Advancements in the Nuclear Data of Fission Yields

by

Eric Francis Matthews

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

 in

Engineering - Nuclear Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Lee A. Bernstein, Chair Professor Jasmina L. Vujic Dr. Bethany L. Goldblum Professor John Arnold

Summer 2021

Advancements in the Nuclear Data of Fission Yields

Copyright 2021 by Eric Francis Matthews

Abstract

Advancements in the Nuclear Data of Fission Yields

by

Eric Francis Matthews

Doctor of Philosophy in Engineering - Nuclear Engineering University of California, Berkeley Professor Lee A. Bernstein, Chair

Fission yields are an important set of nuclear data observables. They are used in a number of important applications including reactor design, nuclear forensics and safeguards, nuclear medicine, and stockpile stewardship. While great advancements have been made in the understanding of fission since its discovery just over 80 years ago, there are still significant gaps and uncertainties in this knowledge. Fission yields are a prime example of an area of understanding with such gaps and uncertainties. There is significant disagreement in measured, evaluated, and theoretically predicted fission yields; a lack of standardization and regularity in fission yield evaluation; and measured fission yields often exhibit large uncertainties. To enable new developments in research and applications, improvements in the nuclear data of fission yields are required. The work presented in this dissertation seeks to improve the current understanding of the nuclear data related to fission yields.

Introductory material on nuclear data is offered, with a particular focus on the current state of fission yield nuclear data. Then, a description of the fission process is provided to establish a background on fission yield phenomenology. Finally, three chapters about three projects on fission yields and their uncertainties/covariances are presented. These chapters form the basis of this dissertation. First, an extensive review of fission yield measurements and their associated sources of uncertainty is presented. Using this review, a series of templates for expected uncertainties in fission yield measurements is established, forming a guide for experimentalists and evaluators. Second, a stochastic method for the estimation of fission yield covariances is developed. The results of this method provide a basis towards closing a crucial gap in fission yield nuclear data: a complete set of fission product yields using cyclical neutron activation analysis is discussed. The analysis of the resulting experimental data offers a novel method for fission yield determination. Together, these results advance the current understanding of fission yield nuclear data.

Contents

Co	Contents i List of Figures iv				
\mathbf{Li}					
\mathbf{Li}	List of Tables vi				
1	Intr	oducti	on	1	
	1.1	Nuclea	r Data	. 1	
		1.1.1	Nuclear Properties	. 1	
		1.1.2	Uncertainties and Covariances in Nuclear Data	. 2	
		1.1.3	The Nuclear Data Pipeline	. 3	
			1.1.3.1 Experiments	. 3	
			1.1.3.2 Theory \ldots	. 4	
			1.1.3.3 Evaluation \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	. 5	
			1.1.3.4 Evaluated Libraries	. 6	
			1.1.3.5 Integral Benchmark Experiments	. 6	
			1.1.3.6 Validation \ldots	. 7	
			1.1.3.7 Applications \ldots	. 7	
			1.1.3.8 Sensitivity Studies	. 8	
	1.2	Fission	Yield Nuclear Data	. 8	
		1.2.1	The Current State of Fission Yield Data	. 8	
			1.2.1.1 Experimental Data	. 8	
			1.2.1.2 Evaluations \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	. 10	
		1.2.2	Improving Fission Yield Data	. 11	
2	Bac	kgroun	nd	14	
	2.1	The Pr	rocess of Fission	. 14	
		2.1.1	Fission Observables	. 16	
		2.1.2	The History of Fission	. 16	
	2.2	Descrip	ptions of Fission	. 18	
		2.2.1	The Liquid Drop Model	. 18	
		2.2.2	The Shell Model	. 20	

		2.2.3	The Deformed Shell Model
		2.2.4	Advanced Models
			2.2.4.1 Wahl Systematics
			$2.2.4.2 \text{GEF} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
			$2.2.4.3 \text{HF}^{3}\text{D} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
			2.2.4.4 FREYA
3	\mathbf{Exp}	ected	Measurement Uncertainties in Fission Yield Measurements 3
	3.1	Introd	uction \ldots \ldots \ldots \ldots 3
	3.2	The F	ission Yields Template
		3.2.1	Measurement Types
			3.2.1.1 Activation Measurements
			3.2.1.2 Irradiation Methods
			3.2.1.3 Chemical Separations
			$3.2.1.4 \text{Assay Methods} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
			3.2.1.5 The 2E-2v Method
		3.2.2	Information Needed for Evaluations
			3.2.2.1 State of Current Evaluations
			3.2.2.2 Future Evaluation Needs
		3.2.3	Template
			3.2.3.1 EXFOR Review
			3.2.3.2 Irradiation Methods
			3.2.3.3 Chemical Separations
			3.2.3.4 Assay Methods
			3.2.3.5 2E-2v Method
	3.3	Conclu	1 sions \ldots \ldots \ldots \ldots 7
4	Trad.		a of Index and out and Conversion Fission Viold Conversion and 7
4		Matin	1 of independent and Cumulative Fission Field Covariances 73
	4.1 4.9	Motho	$\frac{1}{7}$
	4.2	4 9 1	U
		4.2.1	Cumulating Violda 7
		4.2.2	Cumulative fields \dots $D(x, 4)$ Data \dots 7
		4.2.3	Generation of Consistent $P(\nu, A)$ Data
	4.9	4.2.4 D 14	Limitations and Benchmarking
	4.3	Result	s
	4.4	Conclu	1sions
5	Sho	rt-live	d Fission Product Yield Measurements Using the Fast Loading
	Use	r Facil	ity for Fission Yields 9
	5.1	Introd	uction $\ldots \ldots $
	5.2	Design	and Construction
	5.3	Measu	rement of 238 U Fission Yields

		5.3.1	Gamma-ray Spectral Data Processing	98
		5.3.2	Detector Array Calibration	99
		5.3.3	Neutron Energy Spectrum Characterization	103
			5.3.3.1 Neutron Time-of-Flight	104
			5.3.3.2 Foil Pack Activation	105
			5.3.3.3 Estimate of Incident Neutron Energy Spectrum	106
			5.3.3.4 Spectrum-Averaged Fission Cross Section	107
		5.3.4	Data Analysis Using the Fission Induced Electromagnetic Response	
			Code	108
			5.3.4.1 Minimization Method	109
			5.3.4.2 Benefits of the Method	112
			5.3.4.3 Benchmarking	113
			5.3.4.4 Uncertainty Estimation	114
		5.3.5	Results and Discussion by Mass Number	114
			$5.3.5.1 A = 86 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	115
			5.3.5.2 $A = 98$	119
			$5.3.5.3 A = 136 \dots \dots$	121
	- 1	5.3.6	Future Work	124
	5.4	Conclu	1810ns	127
6	Con	clusio	ns	129
Bi	bliog	graphy		131
Α	Apr	oendix	of Figures for Short-lived Fission Product Yield Measure-	
	mer	nts Usi	ng the Fast Loading User Facility for Fission Yields	147
в	App	oendix	of Detailed Irradiation Scheme for ²³⁸ U Target	166

