\% \\ <4.1(6) \times 10^{-3}\% \\ \end{array}$	p p p p	$ \begin{array}{r} +11/2 \\ +11/2 \\ +9/2 \\ +13/2 \\ +15/2 \\ +15/2 \\ +15/2 \\ +17/2 \\ +5 \\ +6 \\ +6 \\ +7 \\ +8 \\ \hline +9 \\ +11/2 \\ +13/2 \\ +13/2 \\ +13/2 \\ +15/2 \\ +17/2 \\ +17/2 \\ +17/2 \\ +19/2 \\ +6 \\ +7 \\ \hline +7 \\ +8 \\ +9 \\ +10 \\ \end{array} $
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 165Ft 166Pt 166Pt 166MIr 166Os 166Re 166W 167Pt 167Tr 167Os 167Re 167mRe 168Pt 168Pt 168BT 16	0^{+} (11/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺ (7/2 ⁻)	$\begin{array}{c} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ 1.74(6) \text{ s} \\ 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \text{ ms} \\ 10.5(22) \text{ ms} \\ 214(6) \text{ ms} \\ 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ 0.90(13) \text{ ms} \\ 29.3(6) \text{ ms} \\ 28.5(6) \text{ ms} \\ 839(5) \text{ ms} \\ \hline 3.4(4) \text{ s} \\ 6.1(2) \text{ s} \\ 19.9(5) \text{ s} \\ 2.04(16) \text{ ms} \\ 155(40) \text{ ms} \\ \hline 161(21) \text{ ms} \\ 2.2(1) \text{ s} \\ 4.4(1) \text{ s} \\ 51(2) \text{ s} \\ 7.0(2) \text{ ms} \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ \hline 6.335(6) \\ \hline 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ \hline 6.722(6) \\ \hline 6.894(8) \\ \hline 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \hline 6.505(3) \\ \hline 6.620(5) \\ \hline 5.978(5) \\ \hline 5.276(13)\# \\ $	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 4(8)\% \\ <1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ obs \\ \approx 1\% \\ <0.04(1)\% \\ \approx 100\% \\ obs \\ 78(11)\% \\ 43(3)\% \\ \approx 0.005\% \\ <4.1(6) \times 10^{-3}\% \\ \approx 100\% \\ 00\% \end{array}$	p p p p	
164W 165mIr 165 Pt 165 Os 165 Re 165 Re 165 W 166 Pt 166 Ir 166 Os 166 Re 167 Pt 167 Pt 167 Re 167 Re 167 Re 167 Re 167 Re 167 W 168 Pt 168 Ir 168 Ns 168 Re 168 Re 168 W 169 Pt 169 J.	0^{+} (11/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺ (5/2 ⁻) 0 ⁺ (1/2 ⁺) (1/2 ⁺) (1/2 ⁺) (1/2 ⁺) (1/2 ⁺)	$\begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ 1.74(6) \text{ s} \\ 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \text{ ms} \\ 15.1(9) \text{ ms} \\ 214(6) \text{ ms} \\ 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ 0.90(13) \text{ ms} \\ 29.3(6) \text{ ms} \\ 28.5(6) \text{ ms} \\ 839(5) \text{ ms} \\ \hline 3.4(4) \text{ s} \\ 6.1(2) \text{ s} \\ 19.9(5) \text{ s} \\ 2.04(16) \text{ ms} \\ 155(40) \text{ ms} \\ 161(21) \text{ ms} \\ 2.2(1) \text{ s} \\ 4.4(1) \text{ s} \\ 51(2) \text{ s} \\ 7.0(2) \text{ ms} \\ \hline 3.53(4) \text{ c} \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ \hline 6.335(6) \\ \hline 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ \hline 6.722(6) \\ \hline 6.894(8) \\ \hline 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \hline 6.505(3) \\ \hline 6.620(5) \\ \hline 5.978(5) \\ \hline 5.276(13)\# \\ $	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ <1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ \hline 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ \hline obs \\ \approx 11\% \\ <0.04(1)\% \\ \approx 100\% \\ obs \\ \hline 78(11)\% \\ 43(3)\% \\ \approx 0.005\% \\ <4.1(6) \times 10^{-3}\% \\ \approx 100\% \\ \hline 53(0)\% \\ \hline 53(0)\% \\ \hline 53(0)\% \\ \hline \end{array}$	р р р р	
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 165W 166Pt 166Ir 166M 166Cs 166Re 167Pt 167Ir 167Os 167Re 167Re 167Re 167Re 167Re 167MRe 167MRe 168Pt 169Pt 169Pt	0^{+} (11/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺ (1/2 ⁺) (1/2 ⁺) (1/2 ⁻) (1/2 ⁺) (1/2 ⁻)	$\begin{array}{r} 6.0(3) \ \text{s} \\ \hline 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \ \text{ms} \\ \hline 21(1) \ \text{ms} \\ \hline 1.6(6) \ \text{s} \\ \hline 1.74(6) \ \text{s} \\ \hline 5.1(5) \ \text{s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ \hline 10.5(22) \ \text{ms} \\ \hline 10.5(22) \ \text{ms} \\ \hline 15.1(9) \ \text{ms} \\ \hline 214(6) \ \text{ms} \\ \hline 2.4(2) \ \text{s} \\ \hline 18.8(4) \ \text{s} \\ \hline 0.90(13) \ \text{ms} \\ \hline 29.3(6) \ \text{ms} \\ \hline 28.5(6) \ \text{ms} \\ \hline 3.4(4) \ \text{s} \\ \hline 6.1(2) \ \text{s} \\ \hline 19.9(5) \ \text{s} \\ \hline 2.04(16) \ \text{ms} \\ \hline 155(40) \ \text{ms} \\ \hline 161(21) \ \text{ms} \\ \hline 2.2(1) \ \text{s} \\ \hline 4.4(1) \ \text{s} \\ \hline 51(2) \ \text{s} \\ \hline 7.0(2) \ \text{ms} \\ \hline 3.53(4) \ \text{s} \\ \hline 29.9(2) \\ \hline \end{array}$	3.278(2) 7.003(71)# 7.453(14)# 6.335(6) 5.694(6) 5.031(5) 7.292(7) 6.722(6) 6.894(8) 6.143(3) 5.663(4) 4.856(4) 7.160(60) 6.505(3) 6.620(5) 5.978(5) 5.276(13)# 5.276(13)#+x 4.751(30) 6.990(3) 6.381(9)+x 5.816(3) 5.063(13) 4.501(11) 6.858(5) 6.141(4) (2)44(2)	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ < 1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ \hline 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ \hline obs \\ \approx 1\% \\ < 0.04(1)\% \\ \approx 100\% \\ obs \\ \hline 78(11)\% \\ 43(3)\% \\ \approx 0.005\% \\ < 4.1(6) \times 10^{-3}\% \\ \approx 100\% \\ 53(9)\% \\ \hline 53(9)\% \\ \hline 69(4)\% \\ \hline \end{array}$	р р р р	
164W 165mIr 165Pt 165Os 165Re 165Re 165mRe 165Ft 166Pt 166Pt 166Pt 166Pt 166Pt 166Pt 166Re 167Re 167Pt 167Tr 167Tr 167MRe 167Re 167Re 167Re 167Re 167Re 167Re 167Re 167Re 167Re 167Re 167Re 167Re 167Re 168Pt 169Pt	0^{+} (11/2 ⁻) (7/2 ⁻) (7/2 ⁻) (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 0 ⁺ (2 ⁻) (9 ⁺) 0 ⁺ (3 ⁻) 0 ⁺ (1/2 ⁺) (11/2 ⁻) (7/2 ⁻) (5/2 ⁻) 0 ⁺ 0 ⁺ (7/2 ⁻) 0 ⁺ (1/2 ⁺) (1/2 ⁻) (1/2 ⁺) (1/2 ⁻) (1/2 ⁺) (1/2 ⁻) (1/2 ⁻)	$\begin{array}{r} 6.0(3) \text{ s} \\ 340(40) \ \mu \text{s} \\ \hline 0.26^{+0.26}_{-0.09} \text{ ms} \\ 21(1) \text{ ms} \\ 1.6(6) \text{ s} \\ 1.74(6) \text{ s} \\ 5.1(5) \text{ s} \\ \hline 260^{+100}_{-60} \ \mu \text{s} \\ 10.5(22) \text{ ms} \\ 15.1(9) \text{ ms} \\ 214(6) \text{ ms} \\ 2.4(2) \text{ s} \\ \hline 18.8(4) \text{ s} \\ 0.90(13) \text{ ms} \\ 29.3(6) \text{ ms} \\ 28.5(6) \text{ ms} \\ 839(5) \text{ ms} \\ \hline 3.4(4) \text{ s} \\ 6.1(2) \text{ s} \\ 19.9(5) \text{ s} \\ 2.04(16) \text{ ms} \\ 155(40) \text{ ms} \\ 161(21) \text{ ms} \\ 2.2(1) \text{ s} \\ 4.4(1) \text{ s} \\ 51(2) \text{ s} \\ 7.0(2) \text{ ms} \\ \hline 3.53(4) \text{ s} \\ 280(3) \text{ ms} \\ 2.3(2) \end{array}$	$\begin{array}{r} 5.276(2) \\ \hline 7.003(71)\# \\ \hline 7.453(14)\# \\ \hline 6.335(6) \\ \hline 5.694(6) \\ \hline 5.694(6) \\ \hline 5.031(5) \\ \hline 7.292(7) \\ \hline 6.722(6) \\ \hline 6.894(8) \\ \hline 6.143(3) \\ \hline 5.663(4) \\ \hline 4.856(4) \\ \hline 7.160(60) \\ \hline 6.505(3) \\ \hline 6.620(5) \\ \hline 5.978(5) \\ \hline 5.276(13)\# \\ $	$\begin{array}{c} 12(2)\% \\ 100\% \\ 90(2)\% \\ 14(8)\% \\ 14(8)\% \\ < 1.5\% \\ 100\% \\ 93.1(29)\% \\ 98.24(58)\% \\ 84(4)\% \\ obs \\ \hline 0.6(2)\% \\ 100\% \\ 43(2)\% \\ 90(3)\% \\ 58(7)\% \\ \hline obs \\ \approx 11\% \\ < 0.04(1)\% \\ \approx 100\% \\ obs \\ \hline 78(11)\% \\ 43(3)\% \\ \approx 0.005\% \\ < 4.1(6) \times 10^{-3}\% \\ \approx 100\% \\ \hline 53(9)\% \\ 68(4)\% \\ 132\% \\ \hline \end{array}$	p p p p	

Table 3
Summary of known direct α emitters. Detailed references for each nucleus can be found in their respective T _z table