List of Figures

1.1	An illustration of the feedback loop that forms the nuclear data pipeline. Appli- cations inform experimental and theoretical development needs. New evaluations are produced and validated. These new evaluations go into use in applications and new needs are found. The stages of this pipeline and their interaction with other stages are discussed in Secs. 1.1.3.1-1.1.3.8. The images used in this figure are sourced from Beferences. This figure is modified from Fig. 1 of Beference	1
1.2	Histograms of the quoted relative uncertainty values for EXFOR-compiled fission yields for ²³⁵ U, ²³⁸ U, and ²³⁹ Pu. Uncertainty values that were listed as being only	4
1.3	statistical or exceeded 100% were removed from the dataset	9
1.4	A histogram of the relative uncertainties of the independent fission yields in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. Each histogram contains 100 bins.	10
1.5	The independent yields have an average uncertainty of 33.2% and 60.0% in the JEFF-3.3 and ENDF/B-VIII.0 evaluations, respectively	11
	ENDF/B-VIII.0 and JEFF-3.3 evaluations. Each histogram contains 100 bins. The cumulative yields have an average uncertainty of 23.2% and 44.7% in the JEFF-3.3 and ENDF/B-VIII.0 evaluations, respectively.	12
2.1	The chronology of fission, from deformation to fission product β decay. Timescale based on Ref. Atomic nucleus figure used from Ref.	15
2.2	Lower triangular matrix of simultaneous measurements of the fission observables listed in Table 2.1 for neutron-induced fission of ²³⁸ U. The indices on the axes correspond to the matrix indices listed in Table 2.1. The diagonal is null as the diagonal of this matrix only reflects the measurement of a single observable. Only 13.0% of all measurements for this compound system measured more than one	10
	observable.	17

- 2.4 The Wood-Saxon potential as a function of nuclear radius. The "skin" of the nucleus is shown between the red dotted lines. The thickness of the skin is controlled by the parameter *a*. As *a* decreases, the skin becomes thinner. . . .
- 2.5 The thermal-neutron mass yields for 227 Th, 235 U, and 239 Pu and the spontaneousfission mass yields for 252 Cf and 256 Fm. The shaded regions show mass yields which are contributed to by at least one product with a magic number of protons or neutrons. Note that in the doubly magic region, there is an enhancement in the mass yield curve of all five nuclei. The low-mass centroid of each mass yield curve increases with increasing nucleus mass. This occurs because the left edge of the heavy-mass centroid is anchored near the doubly magic closure. The independent mass yields were taken as the sum of the independent fission yields with a given A using the data in the fission yield evaluation of ENDF/B-VIII.0.
- 2.6 Energy levels for single neutrons in a prolate deformed potential as predicted by the Nilsson model. As deformation goes to zero, the energies and (2j+1) degeneracy of the spherical shell model are restored. This figure is reproduced from Figure 5.29 of Ref. p. 155]Krane, which was produced from Ref.
- 2.7 An example of a fission barrier calculated with the Strutinsky Method. The dashed line is predicted by the deformed liquid drop model. The thin dashed line is a fission barrier that is typical when asymmetric fission is observed. The thick dashed line is typical of asymmetric fission. This figure was reproduced from Figure 3 of Ref.
 25

- Histogram of quoted uncertainties as a function of fission yield type for ²³⁵U. The types of fission yields are defined in the introduction to this chapter.
 58
- 3.5 Histogram of quoted uncertainties as a function of fission yield type for ²³⁸U. The types of fission yields are defined in the introduction to this chapter.
 59

V

21

22

23

24

3.6	Histogram of quoted uncertainties as a function of fission yield type for 239 Pu. The types of fission yields are defined in the introduction to this chapter	60
4.1	Result of the minimization of χ^2 in Eq. 4.9 for the $A = 135$ chain of the ²³⁵ U fast fission ENDF/B-VIII.0 evaluation. The blue data are the evaluated yields and the red data are yields generated using Eq. 4.7 and $P(\nu, A)$ data that minimized	
4.2	Eq. 4.9. Eq. 4.9. Eq. 4.9. Exampled yields for ¹³² Te with different choices of $P(\nu, A)$. Each	80
	histogram contains 10000 entries. The evaluated yields are shown at the black	01
43	Correlations between the mass yields calculated from the model given by Eq. 4.10	83
4.4	Correlations between the mass yields generated from this method with resampling of half the model correlation matrix (Fig. 4.3).	84
4.5	Comparison between the model correlation (Fig. 4.3) and method correlation	01
	(Fig. 4.4)	85
4.6	Correlations between the mass yields generated from this method (without mod- ifications to the method).	86
4.7	Comparison between the model correlation (Fig. 4.3) and method correlation	~-
4.8	(Fig. 4.6)	87
4.9	In descending order. Thus FY Index 0 has the heaviest Z and A while FY Index 1016 has the lightest Z and A A plot of the covariance between the independent yield of 135 Te and those of other	88
	fission products as a function of Z and A for the 235 U fast fission ENDF/B-VIII.0 evaluation	89
5.1	Schematic of the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. FLUFFY was constructed in Cave 0, which is shown in the upper right-hand corner of this figure. This figure was modified from the publication "The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing" by M. Kireeff Covo et al.	92
5.2	Schematic of FLUFFY within Cave 0 of the 88-Inch Cyclotron at Lawrence Berke-	02
	ley National Laboratory.	93
5.3	Three-dimensional model of the HPGe clover array used in FLUFFY. Labels 1 and 2 show the locations of the HPGe clovers, which are supported by an aluminum frame. Label 3 shows the cuff that holds one end of the FLUFFY pneumatic tube (not shown). When the capsule is at rest, the target is located in the middle of the cuff. Figure courtesy of Dr. Joshua Brown of the University of California, Berkeley.	94
	Demonty	

5.4	The design of the capsule used in the FLUFFY pneumatic tube. Figure cour- tesv of Dr. Jonathan Morrell of Los Alamos National Laboratory (formerly the	
	University of California, Berkeley).	95
5.5	Graphical representation of the first five cycles of the 1 s-25 s irradiation scheme.	
	The dashed lines represent the time at which the capsule returned to the HPGe	
	array, illustrating the transport time for each cycle.	98
5.6	An example fission product γ -ray spectrum from the 1 s–25 s ²³⁸ U data. Particu-	
	larly strong photopeaks from the decay of ¹⁶ N, ²⁴ Na, and ²⁷ Mg activation products	
	formed in the co-loaded sapphire disc can be seen at 843.76 keV, 1368.626 keV,	
	2754.007 keV, 6128.63 keV, and 7115.15 keV.	99
5.7	Net efficiency calibration for the HPGe clover array system used in FLUFFY.	102
5.8	Efficiency calibration for the single-crystal HPGe detector used for foil counting.	102
5.9	Count rate versus source activity on the HPGe clover array system. These data	
	were fit using the functional form given in Eq. 5.4	103
5.10	The initial guess of the incident neutron energy spectrum that was supplied to	
	STAYSL. The spectrum is normalized such that the sum of the bins in the spec-	
	trum is $1 \text{ n/cm}^2/\text{s.}$	108
5.11	The incident neutron energy spectrum determined by STAYSL. The initial guess	
	of the spectrum is shown for comparison. The total neutron flux was determined	
	to be $7.15 \pm 0.20 \times 10^8 \text{ n/cm}^2/\text{s.}$	109
5.12	238 U(n,f) cross section as a function of incident neutron energy. The data in this	
	plot are taken from the ENDF/B-VIII.0 evaluation	110
5.13	Figure 5.12 zoomed to neutron energies above 0.1 MeV	111
5.14	The decay network of fission products connected to the $A = 89$ mass chain. The	
	fission yields for the nuclei to the immediate left of the dashed line were set as	
	cumulative in the benchmarking example presented in Sec. 5.3.4.3. The purple	
	arrows represent $\beta^- n$ decay and the branching ratio of that decay mode is written	
	below each arrow. Each nucleus is labelled with its independent fission yield in	
	units of percent from the ²³ °U fast fission ENDF/B-VIII.0 evaluation. Beneath	
	that yield is a percentage, which represents that total independent yield remaining	110
F 1 F	in the mass chain up to that nucleus	112
5.15	The decay network of fission products connected to the $A = 80$ mass chain. Nuclei	
	to the right of the dashed line did not have detectable γ -ray signatures. The	
	purple arrows represent β n decay and the branching ratio of that decay mode	
	is written below each arrow. Each nucleus is labeled with its independent inston wield in write of percent from the 238 U fast factor ENDE/D VIII 0 evoluation	
	Percent from the	
	beneath that yield is a percentage, which represents the total independent yield	116
	remaining in the mass chain up to that nucleus	110