¹⁶⁹ Re	(9/2 ⁻)	8.1(3) s	5.014(13)	obs		+19/2
^{169m} Re	$(1/2^+, 3/2^+)$	16.3(8) s	5.101(21)	obs		+19/2
¹⁷⁰ Hg	0^{+}	$80^{+40}_{-4} \ \mu s$	7.773(30)	100 %		+5
¹⁷⁰ Au	(2^{-})	286^{+50} µs	7.177(15)	11(10)%	р	+6
¹⁷⁰ Pt	0^{+}	13.9(2) ms	6.707(3)	$\approx 100\%$	1	+7
^{170m} Au	(9^{+})	617^{+50} µs	7.459(18)	42(5)%	р	+6
¹⁷⁰ Ir	(3^{-})	870^{+180} ms	5 955(5)	5 2(17)%	1	+8
170 <i>m</i> Ir	(8^+)	$\frac{811(18)}{811(18)}$ ms	5.955(5) + x	39(6)%		+8
¹⁷⁰ Os	(0^{+})	7 3(2) s	5 537(3)	9/(6)%		±0
171 Hg	0	50^{+36} us	7.668(15)	100%		+11/2
171 <i>m</i> A 12	$(11/2^{-})$	1.00(2) ms	7.008(13)	100 /0 60(4) 0/		+12/2
171 Dt	(11/2)	1.09(5) IIIs	7.545(17)	00(4)%	р	+15/2
171	(1/2)	45(5) Ills	5.007(12)	≈ 100%		+13/2
171mT	$(1/2^{+})$	$3.2_{-0.7}$ s	5.997(12)	15(2)%		+17/2
1710	(11/2)	1.24(4) s	5.997(12)+x	62(6)%		+1//2
172 US	5/2-	8.3(2) s	5.3/1(4)	1.8(3)%		+19/2
172 Hg	0 '	$231(9) \ \mu s$	7.524(6)	100%		+6
172Au		22^{+0}_{-4} ms	6.923(10)	100%		+7
^{172m} Au		5(1) ms	6.923(10)+x	100%		+7
¹⁷² Pt	0^+	96(3) ms	6.463(4)	94(6)%		+8
^{1/2} Ir	$(3^{-}, 4^{-})$	4.1(2) s	5.991(10)	2.0(2)%		+9
172m Ir	(7^+)	1.89(5) s	5.991(10)+x	9.5(11)%		+9
172 Os	0^{+}	19.2(9) s	5.224(7)	1.2(2)%		+10
¹⁷³ Hg	$(7/2^{-})$	0.80(8) ms	7.378(4)	100%		+13/2
¹⁷³ Au	$(1/2^+)$	26.3(12) ms	6.891(4)	94^{+6}_{-19} %		+15/2
^{173m} Au	$(11/2^{-})$	12.2(1) ms	7.105(23)	92^{+8}_{-13} %		+15/2
¹⁷³ Pt	$(5/2^{-})$	382(2) ms	6.380(5)	86(6)%		+17/2
¹⁷³ Ir	$(3/2^+, 5/2^+)$	8.3(3) s	5.716(9)	4(2)%		+19/2
^{173m} Ir	$(11/2^{-})$	2.150(47) s	5.929(11)	11(1)%		+19/2
¹⁷³ Os	$(5/2^{-})$	22.4(9) s	5.055(6)	$0.020^{+0.010}_{-0.004}\%$		+21/2
¹⁷⁴ Hg	0^+	$1.9^{+0.4}_{-0.3}$ ms	7.233(6)	100%		+7
¹⁷⁴ Au	(2^{-})	120(20) ms	6.699(7)	90(6)%		+8
^{174m} Au	(9^{+})	162(3) ms	6.699(7)+x	obs		+8
¹⁷⁴ Pt	0+	866(5) ms	6.183(3)	74(3)%		+9
¹⁷⁴ Ir	(3^{+})	7.8(6) s	5.693(16)	$\approx 0.4\%$		+10
174m Ir	(7^{+})	5.0(2) s	5.822(23)	2.5(3)%		+10
¹⁷⁴ Os	0^+	44(4) s	4.871(10)	$0.020^{+0.010}_{-0.004}\%$		+11
¹⁷⁴ Hf	0^+	$2.0(4) \times 10^{15}$ y	2.494(2)	100%		+15
¹⁷⁵ Hg	$(7/2^{-})$	10.2(4) ms	7.008(4)	$\approx 100\%$		+15/2
¹⁷⁵ Au	$(1/2^+)$	200(3) ms	6.583(3)	90(7)%		+17/2
^{175m} Au	$(11/2^{-})$	137(1) ms	6.583(3)+x	90(3)%		+17/2
¹⁷⁵ Pt	$(7/2^{-})$	2.43(4) s	6.164(4)	64.5(13)%		+19/2
¹⁷⁵ Ir	$(5/2^{-})$	8(1) s	5.710(5)	0.85(22)%		+21/2
^{175m} Ir	(9/2-)	4.9(4) s	5.879(9)	$\approx 70\%$		+21/2
¹⁷⁶ Hg	0+	21.3(8) ms	6.897(6)	98(2)%		+8
¹⁷⁶ Au	$(2^{-},3^{-})$	1.046(11) s	6.433(7)+x	58(5)%		+9
^{176m} Au	$(7^+, 8^+, 9^+)$	1.36(2) s	6.433(7)+x	29(3)%		+9
¹⁷⁶ Pt	0^{+}	6.33(15) s	5.885(2)	38(3)%		+10
¹⁷⁶ Ir	5+	8(1) s	5.260(36)	2.4(4)%		+11
¹⁷⁷ Tl	$(1/2^+)$	18(5) ms	7.067(7)	73(13)%	р	+15/2
^{177m} Tl	$(11/2^{-})$	230(40) us	7.874(19)	49(8)%	p	+15/2
¹⁷⁷ Hg	$(7/2^{-})$	127(2) ms	6.731(5)	100%	1	+17/2
¹⁷⁷ Au	$(1/2^+)$	1.486(20) s	6.298(4)	54(5)%		+19/2
^{177m} Au	(11/2 ⁻)	1.186(12) s	6.298(4)	56(8)%		+19/2
¹⁷⁷ Pt	5/2-	9.8(4) s	5.643(3)	5.7(5)%		+21/2
¹⁷⁷ Ir	5/2-	26(2) s	5.082(34)	0.06(1)%		+23/2
¹⁷⁸ Pb	0^{+}	180^{+130} µs	7.789(13)	100%		+7
¹⁷⁸ TI	$(4^{-}, 5^{-})$	252(20) ms	7.020(10)	62(2)%		+8
178Hg	0+	266(3) ms	6.577(3)	89(4)%		+9
178 Au	$(2^+, 3^-)$	3.4(5) \$	6.058(5)	16(1)%		+10
^{178m} Au	$(7^+, 8^-)$	2.7(5) s	6.247(15)	18(1)%		+10
¹⁷⁸ Pt	0+	20.8(5) s	5.573(2)	7.5(3)%		+11
¹⁷⁹ Pb	$(9/2^{-})$	2.7(2) ms	7.516(4)	$\approx 100\%$		+15/2
179Tl	(1/2 ⁺)	426(10) ms	6.709(3)	60(20)%		+17/2
^{179m} Tl	$(11/2^{-})$	1.42(3) ms	6.709(3)	100%		+17/2
¹⁷⁹ Hg	$(7/2^{-})^{\prime}$	1.06(4) s	6.430(4)	75(4)%	β_n	+19/2
0	× /		× /	× /	• P	

Table 3					
Summary of	of known direct α emi	tters. Detailed reference	es for each nucleus can	be found in their res	spective T_z tables.

¹⁷⁹ Au	$1/2^{+}$	7.3(3) s	5.981(5)	22.0(9)%		+21/2
¹⁷⁹ Pt	$1/2^{-}$	21.2(4) s	5.307(7)	0.24(4)%		+23/2
¹⁸⁰ Pb	0+	4 1(3) ms	7 419(5)	≈100%		+8
¹⁸⁰ Tl	(5-)		6.706(62)	6(4)%		+9
¹⁸⁰ Ho	0^+	2 56(2) s	6 258(2)	48(2)%		+10
¹⁸⁰ Au	(1^+)	8 1(3) s	5.831(7)	0.58(10)%		+11
180 Pt	(1^{+})	58(3) s	5.051(7)	0.53(10)%		+12
180W	0+	$\frac{18(2) \times 10^{18}}{18(2)}$ v	2 515(1)	100%		+12
181 ph	$(9/2^{-})$	300(9) ms	7.240(7)	~100%		+17/2
181 TI	$(1/2^+)$	2.9(1) s	6 322(4)	~100 %		+10/2
181mT1	$(1/2^{-})$	2.9(1) s 1 40(2) mc	0.322(4)	0.40(6)%		+19/2
181 Ца	(9/2)	2.6(1) a	6 284(4)	26.2(41)%	ßß	+19/2
181 Au	(2/2-)	<u>14 5(4) a</u>	5 751(2)	20.5(41)/0	ρ_p, ρ_{α}	+21/2
181 Dt	(3/2)	14.3(4) 8 51(5) a	5.150(5)	2.7(3)% 0.074(10)%		+25/2
182 ph	0^{\pm}	51(5) s 55(5) ms	7.066(6)	~100%		+23/2
182 11	low opin	1.0(1) a	6.551(6)	$\sim 100 \%$		+10
182Hg	0^+	1.9(1) 8 10.83(6) c	5.006(5)	20.49%		+10
182 A u	$\frac{0^{+}}{(2^{+})}$	10.03(0) 8	5.525(4)	0.12(5)%		+11
182 Dt	(2^{+})	13.0(4) s	3.323(4)	0.13(3)% 0.028(2)%		+12
183 Dh	(2/2-)	2.2(1) III 525(20) mg	4.931(3)	0.038(2)%		+13
183mDL	(3/2)	333(30) IIIs	0.928(7)	obs		+19/2
183mT1	(13/2+)	415(20) ms $52(20)$ ms	7.007(9)	ODS = 1.45(42)0/		+19/2
18311	(9/2)	55.5(5) ms	6.605(9)	1.45(42)%	0	+21/2
183 A	1/2	8.9(2) s	6.039(4)	23.7(7)%	ρ_p	+23/2
183 Au	(5/2)	44.6(19) s	5.465(3)	0.8(2)%		+25/2
¹⁰⁵ Pt	$1/2^{-}$	6.5(10) m	4.822(9)	9.6(5)×10 ⁻⁵ %		+2//2
^{195m} Po	$(13/2^+)$	1.92(2) s	6.900(10)	93(7)%		+2//2
¹⁰⁴ B1		13(2) ms	8.22(10)#+y	$\approx 100\%$		+9
¹⁶⁴ <i>m</i> Bi		6.6(15) ms	8.22(10)#+x	$\approx 100\%$		+9
¹⁸⁴ Pb	0^{+}	480(25) ms	6.774(3)	80(15)%		+10
¹⁸⁴ Tl	(2^{-})	9.5(2) s	6.317(9)+y	1.22(30)%		+11
^{184<i>m</i>1} Tl	(7+)	11(1) s	6.317(9)+x	0.047(6)%		+11
^{184m2} Tl	(10 ⁻)	47.1(7) ms	6.823(9)+x	0.089(19)%		+11
¹⁸⁴ Hg	0^{+}	30.6(3) s	5.660(4)	1.26(20)%		+12
^{184m} Au	2^{+}	46.4(10) s	5.305(5)	0.013(3)%		+13
¹⁸⁴ Pt	0^+	17.3(2) m	4.599(8)	$1.7(7) \times 10^{-3}\%$		+27/2
¹⁸⁴ Os	0^{+}	$1.12(23) \times 10^{13}$ y	2.959(2)	100%		+16
¹⁸⁵ Bi	$(1/2^+)$	$2.8^{+23}_{-10} \mu s$	8.207(15)	9(2)%	р	+19/2
¹⁸⁵ Pb	$(3/2^{-})$	4.3(2) s	6.695(5)	42(25)%		+21/2
^{185m} Pb	$(13/2^+)$	6.3(4) s	6.695(5)+x	50(25)%		+21/2
^{185m} Tl	$(9/2^{-})$	1.7(2) s	6.143(5)	obs		+23/2
¹⁸⁵ Hg	1/2-	49.1(10) s	5.773(4)	$\approx 6.04\%$		+25/2
^{185m} Hg	$13/2^{+}$	21.6(15) s	5.877(4)	$\approx 0.030\%$		+25/2
¹⁸⁵ Au	5/2-	4.2(1) m	5.180(5)	0.26(6)%		+27/2
¹⁸⁶ Po	0^+	$28^{+16}_{6} \mu s$	8.501(14)	100%		+9
¹⁸⁶ Bi	(3^{+})	14.8(8) ms	7.757(12)	$\approx 100\%$	β_F	+10
^{186m} Bi	(10^{-})	9.8(4) ms	7.757(12)+x	$\approx 100\%$	β_F	+10
¹⁸⁶ Pb	0^{+}	4.79(5) s	6.471(5)	38(9)%		+11
¹⁸⁶ Tl	(2-)	$3.4^{+0.5}_{-0.4}$ s	5.996(26)	obs		+12
^{186m} Tl	(7^+)	27.5(10) s	6.073(63)	0.006(2)%		+12
¹⁸⁶ Hg	0^{+}	1.41(8) m	5.204(10)	0.016(5)%		+13
¹⁸⁶ Au	3-	10.7(5) m	4.912(14)	$8(2) \times 10^{-4}\%$		+14
¹⁸⁶ Pt	0^+	2.10(5) h	4.320(18)	$\approx 1.4 \times 10^{-4}\%$		+15
¹⁸⁶ Os	0+	$2.0(11) \times 10^{+15}$ v	2.821(1)	100%		+17
¹⁸⁷ Po	$(1/2^{-}, 5/2^{-})$	1.40(25) ms	7.979(15)	100%		+19/2
¹⁸⁷ Bi	$(1/2^+)$	38(2) ms	7 779(4)	≈100%		+21/2
^{187m} Bi	$(9/2^{-})$	370(20) #8	7.891(12)	≈100%		+21/2
¹⁸⁷ Pb	$(3/2^{-})$	15.2(3) 8	6.393(6)	7(2)%		+23/2
^{187m} Ph	(13/2+)	17.9(2) s	6.413(18)	12(2)%		+23/2
^{187m} Tl	$(9/2^{-})$	15 60(12) \$	5.655(11)	0.15(5)%		+25/2
¹⁸⁷ Ho	3/2-	2.2(3) m	5.145(20)	$>3.7 \times 10^{-3}\%$		+2712
¹⁸⁷ Au	$1/2^+$	8 3(3) m	4 748(30)	$\approx 2 \times 10^{-3}\%$		+29/2
188Po	0^{+}	270(30) //s	8 ()82(15)	100%		+10
188 Ri	(3+)	60(3) ms	7 264(5)	~100%	ßr	+11
188mBi	(10^{-})	265(10) ms	7.264(5) + x	≈100%	β_{r}	+11
¹⁸⁸ Ph	0+	255(10) IIIS	6 109(3)	8 5(5)%	Pr	+12
10	0	20.0(1) 0	0.107(3)	0.5(5)/0		114

Table 3
Summary of known direct α emitters. Detailed references for each nucleus can be found in their respective T _z tables.

¹⁸⁸ Hg	0^+	3.25(15) m	4.709(15)	$\approx 3.7 \times 10^{-5} \%$		+27/2
¹⁸⁹ Po	$(5/2^{-})$	35(5) ms	7 694(15)	$\approx 100\%$		+21/2
189Bi	$(9/2^{-})$	688(3) ms	7 268(3)	obs		+23/2
189m _B ;	$(1/2^+)$	50(1) ms	7.200(3)	83(5)%		+23/2
189 Dh	(1/2) $(2/2^{-})$	30(8)	5.015(4)	<0.4%		+25/2
189mph	(3/2)	59(8) 8	5.915(4)	$\leq 0.4\%$		+2372
18911	$(13/2^{+})$	50(3) s	5.955(4)	$\approx 0.4\%$		+23/2
10 ⁹ Hg	3/2	7.9(2) m	4.637(41)	<3×10 %		+29/2
¹⁹⁰ At	(10^{-})	$1.0^{+1.4}_{-0.4}$ ms	7.917(20)-x	100%		+10
¹⁹⁰ Po	0^{+}	2.45(5) ms	7.693(7)	100%		+11
¹⁹⁰ Bi	(3 ⁺)	6.3(1) s	6.862(3)	$90^{+10}_{-30}\%$	β_F	+12
^{190m} Bi	(10^{-})	6.2(1) s	7.053(65)	70(9)%	β_F	+12
¹⁹⁰ Pb	0^+	71(1) s	5.698(5)	0.24(7)%		+13
¹⁹⁰ Hg	0^{+}	19.9(4) m	4.069(27)	$< 3.4 \times 10^{-7}\%$		+15
¹⁹⁰ Pt	0^{+}	$6.65(28) \times 10^{11} \text{ y}$	3.269(1)	100%		+17
¹⁹¹ At	$(1/2^+)$	$1.7^{+1.1}$ ms	7.822(14)	100%		+21/2
191m At	$(1/2^{-})$	$2 1^{+0.4}$ mg	7.822(14)	100%		121/2
191 D -	(1/2)	$2.1_{-0.3}$ IIIS	7.022(14)	100%		+21/2
101mp	(3/2)	22(2) ms	7.493(3)	≈100%		+25/2
^{191m} Po	$(13/2^+)$	93(3) ms	7.556(25)	≈100%		+23/2
¹⁹¹ B1	(9/2-)	12.1(4) s	6.780(3)	51(10)%		+25/2
^{191m} Bi	$(1/2^{+})$	116(5) ms	7.014(7)	68(5)%		+25/2
¹⁹¹ Pb	$(3/2^{-})$	1.3(3) m	5.402(14)	0.051(5)%		+27/2
¹⁹² At		11.5(6) ms	7.696(26)	$\approx 100\%$	β_F	+11
192m At	(9-, 10-)	88(6) ms	7.696(26)+x	$\approx 100\%$	β_F	+11
¹⁹² Po	0^+	32.5(10) ms	7.320(3)	$\approx 100\%$		+12
¹⁹² Bi	(3^{+})	34.6(7) s	6.377(4)	12(5)%		+13
^{192m} Bi	(10^{-})	39.7(4) s	6.517(30)	10(3)%		+13
¹⁹² Pb	0^{+}	3.5(1) m	5.222(5)	$6.0(5) \times 10^{-3}\%$		+27/2
193 R n	0	$\frac{115(27)}{115(27)}$ ms	8.040(12)	100%		+21/2
193 A t	$(1/2^{+})$	28^{+5} ms	7,572(7)	~100%		+23/2
193m1 A +	$(1/2^{-1})$	20_{-4} ms	7.572(7)	$\sim 100\%$		+23/2
193m2	(112)	$21(3)$ ms $27^{\pm 4}$	7.582(9)	≈100%		+23/2
193 D	$(13/2^+)$	27_{-3} ms	7.616(10)	24(10)%		+23/2
195Po	(3/2 ⁻)	420(40) ms	7.094(4)	$\approx 100\%$		+25/2
^{195m} Po	$(13/2^{+})$	240(10) ms	7.094(4)	pprox 100%		+25/2
¹⁹³ Bi	(9/2 ⁻)	67(3) s	6.307(5)	2.2(5)%		+27/2
^{193m} Bi	$(1/2^{+})$	3.4(2) s	6.614(9)	75(25)%		+27/2
194 Rn	0^+	780(160)µs	7.862(10)	100%		+11
¹⁹⁴ At	(2^{-})	253(10) ms	7.454(11)	pprox 100%	β_F	+12
^{194m} At	(9 ⁻ , 10 ⁻)	310(8) ms	7.510(24)	$\approx 100\%$	β_F	+12
¹⁹⁴ Po	0^+	392(4) ms	6.987(3)	93(7)%		+13
¹⁹⁴ Bi	(3^{+})	95(3) s	5.918(5)	0.46(25)%		+14
^{194m} Bi	(10^{-})	114(4) s	6.079(9)	0.20(7)%		+14
¹⁹⁴ Pb	0^{+}	12.0(5) m	4.738(17)	$7.3(29) \times 10^{-6}\%$		+15
¹⁹⁵ Rn	(3/2-)	6^{+3} ms	7 694(11)	100%		+23/2
195m R n	$(13/2^+)$	5^{+3} ms	7 776(28)	100%		+23/2
195 • •	(13/2)	3_{-2} ms $200(20)$ ms	7.770(20)	~100%		+25/2
195m	$(1/2^{-1})$	309(20) ms	7.344(0)	$\approx 100\%$		+2372
195 D -	(1/2)	144(3) IIIs	(750(2))	04(4)%		+2372
195 PO	(3/2)	4.64(9) \$	6.750(3)	94(4)%		+2//2
¹⁹⁵ B1	(9/2 ⁻)	18/(5) s	5.832(5)	0.01 - 0.05%		+29/2
¹⁹⁵ <i>m</i> Bi	$(1/2^{+})$	87(1) s	6.233(9)	16 - 49%		+29/2
¹⁹⁶ Rn	0^+	$4.4^{+1.5}_{-0.9}$ ms	7.617(9)	100%		+12
¹⁹⁶ At	(3+)	371(5) ms	7.196(3)	97.5(3)%	β_F	+13
¹⁹⁶ Po	0^+	5.8(2) s	6.658(2)	94(5)%		+27/2
¹⁹⁶ Bi	(3 ⁺)	308(12) s	5.438(40)	1.15(34)×10 ⁻³ %		+15
^{196m} Bi	(10^{-})	240(3) s	5.694(41)	$3.8(10) \times 10^{-4}$ %		+15
¹⁹⁷ Fr	$(7/2^{-})$	$0.6^{+3.0}_{-0.2}$ ms	7.896(53)	100%		+23/2
¹⁹⁷ Rn	$(3/2^{-})$	53^{+7} ms	7.411(7)	$\approx 100\%$		+25/2
¹⁹⁷ <i>m</i> R n	$(13/2^+)$	25^{+3} ms	7 411(7)	$\approx 100\%$		+25/2
197 A +	(0/2-)	<u>388(6) ms</u>	7 104(3)	~ 100%		123/2
197m A +	(9/2)	2 0(2) c	7.104(3)	$\sim 100\%$ $\sim 100\%$		+2//2
197 D	$(1/2^+)$	2.0(2) S	7.152(10)	$\approx 100\%$		+2//2
197mp	$(3/2^{+})$	53(1) S	0.411(3)	/1(3)%		+29/2
197mp	$(13/2^{+})$	25.8(1) s	6.610(11)	56(2)%		+29/2
^{17/} Bi	$(1/2^{+})$	309(33) s	5.365(11)+x	15-95 %		+31/2
¹⁹⁸ Fr	(2^{-})	15(3) ms	7.770(15)**	100%		+12
^{198m1} Fr	$(6^+, 7^+)$	16^{+13}_{-5} ms	7.770(15)+x	100%		+12
^{198m2} Fr	h.s.	1.1(7) ms	7.770(15)+y	100%		+12

Table 3
Summary of known direct α emitters. Detailed references for each nucleus can be found in their respective T _z tables.