5.16	The decay network of fission products connected to the $A = 98$ mass chain. Nuclei to the right of the dashed line did not have sufficiently detectable γ -ray signatures. The purple arrows represent $\beta^- n$ decay and the branching ratio of that decay mode is written below each arrow. Each nucleus is labeled with its independent fission yield in units of percent from the ²³⁸ U fast fission ENDF/B-VIII.0 evaluation. Beneath that yield is a percentage, which represents that total independent yield remaining in the mass chain up to that nucleus The decay network of fission products connected to the $A = 136$ mass chain. Nuclei to the right of the dashed line did not have sufficiently detectable γ -ray signatures. The purple arrows represent $\beta^- n$ decay and the branching ratio of that decay mode is written below each arrow. Each nucleus is labeled with its independent fission yield in units of percent from the ²³⁸ U fast fission ENDF/B-VIII.0 evaluation. Beneath that yield is a percentage, which represents that total independent fission yield in units of percent from the ²³⁸ U fast fission ENDF/B-VIII.0 evaluation. Beneath that yield is a percentage, which represents that total independent fission yield in units of percent from the ²³⁸ U fast fission ENDF/B-VIII.0 evaluation. Beneath that yield is a percentage, which represents that total independent yield remaining in the mass chain up to that nucleus	119
A.1	Minimizer Benchmarking: The number of 1031.92-keV γ emissions from ⁸⁹ Rb as	
1 0	a function of cycle number.	147
A.2	Minimizer Benchmarking: The number of 3532.88-keV γ emissions from ⁶⁵ Kr as a function of time since capsule arrival, t_1 ,,,,,,,, .	148
A.3	Minimizer Benchmarking: The number of 3231.3-keV γ emissions from ⁹⁰ Br as a	
	function of time since capsule arrival, t_1	148
A.4	An example of the fitted photopeak for 1564.60-keV γ from ⁶⁶ Br in the fission product γ -ray spectrum from the 5 s-125 s irradiation scheme. The spectrum	
	shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 125$ s	149
A.5	An example of the fitted photopeak for 2660.0-keV γ from $^{86}\mathrm{Se}$ in the fission	
	product γ -ray spectrum from the 5 s–125 s irradiation scheme. The spectrum	150
A 6	shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 100$ s An example of the fitted photopeak for 4180 54-keV γ from ⁸⁷ Br in the fission	190
11.0	product γ -ray spectrum from the 5 s–125 s irradiation scheme. The spectrum	
	shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 125$ s	151
A.7	Time separation of the 2660.0-keV photopeak into components from 86 Se and	
	an unknown contaminant. The black line is the total fit, the green line is the component from ${}^{86}Se$ and the blue line is the component from the contaminant.	152
A.8	Fit of the 1564.60-keV γ -ray emissions from ⁸⁶ Br to FIER. It was determined the	102
	independent fission yield of 86 Br was 0.45%.	153
A.9	Fit of the 2660.0-keV γ -ray emissions from ⁸⁶ Se to FIER. It was determined	
	the cumulative fission yield of ⁸⁶ Se was 1.05% and the decay γ intensity of its	1 5 4
Δ 10	2000.0-KeV emission was 24.9% .	154
л.10	independent fission yield of 87 Br was 1.83%.	155
	- •	

A.11	An example of the fitted photopeak for 1024.4-keV γ from ⁹⁸ Nb (shown in curve	
	1, the blue line) in the fission product γ -ray spectrum from the 1 s–25 s irradiation	
	scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s	
	to $t_1 = 12$ s. This photopeak is small relative to the photopeaks near it, requiring	
	a complex photopeak fit. As a result, there is large uncertainty in this photopeak	
	area.	156
A.12	An example of the fitted photopeak for 1222.9-keV γ from ⁹⁸ Y (shown in curve 1.	
	the blue line) in the fission product γ -ray spectrum from the 1 s–25 s irradiation	
	scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s	
	to $t_1 = 3.5$ s	157
A 13	An example of the fitted photopeak for 724 4-keV γ from ⁹⁹ Y (shown in curve 1	101
11.10	the blue line) in the fission product γ -ray spectrum from the 1 s=25 s irradiation	
	scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s	
	scheme. The spectrum shown in this light includes an cycles and spans $t_0 = 0.5$	158
A 14	Time separation of the 724 4-keV photopeak into components from 99 V and an	100
11.17	unknown contaminant. The black line is the total fit the green line is the com-	
	popent from 99 V and the blue line is the component from the contaminant	150
Δ 15	Fit of the 1222.0 keV \propto ray emissions from 98 V to Eq. 5.16. It was determined	105
11.10	the cumulative fission yield of 98 V was 5.13 + 0.30%	160
A 16	the cumulative insidi yield of 1° was 9.15 ± 0.5970 . 1°	100
A.10	All example of the fitted photopeak for the 2077.3 -keV γ from the fit (shown in curve 1, the blue line) in the fiscien product γ ray spectrum from the 5 s 125	
	s irrediction scheme. The spectrum shown in this figure includes all evalue and	
	s in adiation science. The spectrum shown in this figure includes an cycles and append $t = 0$ a to $t = 40$ a	161
A 17	spans $\iota_0 = 0$ s to $\iota_1 = 40$ s	101
A.17	All example of the fitted photopeaks for the 1315.02-keV γ from ¹³⁶ gI (shown in (shown in 136 gI) (shown in	
	(shown in curve 1, the blue nine) and the 1521.00-keV γ from γ (shown in curve 2, the graphs line) in the figsion product γ ray spectrum from the 5 g 125	
	s irradiation scheme. The spectrum shown in this figure includes all evelos and	
	s in a spans $t_{\rm c} = 0$ s to $t_{\rm c} = 104.2$ s. The photopoly to the left (shown in curve 2, the	
	spans $t_0 = 0$ s to $t_1 = 104.2$ s. The photopeak to the left (shown in curve 2, the groon line) is the 1324.0 keV photopeak from ${}^{95}\text{V}$	169
A 19	green me) is the 1524.0-keV photopeak nom 1 is EIFP. It was determined the	102
A.10	γ -ray emissions from γ -ray emissions from γ re to FIER. It was determined the	162
A 10	Culturative institution of the way on 13691 to EIED. It was determined the	105
A.19	independent figure work of 13691 was 0.7807	164
1 20	The pendent fission yield of 31 was 0.7670	104
л.20	determined the independent fission yield of 1369 was 0.78% and the independent	
	figure wild of $136m$ was 0.50%	165
	$1551011 \text{ yield 01} \qquad 1 \text{ was } 0.59/0. \dots \dots$	100