¹⁹⁸ Rn	0^+	65(2) ms	7.349(4)	$\approx 100\%$		+13
¹⁹⁸ At	(3^+)	447(5) s	6 889(2)	>94%		+14
198m At	(10^{-})	1 25(5) s	7.154(4)	>86%		+14
198 Po	(10^{+})	1.23(3) s	6 310(1)	>00 <i>10</i> 58(2)%		+14
199	$(1/2^{+})$	5 ⁺⁷	0.310(1)	1000		+15
199m1 E	$(1/2^+)$	5_{-2} ms	7.817(10)	100%		+25/2
¹⁹⁹ / ¹¹ Fr	(7/2 ⁻)	7^{+3}_{-2} ms	7.874(28)	100%		+25/2
^{199m2} Fr	$(13/2^+)$	$1.6^{+1.0}_{-0.6}$ ms	$\leq 8.117(10)$	100%		+25/2
¹⁹⁹ Rn	$(3/2^{-})$	620(25) ms	7.132(4)	$\approx 100\%$		+27/2
^{199m} Rn	$(13/2^+)$	316(16) ms	7.355(13)	$\approx 100\%$		+27/2
¹⁹⁹ At	$(9/2^{-})$	6.92(13) s	6.830(1)	$92^{+3}\%$		+29/2
^{199m} At	$(1/2^+)$	0.31(8) s	≈7.017(1)	$\approx 1\%$		+29/2
¹⁹⁹ Po	$(3/2^{-})$	312(6) \$	6 074(2)	7 5(3)%		+31/2
199mpo	$(3/2^+)$	252(6) s	6 386(3)	24.7(0)%		+31/2
200 Er	(13/2)	252(0) s	7.622(4)	> 07 5%	β_	+12
200	(3^{+})	48(4) IIIs	7.022(4)	>97.5%	$ ho_F$	+13
200 Kn	0	1.06(2) s	7.043(2)	86-4 %		+2//2
200At	(3 ⁺)	43(1) s	6.596(1)	46(2)%		+15
At	(7+)	47(1) s	6.709(2)	43(7)%		+15
$200m^2$ At	(10^{-})	4.8(3) s	6.852(6)	10.5(3)%		+15
²⁰⁰ Po	0^+	11.6(1) m	5.982(2)	11.3(3)%		+16
²⁰¹ Ra	$(3/2^{-})$	8^{+40}_{-4} ms	8.002(12)	100%		+25/2
201mRa	$(13/2^+)$	$1.6^{+7.7}$ ms	8.362(32)	100%		+25/2
201 Fr	$(9/2^{-})$	63(3) ms	7 519(4)	$\approx 100\%$		+27/2
201mEn	$(1/2^+)$	$10^{\pm 12}$ ms	7.519(4)	$\sim 100 \%$		+27/2
201 p	$(1/2^{+})$	10_{-3}^{-3} IIIS	7.049(14)	100%		+2//2
201 Rn	(3/2)	7.0(4) s	6.861(2)	pprox 80%		+2972
²⁰¹ <i>m</i> Rn	$13/2^{(+)}$	3.8(4) s	7.109(12)	pprox 90%		+29/2
²⁰¹ At	9/2-	85(2) s	6.473(2)	61(3)%		+31/2
²⁰¹ Po	3/2-	15.8(3) m	5.799(2)	1.15(1)%		+33/2
^{201m} Po	$13/2^{+}$	9(2) m	5.799(2)	2.9(2)%		+33/2
²⁰² Ra	0^+	$3.8^{+1.3}_{0.8}$ ms	7.880(7)	100%		+13
²⁰² Fr	(3^{+})	372(10) ms	7.385(4)	97.6(2)%	β_F	+14
202m Fr	(10^{-})	286(13) ms	7 638(9)	97.6(2)%	ßr	+14
202Rn	0^+	9 7(2) s	6 774(2)	78(8)%	Pr	+15
202 A t	(3 ⁺)	<u>184(1) s</u>	6 354(1)	0(1)%		+16
202m1 A +	(3^+)	182(2) a	0.334(1)	9(1)/0 9(11)0/		+10
202m2	(7^{+})	102(2) s	0.334(1)	8.0(11)%		+10
202m2 At	(10)	3.46(5) s	6.354(1)	4.6(11)%		+16
²⁰² Po	0^+	45.4(2) m	5.701(2)	1.93(6)%		+17
²⁰³ Ac		$56^{+269}_{-25} \ \mu s$	8.382(16)	100%		+25/2
²⁰³ Ra	$(3/2^{-})$	31^{+17}_{-9} ms	7.736(6)	$\approx 100\%$		+27/2
^{203m} Ra	$(13/2^+)$	24_{-4}^{+6} ms	7.986(19)	$\approx 100\%$		+27/2
²⁰³ Fr	$(9/2^{-})$	550(7) ms	7.275(4)	$\approx 100\%$		+29/2
^{203m} Fr	$(1/2^+)$	43(4) ms	≈7.635(4)	20(4) %		+29/2
203Rn	$(3/2^{-})$	44(2) s	6 630(2)	66(9) %		+31/2
203mRn	$(3/2^+)$	26.7(5) s	6.094(3)	78(7)%		+31/2
203 • +	(13/2)	74(2) m	6.210(1)	27(2)%		+31/2
203 D-	912 5/2-	7.4(3) III 24.8(5)	0.210(1)	27(3)%		+33/2
204 A	5/2	34.8(5) m	5.496(5)	0.11(2)%		+33/2
²⁰⁴ Ac	(3))	75_{-15} ms	8.10/(15)	$\approx 100\%$		+13
²⁰⁴ Ra	0+	58^{+10}_{-7} ms	7.637(7)	$\approx 100\%$		+27/2
²⁰⁴ Fr	(3 ⁺)	1.99(12) s	7.170(2)	96(2)%		+15
204m1 Fr	(7 ⁺)	2.3(3) s	7.219(7)	90(2)%		+15
^{204m2} Fr	(10^{-})	2.19(41) s	7.359(7)	74(8)%		+15
²⁰⁴ Rn	0^+	75(1) s	6.547(2)	72(1)%		+16
²⁰⁴ At	7^{+}	9.1(1) m	6.070(1)	4.52(4)%		+17
²⁰⁴ Po	0+	3 52(1) h	5 485(1)	0.660(7)%		+18
205 A c	$(0/2^{-})$	20^{+97} ms	8,003(50)	$\sim 100\%$		+27/2
205 0	$(2/2^{-})$	20_{-9} ms 210^{+41} ms	7764(27)	$\sim 100\%$ $\sim 100\%$		+20/2
205mm	(3/2)	210_{-26} ms	7.704(37)	≈ 100%		+29/2
²⁰⁵ <i>m</i> Ra	13/2(+)	182_{-24}^{+30} ms	7.764(37)	$\approx 100\%$		+29/2
²⁰⁵ Fr	9/2-	3.80(3) s	7.055(2)	98.5(2)%		+31/2
²⁰⁵ Rn	5/2-	170(4) s	6.386(2)	26(1)%		+33/2
²⁰⁵ At	9/2-	26.0(5) m	6.020(2)	15.1(16)%		+35/2
²⁰⁵ Po	5/2-	5.79(2) h	5.325(10)	0.074(16)%		+37/2
²⁰⁶ Ac	(3^{+})	22^{+9} ms	7,958(65)	$\approx 100\%$		+14
206m A c	(10^{-})	33^{+22} ms	8 156(71)	$\approx 100\%$		+14
2060.	0+	244(12) mg	7 /15(/)	~ 100%		
206 E	2(+)	244(15) IIIS	(.022(2))	$\approx 100\%$		+13
°Fr	S (1)	15.9(3) 8	0.923(3)	08.4(33)%		+10

Table 3			
Summary of known direct α emitters.	Detailed references for each nucleus can	be found in their respective T_z	tables.