List of Tables

1.1	All of the methods found in EXFOR-compiled measurements of fission yields of 235U, 238U, and 239Pu. The method codes and their descriptions are taken from Dictionary 21 of the EXFOR manual [41].	13
2.1	Observables matrix indices and number of measurements listed in NSR for the 300 measurements reviewed	29
2.2	Terms of the semi-empirical mass formula (Eq. 2.1) calculated for ²³⁶ U and two symmetric fission fragments, ¹¹⁸ Pd. The difference between these terms indicates approximately 235 MeV should be released from such a symmetric fission event.	30
3.1	List of uncertainty sources for mass spectrometry.	46
3.2	Evaluations of fission product yields included in the most current version of in-	53
3.3	List of uncertainty sources associated with the irradiation methods detailed in Sec. 3.2.1.2. δ denotes relative uncertainties given in % and Δ notes absolute	00
3.4	uncertainties with units. Uncertainties are relative to each source listed	63
0.4	lations are between fission yields of products measured in the same experiment.	64
3.5	List of uncertainty sources associated with chemical separations in fission mea- surements as detailed in Sec. 3.2.1.3. Uncertainties are relative to each source listed. "—" indicates an upper bound is not recommended due to lack of informa-	
	tion	65
3.6	List of uncertainty sources associated with the γ assay methods detailed in Sec. 3.2.1.4. Uncertainties are relative to each source listed. "–" indicates an	
97	upper bound is not recommended due to lack of information	68
3.7	Recommended correlations for the uncertainty sources in Table 3.6. These corre- lations are between fission yields of products measured in the same experiment	69
3.8	List of uncertainty sources associated with the β assay methods detailed in	00
	Sec. 3.2.1.4. Uncertainties are relative to each source listed.	70
3.9	Recommended correlations for the uncertainty sources in Table 3.8. These corre-	70
3.10	List of uncertainty sources associated with the 2E-2v method detailed in Sec. 3.2.1.5	70
5.10	Uncertainties are relative to each source listed.	72

4.1	The target nuclei and energy groups in the ENDF/B-VIII.0 and JEFF-3.3 eval- uations. This method was successfully applied to all of the systems listed in this table.	90
5.1	Calibration sources used in the calibration of HPGe detectors used in this exper-	
0.1	iment.	100
5.2	Foil pack activation products and activities. The produced activities are given in units of atoms of the product per atom of the target per second as these are	
	the units that are required for use in STAYSL. All of the foils had a circular disk	100
50	geometry with a 1 cm diameter	106
5.3	Free parameters used in the minimizer benchmarking test and their default and	110
5.4	Free parameters and nuclear data properties used in the analysis of the $A = 86$ mass chain. Fission yield free parameters that are marked with an asterisk are	113
	cumulative rather than independent. Default values are taken from ENDF/B-	
	VIII.0 File-8 and the ENDF/B-VIII.0 238 U fast fission yield evaluation	117
5.5	Comparison of the fission yields measured for the $A = 86$ mass chain in this work	
	and the ENDF/B-VIII.0 [28] and JEFF-3.3 [29] evaluations. All values in this	
	table are in units of %. Note: the yields for ⁸⁰ Br are taken as the sum of the yield	
FC	to the ground state and isomeric state in the ENDF/B-VIII.0 evaluation.	118
0.0	Comparison of the fission yields measured for the $A = 80$ mass chain in this work and EXEOP compiled measurements by Pierson et al. [105] Poshchenko et al.	
	[103] Gudkov et al $[104]$ and Filatenkov et al $[105]$. The errorbars on the	
	average incident neutron energy represent the full width at half maximum of the	
	neutron energy spectrum where given. All property values are in units of %	118
5.7	Comparison of the fission yields measured for the $A = 98$ mass chain in this work	
	and the ENDF/B-VIII.0 [28] and JEFF-3.3 [29] evaluations. All values in this	
	table are in units of %. The yield listed for 98 Y is the sum of the 98g Y and 98m Y	
	yields in each evaluation	122
5.8	Free parameters and nuclear data properties used in the analysis of the $A = 136$	
	mass chain. Fission yield free parameters that are marked with an asterisk are	
	cumulative rather than independent. Default values are taken from ENDF/B-	
	VIII.0 File-8 and the ENDF/B-VIII.0 ²³⁸ U fast fission yield evaluation. Values	100
5.0	with a \dagger are set differently than their evaluation	123
5.9	Comparison of the fission yields measured for the $A = 130$ mass chain in this work and the FNDF/R VIII 0 [28] and IFFF 3.2 [20] evaluations. All values in	
	work and the ENDT/D-VIII.0 [20] and $5EFF-5.5$ [29] evaluations. An values in this table are in units of $\%$	194
510	Comparison of the fission yields measured for the $A = 136$ mass chain in this	124
0.10	work and EXFOR-compiled measurements by Pierson et al. [105]. Wilson et al.	
	[165], Campbell et al. [199], and Lhersonneau et al. [200]. The errorbars on the	
	average incident neutron energy represent the full width at half maximum of the	
	neutron energy spectrum where given. All values in this table are in units of %.	125

Acknowledgments

As I reflect on the conclusion of my studies, I am honored by the community that has enabled my accomplishments. The adage, "it takes a village," holds true. It is impossible to imagine being here today without the support of my colleagues, friends, and family. I am so grateful for that support, and I hope that I will be able to pay it back to the community. Some specific acknowledgements are due:

To Bethany: Thank you for giving me my start in this field! Your early support enabled my success and brought me to where I am today. Your mentorship has improved my critical thinking and scientific ability; I am a better scientist because of you. I hope there are many years of collaboration and friendship ahead of us!

To Lee: You changed my life the moment that I stepped into NE101 some seven years ago. Your passion for nuclear physics and nuclear data was infectious. Not only have I been blessed by your abilities as a teacher and mentor, but I have been touched by your friendship and personal generosity. Your deep concern for the happiness and well-being of your students is extraordinary. Magnus and I cannot thank you enough for all your support!

To My Committee: Dr. Bernstein, Dr. Goldblum, Dr. Vujic, Dr. Arnold: Thank you very much for taking the time to review my work. Your feedback significantly improved the quality of this dissertation.

To Josh: I greatly appreciate the mentorship and help you have provided me throughout my studies. I have always been in awe of how much I can learn from you and I hope that I can continue to do so.

To Jon: You are an incredible scientist and I am very glad I was able to benefit from your technical expertise! I know that you are destined for great things and I wish you all the best at Los Alamos!

To Dan: You were the best fellowship supervisor that I could have asked for! The space and flexibility that you gave me during my NNSA Fellowship allowed me to explore new topics while continuing research that was essential to my degree.

To Denise: Thank you for giving me the honor of writing a chapter in the templates paper! It was an incredibly enriching project that allowed me to delve deeper into nuclear data evaluation. I am inspired by your dedication to improving nuclear data and I hope we will continue to collaborate in the future!

To Amanda: I am very glad our paths crossed; no peer has had such a profound impact on my career, interests, and studies! I contracted your passion for evaluation and statistics. You are an amazing friend, colleague, and housemate. Trips to plant nurseries, movie nights, sickeningly sweet Chablis at La Val's, and that poor pulverized chiclet are all special memories that I will cherish for the rest of my life.

To Mitch: You are truly one of the kindest people that I have ever met. Being around you has always brightened my day and I have been so glad to have had you as a friend throughout my studies!

To Franziska: The laughter and friendship we shared always made me very happy! I wish we had had more time together over the last two years. I know you are doing great things in Los Alamos and I miss you!

To Ian: Your friendship has meant so much to me! It has been very important to have another queer friend in nuclear science. From obsessing about plants together to going out to the Castro, you have helped keep me sane throughout my studies and the pandemic. I am very impressed by your accomplishments and wish you all the best as you start your graduate studies!

To Sunniva: My academics and research were both deeply enriched by the international collaboration that you have given me. My exchange at the University of Oslo not only grew my network but also my family. Your support made it possible for me to be with Magnus when it would have otherwise been impossible because of the pandemic. I cannot thank you enough for that support; it is difficult to imagine what my life would have been like without it. I hope for many more years of friendship and collaboration!

To Dorthea: Thank you for being my twin fission fragment! You are a great friend and I have greatly enjoyed our academic exchanges. I am always impressed by your work and look forward to continuing our shared love of fission!

To Vala: Thank you for being a trusted confidant and source of advice! I appreciate all the help and advice you have given me with career decisions; your independent viewpoints have been invaluable. You are an amazing friend and I am so happy that you were my best man!

To Masha: I have always been amazed by both your academic brilliance and complexity as a person. I am so happy to have you as a friend!

To Magnus: Thank you for bringing so much happiness to my life! You have taught me so much and have expanded my mind. You help me enjoy more of life and save me from living it too monotonously. I am very content that we are now family and I look forward to the many journeys that lie ahead in our new life together! To Dad, Mom, Stephen, Michael, and Mommom: Thank you for fostering my interests and offering guidance over the years. I love you all very much and I hope that when the pandemic ends that we will be able to see each other more often!

To Baba and Grandma: You both were incredible influences in my early life. You taught me the value of an education and gave me the confidence to always aspire for something better. I miss you both dearly and wish you could be here.

Special thanks to the entities that have funded my research:

This material is based upon work supported by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Numbers DE-NA0003180 and DE-NA000097, Lawrence Berkeley National Laboratory under Contract Number DE-AC02-05CH11231 for the United States Nuclear Data Program, the Office of Counter-Proliferation Research and Development through the Nuclear Data Interagency Working Group managed by the Department of Energy - Nuclear Physics, and the National Nuclear Security Administration Graduate Fellowship Program.

Chapter 1 Introduction

This dissertation will present original research that is focused on the improvement of the nuclear data related to fission yields. This section provides an introduction to nuclear data as a field of research, an overview of the state of nuclear data related to fission yields, and a review of the motivation for the research that will be presented in this dissertation.

1.1 Nuclear Data

As a field of research, nuclear data is broadly defined as the study, compilation, and production of a recommended set of values and uncertainties for the properties of atomic nuclei. Nuclear data research is driven by both basic scientific curiosity and the needs of applications. This research is particularly important for certain applications that play a critical role in society, such as nuclear energy and stockpile stewardship.

Because of critical application needs, research in nuclear data has evolved into a coordinated, international effort. National and international organizations, such as the International Atomic Energy Agency (IAEA), the United States Nuclear Data Program (USNDP), the Japan Atomic Energy Agency (JAEA), and the Nuclear Energy Agency (NEA) continuously review application needs and coordinate research efforts to maximize efficiency and output. Coordinated research together with steady feedback from applications has led to the development of a scheme for the production of nuclear data called the "nuclear data pipeline" [1, 2].

1.1.1 Nuclear Properties

Understanding these properties furthers the basic understanding of nuclear physics and enables applications, which provide the societal benefits listed above. Some nuclear properties can be observed directly, while some can only be observed or inferred indirectly. Nuclear properties are generally placed into two categories: structure and reactions. Nuclear struc-

CHAPTER 1. INTRODUCTION

ture properties are those that describe the intrinsic properties of an atomic nucleus and its excited states. Some examples of nuclear structure properties are:

- mass,
- half-lives,
- decay modes and branching ratios,
- excited state energies, spins, parities, and magnetic moments,
- relative γ ray intensities, types, and multipolarities, and
- average quantities for ensembles of excited states where individual properties are not known, such as level densities and gamma-emission probabilities.

Nuclear reaction properties are those that describe how atomic nuclei interact with subatomic particles and other atomic nuclei. Some examples of nuclear reaction properties are:

- reaction cross sections,
- energy and angular momenta of outgoing particles,
- angular distributions of outgoing particles, and
- fission yields.

1.1.2 Uncertainties and Covariances in Nuclear Data

The vast majority of nuclear properties generally cannot be accurately calculated *ab initio*. Therefore, experimental measurement is the primary means by which nuclear properties are determined. Each experimental measurement of a nuclear property will have some degree of uncertainty associated with it, and therefore nuclear data will always carry uncertainty.

There are two types of uncertainties that users of nuclear data are likely to encounter: experimental uncertainties and evaluated uncertainties. Experimental uncertainties are those that result from the process of the nuclear property measurement itself. Evaluated uncertainties are those that result from the process of evaluation (further detailed in Sec. 1.1.3.3). Evaluated uncertainties are related to experimental uncertainties as they are derived using data from multiple measurements together with a theoretical model to produce a recommended value. The vast majority of nuclear applications use evaluated nuclear data and their associated uncertainties. Covariance arises when there is a correlation between two measured or deduced nuclear properties. These properties can be two points in a differential measurement (e.g., a cross section at two different energies) or two distinct properties (e.g., beta decay level feeding and decay γ intensities). Numerous correlations exist between nuclear properties, making covariance information an important part of complete uncertainty estimation.

Accurate and fully-characterized uncertainties and covariances in nuclear data are as important as the values themselves. Users require uncertainties and covariances to determine what level of confidence they can have in their calculations and simulations. This information enables decision-making and planning for applications requiring nuclear data as input.

1.1.3 The Nuclear Data Pipeline

The process of producing evaluated nuclear data from experimental measurements is often referred to as the "nuclear data pipeline." The pipeline takes the form of a feedback loop between applications and measurement/evaluation [1, 2, 3]. The needs of applications are determined through sensitivity studies. Information from these sensitivity studies informs experimental activities and the development of nuclear theory. Differential and integral measurements together with nuclear theory and modeling are combined to produce consensus values for nuclear properties in a process called "evaluation." The results of an evaluation are entered into specially formatted libraries. Before these libraries are released to the public, they are checked against the results of integral benchmarks in a process called "validation," if such benchmarks are available. Finally, the evaluated libraries are published and go into use in applications, closing the loop. Figure 1.1 shows an illustration of the nuclear data pipeline.