^{206m1} Fr	$7(^{+})$	15.9(3) s	6.923(3)+x	84.7(15)%		+16	
^{206m2} Fr	$10(^{-})$	0.7(1) s	7.436(8) + x	13(2)%		+16	
²⁰⁶ Rn	0+	6 29(10) m	6.384(2)	62(3)%		+17	
206	(5+)	0.29(10) m	5.997(5)	0.97(9)//		117	
200 At	(5')	29.3(4) m	5.887(5)	0.87(8)%		+18	
²⁰⁰ Po	0^+	8.8(1) d	5.327(1)	5.2(4)%		+19	
²⁰⁷ Th		$9.7^{+46.6}_{-4.4}$ ms	8.328(21)	$\approx 100\%$		+27/2	
²⁰⁷ Ac	$(9/2^{-})$	27^{+11} ms	7.855(18)	$\approx 100\%$		+29/2	
207 P a	$(3/2^{-})$	12(2) s	7 272(5)	obs		+31/2	
207mp	(3/2)	1.2(2) 8	7.272(3)	008		+31/2	
207mRa	$(13/2^{+})$	55(7) ms	7.781(11)	26(20)%		+31/2	
²⁰⁷ Fr	9/2-	14.9(1) s	6.901(3)**	95(3)%		+33/2	
²⁰⁷ Rn	5/2-	555(10) s	6.251(2)	23(2)%		+35/2	
²⁰⁷ At	9/2-	1.80(3) h	5.872(3)	obs		+37/2	
²⁰⁷ Po	5/2-	$350 \ 3(41) \ m$	5 216(3)	0.0210(18)%		+39/2	
208 ml	0+	1 7+1.7	9.202(21)	100%		13912	
200 I n	0	$1.7_{-0.6}$ ms	8.202(31)	100%		+14	
²⁰⁸ Ac	(3^{+})	171(13) ms	7.714(10)	$\approx 100\%$		+15	
208mAc	(10^{-})	37.1(37) ms	8.089(20)	$\approx 100\%$		+15	
²⁰⁸ Ra	0^{+}	1.2(2) s	7.273(5)	obs		+16	
208 Er	7+	58 6(3) s	6 785(25)	80(3)%		+17	
208 D.m	, 0±	1461(9) a	6.261(2)	62(2)/0		117	
200 Kn	0	1401(8) \$	0.201(2)	03(3)%		+18	
²⁰⁸ At	6^+	1.63(3) h	5.751(2)	0.56(5)%		+19	
²⁰⁸ Po	0^{+}	2.888 y	5.216(1)	99.9958(4)%		+20	
^{209m} Th	$(13/2^+)$	$2.5^{+1.7}_{0.7}$ ms	8.17(11) + x	100%		+29/2	
209 A c	$(9/2^{-})$	80^{+12} ms	7 730(55)	$\sim 100\%$		+31/2	
209 p	()/2)	07_9 IIIS	7.142(2)	~ 100%		+31/2	
200 - Ra	5/2	4.9(2) s	7.143(3)	$\approx 100\%$		+33/2	
²⁰⁹ Fr	9/2-	51.3(8) s	6.777(4)	89(3)%		+35/2	
²⁰⁹ Rn	5/2-	28.5(10) m	6.155(2)	17(2)%		+37/2	
²⁰⁹ At	9/2-	5.41(5) h	5.757(2)	3.6(7)%		+39/2	
²⁰⁹ Po	$1/2^{-}$	128 7(3) v	4 979(1)	99 55(1)%		+41/2	
209 p:	0/2-	$2.01(8) \times 10^{19} \text{ m}$	2.127(1)	1000/		+ 42/2	
210 ml	9/2	2.01(8)×10 ⁻¹ y	3.137(1)	100%		+43/2	
210 Th	0 '	15.1(27) ms	8.069(6)	$\approx 100\%$		+15	
²¹⁰ Ac		350(50) ms	7.586(57)	$\approx 100\%$		+16	
²¹⁰ Ra	0^+	3.7(2) s	7.151(3)	$\approx 100\%$		+17	
²¹⁰ Fr	6^{+}	3.18(6) m	6.671(5)	71(4)%		+18	
210 P n	0+	144(6) m	6 150(2)	96(1)%		+10	
210 • •	0 (5 ⁺)	144(0) III 9,440(70) 1	0.139(2)	90(1)/0		+15	
210 At	(5')	8.440(79) h	5.631(1)	0.18(2)%		+20	
²¹⁰ Po	0^+	138.3787(16) d	5.408	100%		+21	
²¹⁰ Bi	1^{-}	5.013(5) d	5.036(1)	$1.32(10) \times 10^{-4}\%$		+22	
^{210m} Bi	9-	$3.04(6) \times 10^6$ y	5.307(1)	100%		+22	
210Pb(RaD)	0^{+}	22 23(12) v	3 792(20)	$1.9(3) \times 10^{-6}\%$		+23	
211 p-	$(0/2^{-})$	22.23(12) y	9.491(41)	100 0		125	
Pa	(9/2)	$3.8_{-1.4}$ ms	8.481(41)	100 %		+29/2	
²¹¹ Th	$(3/2^{-})$	36^{+15}_{-6} ms	7.941(10)	$\approx 100\%$		+31/2	
2^{211m} Th	$(13/2^+)$	83(8) µs	8.706(66)	4(3)%		+31/2	
²¹¹ Ac	$(9/2^{-})$	229(25) ms	7.624(6)	$\approx 100\%$		+33/2	
211 P.a	5/2-	13(2) s	7.042(3)	$\sim 100\%$		+35/2	
211	0/2-	13(2) s	($\sim 100\%$		+35/2	
Fr 211-	912	5.10(2) m	0.002(3)	0/(5)%		+3/12	
²¹¹ Rn	$1/2^{-}$	14.6(2) h	5.965(1)	26(1)%		+39/2	
²¹¹ At	9/2-	7.214(7) h	5.982(1)	41.80(8)%		+41/2	
²¹¹ Po	9/2+	516(3) ms	7.595(1)	pprox 100%		+43/2	
²¹¹ <i>m</i> Po	$(25/2^+)$	25 2(5) 8	9.048(10)	99 984(4)%		+43/2	
211 Bi(A of)	0/2-	2 13(2) m	6 750(1)	00 72(1)%		+15/2	
212-	912	2.13(2) III	0.750(1)	99.72(1)%		+43/2	
²¹² Pa		$4.5^{+2.7}_{-1.3}$ ms	8.411(59)	100%		+15	
²¹² Th	0^{+}	31.7(13) ms	7.958(5)	$\approx 100\%$		+16	
²¹² Ac	(7^{+})	896(35) ms	7.540(24)	pprox 100%		+17	
²¹² Ra	0+	13.0(2) 8	7.032(2)	$\approx 94\%$		+18	
212 E.	5+	20 3(2) m	6 520(2)	44(4)%		+10	
2125	0 ⁺	20.3(3) III	0.329(2)	44(4 <i>)70</i>		+19	
²¹² Rn	0-	24.8(5) m	6.385(3)	100%		+20	
²¹² At	(1^{-})	314.5(21) ms	7.817(1)	100%		+21	
^{212m} At	(9 ⁻)	112.6(9) ms	8.046(3)	$\approx 100\%$		+21	
²¹² Po (ThC')	0^{+}	294,965(178) ns	8.9542(1)	100%		+22	
212m1 Po	(8^+)	17 1(2) no	10 4306(2)	~42%		+22	
212m2n-	(10+)	17.1(2) 115 45.1(6) =	11.00/(10)	$\sim \tau 2 / 0$		+22	
212 D: 07 -	(18.)	43.1(0) S	11.884(10)	99.93(2)%		+22	
²¹² Bi(ThC)	1-	60.600(43) m	6.207	35.94(3) %		+23	
212m Bi	(9 ⁻)	25.0(2) m	6.446(30)	67(1)%	β-α	+23	
010							
²¹³ Pa	(9/2-)	$5.1^{+3.3}$ ms	8.384(12)	100%		+31/2	
²¹³ Ра ²¹³ ть	(9/2 ⁻) 5/2 ⁻	$5.1^{+3.3}_{-1.2}$ ms 86(10) ms	8.384(12) 7.837(7)	100% 100%		+31/2	

Table 3	
Summary of known direct α emitters.	Detailed references for each nucleus can be found in their respective T_z tables.

²¹³ Ac	9/2-	731(17) ms	7.498(4)	$\approx 100\%$		+35/2
213 Pa	1/2-	2 73(5) m	6 862(2)	87(2)%		+37/2
213mp	172	2.75(5) III	0.002(2)	0 ((1))		+3/12
²¹⁰ mRa	17/2	2.20(5) ms	8.632(5)	0.6(4)%	γ	+3//2
²¹³ Fr	9/2-	34.14(6) s	6.905(1)	99.45(3)%		+39/2
²¹³ Rn	$(9/2^+)$	19.5(1) ms	8.245(3)	$\approx 100\%$		+41/2
213 At	0/2-	110(20) ns	0.254(5)	100%		+/3/2
213 D	912	110(20) IIS	9.234(3)	100%		+43/2
215Po	9/2+	$3.6984(6) \ \mu s$	8.536(3)	100%		+45/2
²¹³ Bi	9/2-	45.61(4) m	5.988(3)	2.140(10)%		+47/2
214 _{II}	0^+	520 ⁺⁹⁵⁰ us	8 696(18)	100%		±15
214 D	0	17(2)	7.596(57)	100%		+15
21 · Pa		17(3) ms	7.586(57)	$\approx 100\%$		+16
²¹⁴ Th	0^+	113^{+11}_{-9} ms	7.827(5)	100%		+17
²¹⁴ Ac	5^{+}	8.2(2) s	7.352(2)	89(3)%		+18
214 P o	0+	2.47(2)	7 272(2)	~100%		10
214	0	2.47(2) 8	1.273(3)	≈100%		+19
²¹⁴ <i>m</i> Ra	8^+	$68.6(20) \ \mu s$	9.138(3)	0.09(7)%	γ	+19
²¹⁴ Fr	(1^{-})	5.0(2) ms	8.589(4)	100%		+20
214m Fr	(8^{-1})	3.35(5) ms	8.710(8)	100%		+20
214 P n	0+	250(2) m	0.208(0)	100%		120
2141	0.	239(3) 118	9.208(9)	100%		+21
214m1 Rn	6^{+}	1.0(3) ns	10.681(9)	obs		+21
^{214m2} Rn	8+	4.8(3) ns	10.765	4.3(7)%		+21
214 At	(2^{-})	558(10) ns	8 988(4)	100%		+22
21/m1	(2)	2(5(20)	0.000(4)	100%		+22
214mi At		265(30) ns	9.047(10)	$\approx 100\%$		+22
$^{214m^{2}}At$	(9-)	760(15) ns	9.221(7)	$\approx 100\%$		+22
214 Po(RaC')	0^{+}	163.45(4) µs	7.834(0)	100%		+23
214p;	1-	10.71(2) m	5 621(2)	0.0210(12)0/	R-	+24
215	1	19.71(2) III	5.021(5)	0.0210(13)%	ρ_{α}	+24
²¹⁵ U		$0.73^{+1.55}_{-0.29}$ ms	8.588(30)	100%		+31/2
²¹⁵ Pa	$(9/2^{-})$	14(2) ms	8.241(7)	100%		+33/2
215 Th	$(1/2^{-})$	12(2) s	7.665(4)	$\sim 100\%$		135/2
215	(1/2)	12(2) 8	7.005(4)	$\approx 100\%$		+35/2
²¹⁵ Ac	(9/2-)	170(10) ms	7.746(3)	99.91 (2)%		+3//2
²¹⁵ Ra	$(9/2^+)$	1.67(1) ms	8.862(2)	100%		+39/2
215 Fr	9/2-	86(5) ns	9 540(7)	100%		+41/2
215m1	(12/0+)	80(5) 113	10.275(7)	2.0(15)0(++1/2
Fr	$(13/2^{+})$		10.375(7)	3.8(15)%		+41/2
^{215m2} Fr	$(15/2^{-})$	30(8) ns	10.686(7)	0.8(1)%		+41/2
^{215m3} Fr	$(19/2^{-})$	30(5) ns	10.986(7)	4.1(3)%		+41/2
215m4 Er	(23/2-)	30(5) ns	11 119(7)	3 6(3)%		+41/2
215-	(23/2)	50(5) lis	11.119(7)	5.0(5)/0		++1/2
²¹⁵ Rn	9/2+	$2.3(1) \ \mu s$	8.839(6)	100%		+43/2
²¹⁵ At	9/2-	36.3(9) µs	8.178(4)	100%		+45/2
215 Po(AcA)	9/2+	1.780(4) ms	7 526(1)	99 99977(2)%		+47/2
21611	0+	2.25 ± 0.63	9.521(2()	100%		14/12
	0 -	$2.25_{0.40}$ ms	8.531(26)	100%		+16
216m U	8+	$0.89^{+0.27}_{0.17}$ ms	10.737(35)	100%		+16
216 Pa		105(12) ms	8 099(11)	$\approx 100\%$		+17
216 Th	0^+	26 2(2) ms	8.072(4)	1000		110
210 11	0	20.3(2) ms	8.072(4)	100%		+18
^{210m} Th	8^+	140(5) μs	10.117(10)	2.8(4)%	γ	+18
²¹⁶ Ac	1-	443(7) µs	9.241(3)	100%		+19
216 р.	0^+	182(10) no	0.526(7)	100%		+20
216 -	0	182(10) IIS	9.320(7)	100%		+20
²¹⁰ Fr	(1^{-})	$0.7(2) \mu s$	9.174(3)	100%		+21
^{216m1} Fr	(3-)	71(5) ns	9.307(3)	>50%		+21
^{216m2} Fr	(9^{-})	850(30) ns	9,393(6)	100%		+21
216	0+	20(4) 115	Q 100(6)	100%		122
216	0	$29(4) \mu s$	8.198(0)	100%		+22
210At	1-	300(30) µs	7.950(3)	100%		+23
^{216m1} At	(4^{-})		7.998(24)	obs		+23
216m2 At	(9^{-})		8.349(30)	obs		+23
2160	() 0 ⁺	145(0)	6.00((1))	100%		123
-1ºPo	0	145(2) ms	0.900(1)	100%		+24
²¹⁷ U		$15.6^{+21.3}_{-5.7}$ ms	8.426(80)	100%		+33/2
²¹⁷ Pa	9/2-	3.6(2) ms	8,489(4)	100%		+35/2
217m Do	20/2+	1.08(2) mg	10 272(4)	100%		125/2
217	2912 ·	1.00(3) IIIS	10.575(4)	100%		+53/2
217Th	(9/2 ⁺)	247(2) μs	9.435(4)	100%		+37/2
²¹⁷ Ac	9/2-	69(4) ns	9.832(10)	100%		+39/2
$217m^{1}$ Ac	$(15/2^{-}, 17/2^{-})$	<4 ns	10.979(10)	0 27(4)%	γ	+39/2
217m2 •	(10/2 - 21/2 -)	Q(1)	11.24((22))	0.46(12)0/	1	+20/2
217. 2	(19/2 , 21/2)	$\delta(2)$ ns	11.546(32)	0.40(13)%	γ	+39/2
²¹ /m ³ Ac	$(29/2)^+$	740(40) ns	11.844(10)	4.51(17)%	γ	+39/2
²¹⁷ Ra	$(9/2^+)$	$1.7(1) \ \mu s$	9.161(6)	100%		+41/2
217 Er	9/2-	22(5) 119	8 469(1)	100%		+43/2
217 5	0/2+	$22(3) \mu s$	7.007(2)	10070		17512
-1'/ Kn	9/2	0.59(4) ms	/.88/(3)	100%		+45/2
²¹⁷ At	9/2-	32.8(3) ms	7.201(1)	99.32(24) %		+47/2
²¹⁷ Po	$(9/2^+)$	1.52(3) 8	6.662(2)	$\approx 100\%$		+49/2
10	(1.0=(0) 0	0.002(2)			