1.1.3.1 Experiments

Experimental measurement of nuclear properties is the first step in the nuclear data pipeline. As there exists no complete theory of nuclear physics, nuclear theory cannot accurately predict most nuclear properties. Therefore, experimentation is required to determine nuclear properties. Experimentation is also important in guiding theoretical developments. Most theoretical capabilities in nuclear physics have been informed by previously-made experimental observations. An example of this is the Shell Model of Nuclei, which was developed to describe the observed enhancement in binding in nuclei with "magic" numbers of protons and/or neutrons [11, p. 117]. Theorists may need specific nuclear properties to be measured in order to benchmark or further develop their theories. As such, a feedback loop between experimental measurements and nuclear theory forms, as shown in Fig. 1.1.

There exist two categories of nuclear experiments: differential and integral. Differential experiments measure a nuclear property as a function of one or more variables. For example, the measurement of the fission cross section of 235 U as a function of incident neutron energy

Figure 1.1: An illustration of the feedback loop that forms the nuclear data pipeline. Applications inform experimental and theoretical development needs. New evaluations are produced and validated. These new evaluations go into use in applications and new needs are found. The stages of this pipeline and their interaction with other stages are discussed in Secs. 1.1.3.1-1.1.3.8. The images used in this figure are sourced from References [4, 5, 6, 7, 8, 9, 10]. This figure is modified from Fig. 1 of Reference [1].

is a differential experiment. Integral experiments measure a nuclear observable that depends simultaneously on several different nuclear properties. For example, the measurement of the effective neutron multiplication factor in critical assemblies (which will be further discussed in Sec. 1.1.3.5) is an integral measurement. Many measurements are differential with respect to one nuclear quantity and integral with respect to others, playing different roles in different evaluation processes.

Experimentalists publish their results in peer-reviewed journals, conference proceedings, academic theses, and laboratory reports. These publications are indexed in the Nuclear Science References (NSR) database [12]. The results from these publications are compiled into two unevaluated, formatted databases: the Exchange Format (EXFOR) database [13] for nuclear reaction data and the Experimental Unevaluated Nuclear Data List (XUNDL) database [14] for nuclear structure data. The process of entering published experimental results into NSR, EXFOR, and XUNDL is referred to as "compilation." Evaluators use the information compiled in these databases to produce an evaluation.

1.1.3.2 Theory

Nuclear theory is the physics-based modeling of nuclei, their properties, and their interactions. As previously mentioned, nuclear properties predicted from pure nuclear theory are generally not sufficiently accurate for use in applications. Instead, several theoretical models and tools have been developed to help explain observed phenomena. These models and tools are tuned on experimental measurements, providing a semi-empirical understanding of nuclear properties.

Among these theoretical tools are "reaction codes," which provide theoretical predictions of properties of nuclear reactions (e.g., reaction cross sections). Examples of reaction codes include TALYS [15] and CoH₃ [16]. The EMPIRE code [17] incorporates several different models and codes to provide a broad suite of theoretical tools. These codes are based on the optical and statistical Hauser-Feshbach theories of nuclear cross sections [18].

A number of theoretical tools exist for predicting and describing nuclear structure and decay properties. The Gamma to Level (GTOL) code uses a least-squares method to determine nuclear level energies from observed γ -ray energies [19]. The RULER code is used to calculate reduced transition probabilities for nuclear level schema [20]. The GABS code calculates the absolute intensities and normalization constants of γ rays [21]. The BrIcc database tabulates internal conversion and electron-positron pair conversion coefficients for decaying nuclear levels [22]. The LogFT code is used to calculate properties of β and electroncapture decays, such as log(ft) values, average β energies, and capture fractions [23]. The ALPHAD, ALPHAD-RadD, and RadD codes are used to calculate the properties of α decay and nuclear radii [24]. Together with experimental measurements, these codes form a standard basis for nuclear structure evaluation.

1.1.3.3 Evaluation

Nuclear data evaluation is the process of combining experimentally measured nuclear properties and nuclear theory to produce consensus values that can be used in applications. Experimental approaches do not currently exist to measure every differential nuclear property; its domain falls short of the needs of many applications. Theory cannot currently predict most properties without strong guidance from experimental data. Thus, evaluation expands the domain of knowledge about nuclear properties far beyond the sum of the individual domains of experiment and theory.

Evaluation is a complex process that must be conducted by an expert with good knowledge of both experiment and theory. This expert is called an "evaluator" and an international network of evaluators work continuously to incorporate new experimental data and theoretical capabilities into updated evaluations. The evaluator combines information from differential experiments and theoretical tools to produce an evaluation. An evaluation is validated against integral benchmark experimental data (as will be discussed in Secs. 1.1.3.5 and 1.1.3.6). Evaluations usually undergo peer review and are published in journals. The primary journal for the publication of evaluations is Nuclear Data Sheets (NDS), which is managed by the United States National Nuclear Data Center (NNDC).

1.1.3.4 Evaluated Libraries

Once an evaluation has been published, it is compiled into specially formatted libraries for distribution to users. Two numerical database formats are used: the Evaluated Nuclear Data File (ENDF) for nuclear reaction data [25] and the Evaluated Nuclear Structure Data File (ENSDF) for nuclear structure data [26]. ENDF and ENSDF are based on the 80column format that was required for use in punch-card computers. The Generalized Nuclear Database Structure (GNDS) is a newer Extensible Markup Language (XML) based format that is more appropriate for modern computing needs [27]. These three formats and their structure are regulated by committees of users and experts to ensure consistent implementation.

These formats are used in the general-purpose nuclear data libraries that are published by nuclear data centers around the world. As of early 2021, the major nuclear reactions libraries are ENDF/B-VIII.0 from the USNDP [28], the Joint Evaluated Fission and Fusion Nuclear Data Library (JEFF-3.3) coordinated by the NEA [29], the Japanese Evaluated Nuclear Data Library (JENDL-4.0) from the Japanese Nuclear Data Committee [30], the Chinese Evaluated Nuclear Data Library (CENDL-3.2) from the Chinese Nuclear Data Center [31, 32], and the Russian Evaluated Nuclear Data Library (BROND-3.1) from the Institute of Physics and Power Engineering in Russia [33]. In addition to these, the TALYS Evaluated Nuclear Data Library (TENDL) is based on evaluator-reviewed predictions from the TALYS reaction code [34]. The USNDP maintains and continuously updates the primary ENSDF-formatted nuclear structure library.

Additional nuclear data libraries with specific uses also exist. The Reference Input Parameter Library (RIPL) contains input parameters to reaction codes that are used in evaluations [35]. The Evaluated Gamma-ray Activation File (EGAF) contains thermal production cross sections for prompt and delayed γ rays [36]. There are processed libraries for use in neutronics codes such as the Monte Carlo N-Particle transport (MCNP) code [37] and the Standardized Computer Analyses for Licensing Evaluation (SCALE) code [38].

1.1.3.5 Integral Benchmark Experiments

Integral measurements are conducted to provide benchmark data. These integral benchmark data are used to validate evaluated nuclear data libraries. In these experiments, a bulk quantity that is dependent on many differential nuclear properties is measured. In general, these experiments measure the effective multiplication factor (k_{eff}) [39, p. 74] with high precision for a critical assembly with a carefully calibrated and documented geometry and composition.

Conducting, detailing, and reporting these measurements is an internationally coordinated effort. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and International Reactor Physics Experiment Evaluation Project (IRPhEP) work to compile databases of critical and subcritical integral benchmark experiments that can be used to validate nuclear data libraries for the purposes of criticality safety and reactor physics [40]. In addition to their compilation efforts, these projects also seek to identify gaps in the databases and guide future experiments to fill these gaps. These review efforts form an important part of the feedback loop in the nuclear data pipeline.

1.1.3.6 Validation

When a new evaluated library is compiled, it is first compared against data from integral benchmark experiments before release. This is done by inputting the new evaluated library into neutronics codes (namely MCNP [37]). Geometries and compositions of integral benchmark experiments (such as those in the ICSBEP and IRPhEP databases) are input to the neutronics code and the effective multiplication factor is calculated from the simulation results. If simulations using the new evaluated library do not match the integral benchmark data with sufficient precision, then the evaluation needs adjustment before release.

1.1.3.7 Applications

Once an evaluated nuclear data library is validated, it is published and enters into use in applications. The applications that rely on nuclear data are broad. Some applications may only use a handful of nuclear data properties (e.g., production of a specific medical isotope), while others use many (e.g., reactor design). The applications that use evaluated nuclear data include, but are not limited to:

- advanced reactor design,
- medical isotope production,
- nuclear forensics,
- nuclear safeguards,
- stockpile stewardship,
- detector response modeling,
- fusion reactor design,
- criticality safety,
- nuclear waste management,
- medical physics and radiation therapy,
- radiation shielding,

- dosimetry,
- radiological dating, and
- electronics hardening.

1.1.3.8 Sensitivity Studies

The process of validation reveals issues with evaluated libraries that are then corrected prior to their release. However, the process of validation cannot reveal every problem with an evaluated library, as integral benchmarks are only sensitive to certain properties of certain nuclei (e.g., materials that are present in the critical assemblies in sufficient quantities). Moreover, as applications evolve, new nuclear data needs emerge. Sensitivity studies are an important method for identifying and prioritizing nuclear data needs.

The results of sensitivity studies primarily inform experimentalists of what differential measurements need to be conducted or repeated. These results may also inform the development of new integral benchmark experiments; sensitivity to specific nuclear properties can be incorporated so that issues do not pass validation in the future. Finally, the results of sensitivity studies can influence the development of theory. Sensitivity studies close the feedback loop that forms the nuclear data pipeline.

1.2 Fission Yield Nuclear Data

This dissertation is focused on nuclear data related to fission yields. Below is a review of the current state of fission yield nuclear data and needs for improvements. Together, these pieces of information motivate the work presented in this dissertation; this work seeks to address fission yield nuclear data needs by expanding the current state of knowledge on fission yields.

1.2.1 The Current State of Fission Yield Data

1.2.1.1 Experimental Data

A review of the neutron-induced fission yield data stored in EXFOR was conducted to assist the development of the template of expected measurement uncertainties in fission yield nuclear data that is presented in Chapter 3. The review covered the three major actinides: ²³⁵U, ²³⁸U, and ²³⁹Pu. A total of 812 EXFOR entries were reviewed, and these entries contained a total of 18214 individual fission yield values and uncertainties. The entries spanned the years 1943 to 2019 and thus the review provides a suitable overview of the current state of experimental fission yield data. Some norms and trends in the experimentally measured fission yields covered by this review are discussed below and some trends are further discussed in Sec. 3.2.3.1. The information compiled in this review is useful in assessing the current state of fission yield nuclear data and the representative uncertainties in that data. Figure 1.2 displays the distribution of the quoted fission yield uncertainty values for each of the three target nuclei reviewed. A number of values in the dataset quoted uncertainties in excess of 100%. This is because some reports quoted constant experimental uncertainties that exceeded the value of some of the lower fission yields that were claimed to be observed. These values have been removed from the dataset as a measured value with uncertainty greater than the value itself does not provide much useful information. In the process of the EXFOR review, uncertainty values that were listed as being only statistical were excluded as these values under-represent the measurement uncertainty. It should be kept in mind only 6.8% of the subentries found in this review self-reported their uncertainties as statistical. The majority of entries/subentries list no information about what sources contribute to the quoted uncertainty. Therefore, it is very likely that more than 6.8% of the measurements quote only their statistical uncertainties.

Figure 1.2: Histograms of the quoted relative uncertainty values for EXFOR-compiled fission yields for ²³⁵U, ²³⁸U, and ²³⁹Pu. Uncertainty values that were listed as being only statistical or exceeded 100% were removed from the dataset.

Figure 1.3 displays the average quoted uncertainty for each target nucleus as a function of publication date. For each year on these plots, the quoted uncertainty values used to calculate the mean are cumulative (i.e., all values prior to and including that year are used). The error envelope on these plots is taken as the standard deviation of the cumulative values. Two notable trends can be observed: the average quoted uncertainty tends to decrease until approximately 1960 and thereafter the average quoted uncertainty slowly increases. This may be due to enhanced contemporary focus on the characterization of various systematic sources of uncertainty.

A large variety of experimental methods are used in the measurement of fission yields. Table 1.1 tabulates all of the experimental methods found in the review and their corresponding EXFOR codes. The description of each of these codes was taken from Dictionary 21 in the EXFOR manual [41]. Of these methods, those that were cited particularly frequently

Figure 1.3: The average quoted uncertainty for fission yield measurements as a function of publication date. For each year on the abscissa, all values prior to and including that year are used. The error envelope is the standard deviation of the values reported.

included: activation, chemical separation, γ -ray spectroscopy, and mass spectrometry. These methods and the sources of uncertainty commonly associated with them are detailed in the template of expected measurement uncertainties presented in Chapter 3.

Figure 1.2 demonstrates the large average uncertainty in measured fission yield data. Despite these large uncertainties, Figure 1.3 shows that the precision of measured fission yields has not improved over time. However, this trend may be attributable to enhanced uncertainty reporting. Table 1.1 lists the large number of experimental techniques that are associated with fission yield measurements. Taken together, these figures show the current state of fission yield data; there remains significant uncertainty in the experimental data even with the wide variety of measurement techniques available.

1.2.1.2 Evaluations

As of early 2021, there exist three major evaluations of fission yield data: the ENDF/B-VIII.0 evaluation from the USNDP [28], the JEFF-3.3 evaluation from the NEA [29], and the JENDL-4.0 evaluation from the JAEA [30]. Table 3.2 of Sec. 3.2.2 summarizes the original sources for each of these evaluations and the years they were conducted. These evaluations and how they were conducted is discussed in greater detail in Sec. 3.2.2.

Figures 1.4 and 1.5 display histograms of the relative uncertainties in the independent and cumulative fission yields of the ENDF/B-VIII.0 and JEFF-3.3 evaluations. These figures show the large average relative uncertainties in evaluated fission yield data. This state of uncertainty in fission yield data is problematic to certain applications. Both improving the mean and width of the distributions of fission yield uncertainties shown in Figs. 1.4 and 1.5 is important to enabling applications.