able 3
ummary of known direct α emitters. Detailed references for each nucleus can be found in their respective T _z tables.

²¹⁸ U	0^{+}	$650^{+80}_{-70} \ \mu s$	8.775(9)	100%		+17
^{218m}U	28^{+}	$390^{+60}_{-50} \ \mu s$	10.887(17)	100%		+17
218 pa	(8^{-})	108(5) //	9 791(12)	100%		+18
218mpa	(0)	$\frac{100(0) \mu}{125^{+62} \mu_0}$	0.971(12)	100%		110
218 m	(1)	$153_{-32} \mu s$	9.8/1(10)	100%		+10
²¹⁰ Th	0^+	117(5) ns	9.849(9)	100%		+19
²¹⁸ Ac	(1^{-})	$1.12(3) \ \mu s$	9.379(10)	100%		+20
²¹⁸ Ra	0^+	25.99(10) µs	8.540(3)	100%		+21
²¹⁸ Fr	1-	$1.3^{+0.5}$ ms	8.014(1)	100%		+22
218mEr	(8-)	22.0(5) ms	8 102(5)	100%		+22
$218 \mathbf{p}_{n}(\mathbf{Fm})$	(0^+)	22.0(3) ms	7.262(2)	100%		122
218 •	(2=)	1.07(())	7.202(2)	100%		+23
210 At	(3)	1.27(6) s	6.8/6(3)	99.9%		+24
²¹⁹ Np	$(9/2^{-})$	$150^{+720}_{-70} \ \mu s$	9.207(41)	100%		+33/2
²¹⁹ U	$(9/2^+)$	60(7) µs	9.950(12)	100%		+35/2
²¹⁹ Pa	$(9/2^{-})$	60^{+28}_{15} ns	10.128(69)	100%		+37/2
²¹⁹ Th	$(9/2^+)$	$103(3) \mu_8$	9.507(11)	100%		+39/2
219 4 6	9/2-	11.8(15) µs	8 825(10)	100%		+41/2
219 Do	$(7/2)^+$	$9.6(17) \mu s$	0.025(10)	100%		+42/2
219mp	$(112)^{+}$	8.0(17) Ills	0.150(5)	100%		+43/2
219m Ra	(11/2)	10(3) ms	8.155(3)	100%		+43/2
²¹⁹ Fr	9/2-	22(2) ms	7.449(2)	100%		+45/2
219 Rn(An)	$5/2^{+}$	3.96(1) s	6.9462(3)	100%		+47/2
²¹⁹ At	$(9/2^{-})$	56(3) s	6.342(5)	93.6(10)%		+49/2
²²⁰ Nn		25^{+14} µs	10.226(18)	100%		+17
220 pa	(1^{-})	0.75(4) us	9 704(11)	100%		+19
220m1 p-	(1)	$\frac{0.75(4) \mu s}{222 \pm 108}$	0.828(41)	100%		+10
Pa	(3)	253_{-56}^{-56} IIS	9.828(41)	100%		+19
^{220m2} Pa		69^{+550}_{-30} ns	9.976(63)	100%		+19
²²⁰ Th	0^+	$10.2(4) \ \mu s$	8.973(11)	100%		+20
²²⁰ Ac		26.4(2) ms	8.348(4)	$\approx 100\%$		+21
²²⁰ Ra	0^+	18(2) ms	7.594(5)	100%		+22
220 _{Fr}	1+	27 4(3) s	6.801(2)	99.65%		+23
220 p.	0+	55 61(4) a	6.405	100%		123
22111	0	55.01(4) s	0.403	100%		+24
221-		$0.66(14) \mu s$	9.889(71)	100%		+3/12
²²¹ Pa	9/2-	$4.9(8) \ \mu s$	9.248(58)	100%		+39/2
²²¹ Th	$(7/2^{+})$	1.73(3) ms	8.625(4)	100%		+41/2
²²¹ Ac	5/2-	52(2) ms	7.791(57)	100%		+43/2
²²¹ Ra	$5/2^{+}$	26.20(39) s	6.880(2)	100%	^{14}C	+45/2
²²¹ Fr	$5/2^{-}$	4 806(6) m	6 458(1)	100%	^{12}C	+47/2
221 R n	$(7/2^+)$	25(2) m	6.148(2)	22(1)%	0	+19/2
22211	(112)	4.7(7) us	0.140(2) 0.416(2)	1000		+ 10
	0.	$4.7(7) \mu s$	9.410(8)	100%		+19
²²² Pa		$2.76^{+0.45}_{-0.33}$ ms	8.789(65)	100%		+20
²²² Th	0^+	1.964(2) ms	8.133(3)	100%		+21
²²² Ac	1^{-}	4.9(5) s	7.137(2)	$\approx 100\%$		+22
222mAc		64(2) s	7.137(2)+x	>97%		+22
²²² Ra	0^{+}	33.17(10) s	6.678(4)	100%	^{14}C	+23
223 Np	-	2 15+1.00 µs	0.650(45)	100%		+37/2
223TT	(7/2+)	$2.13_{-0.52} \mu s$	0.159(17)	10070		+20/2
225 U	(7/2+)	$62_{-10} \ \mu s$	9.158(17)	100%		+39/2
²²³ Pa		5.4(4) ms	8.343(8)	100%		+41/2
²²³ Th	$(5/2^+)$	660(10) ms	7.567(4)	100%		+43/2
²²³ Ac	$(5/2^{-})$	2.2(1) m	6.783(1)	99%	¹⁴ C	+45/2
²²³ Ra(AcX)	3/2+	11.4354(17) d	5.9790(2)	100%		+47/2
²²³ Fr	$3/2^{-}$	22.00(7) m	5.561(3)	0.02(1)%		+49/2
²²⁴ Np		38+26 118	9 329(30)	100%		+19
224 T	0^+	$30_{-11} \mu s$ $206(17) \mu s$	2.527(50) 8.679(7)	100%		+20
224 D	0, (7-)	$390(17) \mu s$	8.028(7) 7.(04(4)	100%		+20
224 Pa	(5)	844(19) ms	/.094(4)	≈ 100%		+21
²²⁴ Th	0^+	1.05(2) s	7.299(6)	$\approx 100\%$		+22
²²⁴ Ac	0^{-}	2.78(16) h	6.327(1)	10(2)%		+23
²²⁴ Ra	0^+	3.6313(14) d	5.789	100 %	¹⁴ C	+24
²²⁵ Np		$0.31^{+0.75}$ ms	8.818(70)	100%		+39/2
225		72(4) ms	8,007(6)	$\approx 100\%$		+41/2
22500	5/2-	1 8(2) c	7 /01(50)	~100%		±/13/2
225m	$\frac{312}{(210+)}$	1.0(3) 8	(001(3))	~100%		T+J/2
225 Th	(3/2)	8./2(4) m	0.921(2)	100%	14	+45/2
²²³ Ac	$(3/2^{-})$	9.9176(18) d	5.935(1)	100%	¹⁴ C	+47/2
²²⁵ Ra	$1/2^{+}$	14.8(2) d	5.097(5)	5.097(5)	$2.6(8) \times 10^{-3}\%$	+49/2
²²⁶ Np		43(5) ms	8.328(54)	$\approx 100\%$		+20
226U	0^{+}	271(6) ms	7.701(4)	$\approx 100\%$		+21
226 pa		1.8(2) m	6.987(10)	74%		+22
1 u		(<i>L</i>) III	0.207(10)			·

able 3	
immary of known direct α emitters. Detailed references for each nucleus can be found in their respective T_z tables.	

226 Th	0^+	20.70(2) m	6 452(1)	1000/		. 22
226 A a	(1-)	30.70(3) m	0.455(1)	100%		+23
227 AC	(1)	29.37(12) fi	5.500(8)	$6(2) \times 10^{-5}\%$		+24
Np	(2/2+)	510(60) ms	7.810(14)	≈ 100%		+41/2
227 U 227 D	(3/2)	1.1(1) m	7.235(3)	$\approx 100\%$		+43/2
227 FL (D. 1A.)	(5/2)	38.3(3) m	6.580(2)	$\approx 85\%$		+45/2
227 In(RdAc)	$(1/2^{+})$	18.681(9) d	6.1466(1)	100%		+47/2
²²⁷ Ac	3/2	21.7/8 - 32 y	5.042(0)	1.3800(36)%		+49/2
228Pu	0^+	$1.1^{+2.0}_{-0.5}$ s	7.940(18)	$\approx 100\%$		+20
²²⁸ Np		61.4(15) s	7.54(10)#	40(11)%	β_F	+21
²²⁸ U	0+	9.1(2) m	6.800(9)	> 95%		+22
²²⁸ Pa	3+	19.5(4) h	6.265(1)	2.0(2)%	20 -	+23
²²⁰ Th	0^+	698.3(6) d	5.520	100%	²⁰ O	+24
229 Am		$0.9^{+2.1}_{-0.7}$ s	8.132(20)	≈100%		+39/2
²²⁹ Pu		90(10) s	7.590(20)	50(20)%		+41/2
²²⁹ Np		4.0(2) m	7.015(23)	68(11)%		+43/2
²²⁹ U	$(3/2^+)$	58(3) m	6.468(3)	pprox 20%		+45/2
²²⁹ Pa	$(5/2^+)$	1.50(5) d	5.835(4)	0.48(5)%		+47/2
²²⁹ Th	5/2+	7894(40) y	5.168(1)	100%		+49/2
²³⁰ Pu	0^+	102(10) s	7.178(9)	$\approx 100\%$		+21
²³⁰ Np		4.6(3) m	6.778(54)	$\approx 3\%$		+22
²³⁰ U	0^+	20.23(2) d	5.992(1)	100%	²² Ne	+23
²³⁰ Pa	2^{-}	17.4(4) d	5.439(1)	$3.2(1) \times 10^{-3}\%$		+24
²³¹ Pu	$(3/2^+)$	8.6(5) m	6.839(20)	$10^{+7}_{-3}\%$		+43/2
²³¹ U	$(5/2^{-})$	4(1) d	5.576(2)	$4(1) \times 10^{-3}\%$		+47/2
²³¹ Pa	3/2-	$3.257(13) \times 10^4$ y	5.150(1)	100%	SF, ²⁴ Ne, ²³ F	+49/2
²³² Pu	0^{+}	33.7(5) m	6.716(10)	$\leq 20\%$		+22
²³² U	0^{+}	68.81(38) y	5.414	100%	SF, ²⁴ Ne	+24
²³³ Bk		21^{+48}_{-17} s	7.906(20)	obs		+39/2
²³³ Cm		23^{+13}_{-6} s	7.473(20)	20(10)%		+41/2
²³³ Am		3.2(8) m	6.898(17)	>3%		+43/2
²³³ Pu		20.9(4) m	6.410(20)	0.12(5)%		+45/2
²³³ U	5/2+	$1.5903(13) \times 10^5 y$	4.909(1)	100%	²⁴ Ne	+49/2
²³⁴ Bk		19^{+6}_{-4} s	8.100(50)	$>\!80\%$		+20
²³⁴ Cm	0^{+}	51(12) s	7.365(9)	pprox 27%	SF	+21
²³⁴ Am		2.32(8) m	6.80(15)#	0.039(12)%	β_F	+22
²³⁴ Pu	0^{+}	8.7(1) h	6.310(5)	pprox 6%		+23
²³⁵ Cm	$(5/2^+)$	300^{+250} s	7.116(14)	$1.0^{+0.7}$ %		+43/2
²³⁵ Am	$(5/2^{-})$	10.3(6) m	6.576(13)	0.40(5)%		+45/2
²³⁵ Pu	(5/2+)	25.8(1) m	5.951(20)	3.0(6)×10 ⁻³ %		+47/2
²³⁵ Np	5/2+	396.1(12) d	5.194(1)	$2.60(13) \times 10^{-3}\%$		+49/2
²³⁶ Bk		22^{+13} s	7.70(20)#	$\approx 17\%$	β_F	+21
²³⁶ Cm	0^{+}	410(50) s	7.067(5)	18(2)%	11	+22
²³⁶ Am	5-	3.6(2) m	6.256(64)	$4.0(10) \times 10^{-3}\%$		+23
²³⁶ Pu	0+	2.862(8) v	5.867	100%	SE ²⁸ Mg	+24
²³⁷ Cf	0	0.8(2) s	8,220(54)	70(10)%	SF SF	+41/2
²³⁷ Am	5/2-	73.0(10) m	6.146(5)	0.025(3)%		+47/2
²³⁷ Pu	7/2-	45.31(3) d	5.748(2)	$4.2(4) \times 10^{-3}\%$		+49/2
²³⁸ Cm	0^+	2.2(4) h	6.670(10)	obs		+23
²³⁸ Am	1+	98(3) m	6.042(58)	$1.0(4) \times 10^{-4}\%$		+24
²³⁹ Cf	$(5/2^+)$	28(2) s	7.766(8)	65(3)%		+43/2
²³⁹ Am	(5/2-)	11.9(1) h	5.922(1)	0.010(1)%		+49/2
²⁴⁰ Es		5(2) s	8.259(63)	70(10)%	β_F	+21
²⁴⁰ Cf	0^{+}	1.00(12) m	7.711(4)	98.5(23)%	SF	+22
²⁴⁰ Cf	0^{+}	1.00(12) m	7.711(4)	98.5(23)%	SF	+22
²⁴⁰ Cm	0^+	26.8(3) d	6.398(1)	$\approx 100\%$	SF	+24
²⁴¹ Es		$4.3^{+2.4}$	8.259(17)	obs		+43/2
²⁴¹ Cf		141(11) s	7.502(4)	15(1)%		+45/2
²⁴¹ Cm	$(1/2^+)$	32.8(2) d	6.185(1)	1.0(1)%		+49/2
²⁴² Fs	(=)	16 9(8) s	8.160(20)	49(3)%	ßE	+22
²⁴² Cf	0^+	3.49(10) m	7.517(4)	61(3)%	PT	+23
²⁴³ Fm	$(7/2^{-})$	231(9) ms	8.691(8)	91(3)%	SF	+43/2
²⁴³ Es	$(7/2^+)$	24 7(8) s	8.025(10)	59.7(25)%	<u>.</u> .	+45/2
²⁴³ Cf	$(1/2^+)$	10.3(5) m	7.42(10)#	obs		+47/2
243 Rk	(3/2-)	4 5(1) h	6 874(4)	0.15%		+49/2
²⁴⁴ Md	(3/2)	~ 6 \$	8 947(79)	≈100%		+21
1110			0.271(12)			·

Table 3	
Summary of known direct α emitters.	Detailed references for each nucleus can be found in their respective T_z tables.

244m Md		$0.4^{+0.4}$ s	8.947(79) + x	≈100%		+21	
²⁴⁴ Fs		37(4) s	7 696(20)	4+3%	ßr	+23	
²⁴⁴ Cf	0^+	19.4(6) m	7.320(2)#	-2^{10}	ρ_F	+25	
245 1	0	220+150	7.529(2)#	-1		+24	
245 F	(1/2+)	330_{-80}^{-80} ms	8.824(20)	$ODS = \pi + 6.8 cr$		+43/2	
245 Fm	$(1/2^{+})$	5.5(7) s	8.290(7)	88.5_5.0%		+45/2	
²⁴³ Es	$(3/2^{-})$	66(6) s	7.909(3)	54(7)%		+47/2	
²⁴⁵ Cf	$(1/2^+)$	46.4(3) m	7.258(2)	36.0(26)%		+49/2	
²⁴⁶ Md		0.9(2) s	8.889(41)	100%		+22	
^{246m} Md		4.4(8) s	8.889(41)+x	< 23%	β_F	+22	
²⁴⁶ Fm	0^+	1.54(4) s	8.379(5)	93.6(4)%	SF	+23	
²⁴⁶ Es		7.7(5) m	7.64(10)	9.9(18)%	β_F	+24	
²⁴⁷ Md	7/2-	1.26(8) s	8.764(10)	99.14(10)%	SF	+45/2	
247m Md	$1/2^{-}$	240(20) ms	8.914(15)	80(2)%	SF	+45/2	
²⁴⁷ Fm	$(7/2^+)$	31(1) 8	8.258(10)	64%		+47/2	
^{247m} Fm	$(1/2^+)$	5.1(2) 8	8.305(11)	88(2)%		+47/2	
²⁴⁷ Es	$(7/2^+)$	4 55(26) m	7 464(20)	obs		+49/2	
²⁴⁸ Md	(112)	7(3) s	8 497(30)	20(10)%		+23	
248 Em	0^+	35 1(8) s	7.005(8)	03^{+7} %	SE	+24	
249No	(5/2+)	<u>35.1(8) 8</u> <u>28.2(28) ma</u>	0.079(00)	⁹³ -17 ⁷⁰ 1000/	51	+45/2	
249 M 1	$(3/2^+)$	38.5(28) IIIS	9.278(22)	100%		+45/2	
249 Md	(7/2)	26(1) s	8.441(18)	/5(5)%		+47/2	
249 Fm 250	$(1/2^{+})$	99(6) s	7.709(6)	15.6(1)%	2	+49/2	
²³⁰ Md		52(6) s	8.155(28)	7(1)%	β_F	+24	
²⁵¹ Lr	$(7/2^{-})$	42_{-14}^{+42} ms	9.396(13)	100%		+45/2	
^{251m}Lr	$(1/2^{-})$	$24.4^{+7.0}_{-4.5}$ ms	9.513(30)	100%		+45/2	
²⁵¹ No	$(7/2^+)$	0.80(1) s	8.752(4)	$91^{+9}_{-22}\%$	SF	+47/2	
^{251m} No	$(1/2^+)$	1.02(3) s	8.858(7)	100%		+47/2	
²⁵¹ Md	$(7/2^{-})$	4.28(12) m	7.963(4)	10(1)%		+49/2	
²⁵² Lr	· · · ·	335^{+94} ms	9.164(17)	100%		+23	
252No	0+	2 42(6) s	8 549(5)	65 3(5)%	SE	+20	
253 Rf	0	9.9(12) ms	9.4460(20)	17(6)%	SE	+24	
253 L r	$(7/2^{-})$	520^{+29} ms	9.4400(20) 8.032(7)	08.7 + 1.0	SE	++5/2	
253mr	(1/2)	320_{-32} ms	0.932(7) 9.022(7)	$98.7_{-3.0}$	31	+4772	
2553nLr	(1/2)	2.00 <u>-0.19</u> s	8.932(7)+x	92(5)%	SF	+47/2	
²³⁵ No	(9/2-)	1.56(2) m	8.415(4)	55(3)%		+49/2	
²⁵⁴ Lr	(4^{+})	18.1(13) s	8.822(8)	72(2)%		+24	
²⁵⁵ Db		37^{+51}_{-14} ms	9.716(27)	$\approx 33\%$	SF	+45/2	
²⁵⁵ Rf	(9/2-)	1.66(7) s	9.055(4)	46(5)%	SF	+47/2	
²⁵⁵ Lr	$(1/2^{-})$	31.1(13) s	8.556(7)	99.7(5)%		+49/2	
^{255m} Lr		(7/2 ⁻)	2.53(5) s	8.593(12)	$\approx 40\%$	4	-49/2
²⁵⁶ Db		$1.6^{+0.5}_{-0.3}$ s	9.336(30)	67(8)%		+23	
²⁵⁶ Rf	0^{+}	6.66(10) ms	8.926(15)	$0.29^{+0.13}$ %	SF	+24	
^{256m} Rf		$10.4^{+8.4}$ s	8.926(15)+x	$\approx 100\%$		+24	
²⁵⁷ Db	$(9/2^+)$	16(2) s	9 206(20)	$\approx 100\%$		+47/2	
257mDb	$(1/2^{-})$	670(60) ms	9.206(20) 9.206(20)+x	~ 100%		+47/2	
257 p.f	$(1/2^+)$	5 5(4) a	$9.200(20) \pm x$	$\sim 100\%$	SE.	+40/2	
257mpf	$(1/2^{+})$	3.3(4) s	9.065(6)	79.5(17)% 91.0(25)%	SF SE	+49/2	
258 DI	(11/2)	4.9(7) s	9.157(18)	81.0(25)%	55	+49/2	
258mD1	(0)	2.17(30) \$	9.437(10)	≈90%		+24	
250mDb		4.41(21) s	9.488(17)	≈57%		+24	
²⁵⁹ Sg	$(1/2^{+})$	402(56) ms	9.765(8)	$\approx 97\%$	SF	+47/2	
259m Sg	$(11/2^{-})$	226(27) ms	9.852(22)	$\approx 97\%$	SF	+47/2	
^{2.59} Db		510(160) ms	9.619(54)	$\approx 100\%$		+49/2	
²⁶⁰ Bh		35^{+19}_{-9} ms	10.400(59)	100%		+23	
²⁶⁰ Sg	0^+	4.95(33) ms	9.901(10)	29(3)%	SF	+24	
^{260m} Sg		180^{+150}_{-60} ms	9.901(10)+x	$\approx 100\%$		+24	
²⁶¹ Bh	$(5/2^{-})$	$11.8^{+3.9}_{-2.4}$ ms	10.500(72)	100%		+47/2	
²⁶¹ Sg	$(3/2^+)$	184(5) ms	9.714(15)	98.1(5)%	SF	+49/2	
²⁶² Bh	<u></u>	87(14) ms	10.319(15)+v	100%		+24	
^{262m} Bh		11(2) ms	10.319(15) + x	100%		+24	
263 ப		$0.74^{\pm0.48}$ ms	10.732(78)	100%		±47/2	
26411		$0.74_{-0.21}$ ms 0.00+0.40	10.755(76)	20070 200+2007	0E	T+112	
HS 26511		0.90 <u>0.20</u> ms	10.391(20)	ou_40%	55	+24	
265mm		195(15) ms	10.470(15)	≈100%		+49/2	
205m Hs		300_{-100} ms	10.470(15)+x	≈100%		+49/2	
²⁰⁰ Mt		$0.7^{+0.4}_{-0.2}$ ms	10.996(25)+x	100%		+24	
²⁶⁶ Mt		$1.2^{+1.0}_{-0.4}$ ms	10.996(25)+y	100%		+24	
²⁶⁷ Ds		4 µs	11.777(51)	pprox 100%		+47/2	

Table 3

|--|

²⁶⁹ Ds	$170^{160}_{70} \ \mu s$	11.510(30)	100%	+49/2
-------------------	--------------------------	------------	------	-------

Table 4

Summary of known SF emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclide	J^{π}	$T_{1/2}$	BR _{SF}	other decays	T_z
²³¹ Pa	$3/2^{-}$	$3.257(13) \times 10^4$ v	²⁴ Ne. ²³ F	+49/2	
²³² U	0^+	68.81(38) v	$2.7(6) \times 10^{-12}\%$	α . ²⁴ Ne	+24
²³⁴ Cm	0^+	51(12) s	pprox 2%	α	+21
^{235m} Pu		3.0(5) ns	100%		+47/2
²³⁶ Pu	0^{+}	2.862(8) y	$1.25(3) \times 10-7 \%$	α , ²⁸ Mg	+24
²³⁷ Cf		0.8(2) s	30(10)%	α	+41/2
237m1 Pu		94.8 ns	obs	α	+49/2
^{237m2} Pu		1.12(8) µs	obs	α	+49/2
²³⁸ Cf	0^{+}	21(2) ms	>95%		+21
²⁴⁰ Cf	0^{+}	1.00(12) m	1.5(2)%	α	+22
²⁴⁰ Cm	0^{+}	26.8(3) d	3.9(8)×10 ⁻⁶ %	α	+24
^{240m} Cm		55(12) ns	obs		+24
²⁴¹ Fm		0.73(6) ms	>78%	α	+41/2
^{241m} Cm		15.3(10) ns	obs	α	+49/2
²⁴³ Fm	$(7/2^{-})$	231(9) ms	9(1)%	α	+43/2
²⁴⁴ Fm	0^+	3.12(8) ms		α	+22
245m Md	$(1/2^{-})$	$0.9^{+0.6}_{-0.3}$ ms	obs		+43/2
²⁴⁶ Fm	0^+	1.54(4) s	6.4(4)%	α	+23
²⁴⁷ Md	7/2-	1.26(8) s	0.86(10)%	α	+45/2
247m Md	$1/2^{-}$	240(20) ms	20(2)%	α	+45/2
²⁴⁸ Fm	0^+	35.1(8) s	0.097(48)%	α	+24
²⁵⁰ No	0^+	4.7(1) μs	100%		+23
²⁵¹ No	$(7/2^+)$	0.80(1) s	$0.14^{+0.31}_{-10.12}\%$	α	+47/2
²⁵² No	0^+	2.42(6) s	33.9(3)%	α	+24
²⁵³ Rf		9.9(12) ms	83(6)%	α	+45/2
253mRf		52.8(44) µs	100%		+45/2
²⁵³ Lr	$(7/2^{-})$	520^{+29}_{-32} ms	$1.3^{+1.0}_{-3.0}\%$	α	+47/2
^{253m} Lr	$(1/2^{-})$	$2.00^{+0.16}_{-0.19}$ s	8(5)%	α	+47/2
²⁵⁴ Rf	0^+	$23.2(11) \ \mu s$	100%		+23
²⁵⁵ Db		37^{+51}_{-14} ms	pprox 67%	α	+45/2
²⁵⁵ Rf	(9/2-)	1.66(7) s	54(5)%	α	+47/2
²⁵⁶ Rf	0+	6.66(10) ms	$99.71^{+0.10}_{-0.13}$ %	α	+24
²⁵⁷ Rf	$(1/2^+)$	5.5(4) s	1.3(3)%	α	+49/2
^{257m} Rf	$(11/2^{-})$	4.9(7) s	14(9)%	α	+49/2
²⁵⁸ Sg	0+	$2.6^{+0.6}_{-0.4}$ ms	100%		+23
²⁵⁹ Sg	$(1/2^+)$	402(56) ms	3(1)%	α	+47/2
259mSg	$(11/2^{-})$	226(27) ms	3(1)%	α	+47/2
²⁶⁰ Sg	0+	4.95(33) ms	71(3)%	α	+24
²⁶¹ Sg	$(3/2^+)$	184(5) ms	0.6(2)%	α	+49/2
²⁶⁴ Hs		$0.90^{+0.40}_{-0.20}$ ms	$20^{+46}_{-17}\%$	α	+24

Table 5

Summary of known cluster emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclide	J^{π}	$T_{1/2}$	$BR_{cluster}(\%)$	particle emitted	other decays	T_z
²²¹ Ra	5/2+	26 20(39) s	$1.15(94) \times 10^{-10}\%$	¹⁴ C	a	+45/2
²²¹ Fr	5/2-	4.806(6) m	$1.0(2) \times 10^{-10} \%$	^{12}C	α	+47/2
²²² Ra	0^+	33.17(10) s	$2.64(31) \times 10^{-8}\%$	¹⁴ C	α	+23
²²³ Ac	$(5/2^{-})$	2.2(1) m	$3.2(10) \times 10^{-9}$	¹⁴ C	α	+45/2
²²³ Ra(AcX)	$3/2^+$	11.4354(17) d	$8.9(4) \times 10^{-8}\%$	^{14}C	α	+47/2
²²⁴ Ra	0^+	3.6313(14) d	5.6(10)×10 ⁻⁹ %	¹⁴ C	α	+24
²²⁵ Ac	$(3/2^{-})$	9.9176(18) d	$5.3(10) imes 10^{-10}\%$	^{14}C	α	+47/2
²²⁸ Th	0^+	698.3(6) d	$1.13(22) \times 10^{-11}\%$	²⁰ O	α	+24

Table 5			
Summary of known cluster emitters.	Detailed references for each nucleus	can be found in their respective	T_z tables.

²³⁰ U ²³¹ Pa	0^+ 3/2 ⁻	20.23(2) d 3.257(13)×10 ⁴ y	$\substack{4.8(20)\times10^{-12}\%\\1.0^{+4.8}_{-0.7}\times10^{-12}\%}$	²² Ne ²³ F	α α , SF, ²⁴ Ne	+23 +49/2	
²³¹ Pa	3/2-	3.257(13)×10 ⁴ y	1.34(17)×10 ⁻⁹ %	²⁴ Ne	α , SF, ²³ F	+49/2	
²³² U	0^+	68.81(38) y	8.78(49)×10 ⁻¹⁰ %	²⁴ Ne	α , SF	+24	
²³³ U	5/2+	$1.5903(13) \times 10^5 y$	$7.2(12) \times 10^{-11}\%$	²⁴ Ne	α	+49/2	
²³⁶ Pu	0^+	2.862(8) y	$2.7(7) imes 10^{-12} \%$	²⁸ Mg	α , SF	+24	