Figure 1.4: A histogram of the relative uncertainties of the independent fission yields in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. Each histogram contains 100 bins. The independent yields have an average uncertainty of 33.2% and 60.0% in the JEFF-3.3 and ENDF/B-VIII.0 evaluations, respectively.

1.2.2 Improving Fission Yield Data

Given the current uncertainty in fission yield data, there is great room for improvement. To improve this uncertainty, advanced experimental techniques are required. Combining new, state-of-the-art experimental techniques with conventional measurement methods is one potential path to reducing average uncertainties. As legacy measurements did not always fully consider all sources of experimental uncertainty (as discussed in Sec. 1.2.1.1), careful characterization of uncertainties is a crucial detail in any new experiment.

One particular issue with evaluated fission yield data is that none of the existing fission yield evaluations contain information on fission yield covariances. This gap has been identified as a critical need [1, 42]. This covariance information could be useful to any calculation where fission yields are involved, but its importance to reactor antineutrino emission rate calculations [43, 44, 45, 46] and reactor decay heat calculations [47] has been specifically noted. To address this issue, a method for the estimation of fission yield covariances was developed. This method is presented in Chapter 4 as a part of the work that contributes to this dissertation.

The primary means by which uncertainties in fission yields can be improved is experimentation. To this end, two projects that seek to improve fission yield data through experimenta-

Figure 1.5: A histogram of the relative uncertainties of the cumulative fission yields in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. Each histogram contains 100 bins. The cumulative yields have an average uncertainty of 23.2% and 44.7% in the JEFF-3.3 and ENDF/B-VIII.0 evaluations, respectively.

tion are presented in this dissertation. The template of expected measurement uncertainties for fission yields is presented in Chapter 3. This template provides a guide to help experimentalists fully consider their experimental uncertainties when using common fission yield measurement methods. The development of and preliminary results from the Fast Loading User Facility for Fission Yields (FLUFFY) at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory are presented in Chapter 5. The technique of cyclical activation analysis is used with FLUFFY to measure short-lived fission product yields. The measurement of fission yields has been predominately focused on the cumulative yields of longer-lived fission products. Therefore, the information provided by FLUFFY on short-lived fission product yields has the potential to improve yield data in this region of the fission product distribution.

The work that is presented in Chapters. 3, 4, and 5 makes contributions at several stages in the nuclear data pipeline. The template of expected measurement uncertainties in Chapter 3 contributes to the Experiment and Evaluation stages of the pipeline by providing a guide that can be used by both experimentalists and evaluators. The work on estimating fission yield covariances in Chapter 4 contributes to the Theory, Evaluation, and Sensitivity Studies stages of the pipeline. The experimental measurement of fission yields using FLUFFY in Chapter 5 contributes to the Experiment stage of the pipeline.

Table 1.1: All of the methods found in EXFOR-compiled measurements of fission yields of 235U, 238U, and 239Pu. The method codes and their descriptions are taken from Dictionary 21 of the EXFOR manual [41].

Method Code	Description
ABSFY	Absolute fission yield measurement
ACTIV	Activation
AMS	Accelerator mass spectrometry
ASEP	Separation by mass-separator
BGCT	Beta-gamma coincidence technique
BSPEC	Beta-ray spectrometry
CHSEP	Chemical separation
COINC	Coincidence
EDE	Particle identification by E/Delta E measurement
EXTB	Irradiation with external beam
FISCT	Absolute fission counting
FNB	Filtered neutron beam
FPGAM	Direct gamma-ray spectrometry
GSPEC	Gamma-ray spectrometry
HATOM	Hot-atom method
HEJET	Collection by He jet
INTB	Irradiation with internal beam
JET	Collection by gas jet
MASSP	Mass spectrometry of a product
MOMIX	Mixed monitor
OLMS	On-line mass separation
PHD	Pulse-height discrimination
PLSED	Pulse die-away
PSD	Pulse-shape discrimination
RCHEM	Radiochemical separation
REAC	Reactivity measurement
REC	Collection of recoils
RELFY	Relative fission yield measurement
RINGR	Ring ratio method
RVAL	R-value measurement
SITA	Single target irradiation
SLODT	Slowing-down time
STTA	Stacked-target irradiation
TOF	Time-of-flight

Chapter 2

Background

In order to understand fission yields, an understanding of the process of fission must be developed first. This chapter focuses on providing a background on fission, its observables, its discovery, its theoretical descriptions, and the experimental methods used to measure it.

2.1 The Process of Fission

Fission is the process by which an atomic nucleus undergoes a change in the configuration of its nucleons that results in its division – or "scission" – into two or more fragments. Fission can be induced by imparting excitation energy to a nucleus via an external particle or it can happen as a spontaneous decay process. A typical fission event produces two fission fragments; this is called "binary fission." Ternary and quaternary fission have been observed [48, 49], and occur in less than one in every hundred fission events. Ternary and quaternary fission fragments are typically significantly smaller than their binary counterparts with A < 10.

The binary fission fragments produced in fission are born with high excitation energy (tens of MeV). These fragments are neutron-rich and at such high excitation energies, the preferred de-excitation pathway is neutron emission. The fragments proceed to emit neutrons until their excitation energy has fallen below the neutron separation energy, after which neutron emission is energetically forbidden. After neutron emission has ceased, the fission fragment is now called a fission "product" and γ -ray emission begins. Gamma emission proceeds until the fission product is fully de-excited. From scission to de-excitation, several neutrons and several γ rays are emitted from each fission fragment. This de-excitation occurs in less than a nanosecond, and thus the particles resulting from it are described as "prompt."

The fission product that results after prompt de-excitation is usually itself unstable and will undergo radioactive decay. As fission products are on the neutron-rich side of the line of stability, the overwhelming majority undergo β^- decay. The most neutron-rich of these fission products have β^- decays that populate states in their daughter nucleus that are above the neutron separation energy, allowing for further neutron emission. In addition to these neutrons, the β^- decays result in the emission of γ rays from the daughter nuclei. The neutrons and γ rays that are emitted due to these β^- decays are called "beta-delayed" or "delayed." A handful of fission products exhibit β^+ , electron capture, and α decays. The β^{\pm} and electron capture decays also result in the emission of antineutrinos and neutrinos. In all, the process of fission results in the emission of fission fragments/products, neutrons, γ rays, β^{\pm} particles, antineutrinos and neutrinos, and α particles. Each fission event releases an average energy of roughly 200 MeV. Figure 2.1 shows the chronology of the fission process and its resulting emissions and decays.

Figure 2.1: The chronology of fission, from deformation to fission product β decay. Timescale based on Ref. [50]. Atomic nucleus figure used from Ref. [51].

As will be further discussed in Sec. 2.2.1, fission occurs when the repulsive Coulombic force between the protons overcomes the attractive residual strong (nuclear) force between the nucleons. The strength of the nuclear force is considerably greater than that of the Coulombic force. Thus, in order for fission to occur, deformation to the nucleus must occur that allows the Coulombic force to overcome the nuclear force. This deformation can exist naturally, as is the case in super-heavy nuclei where spontaneous fission occurs, or it can be induced by adding excitation energy to the compound system. The energy required to induce a deformation that allows fission to proceed is called the "fission barrier."

Fission occurs in heavy nuclei. Fission is most commonly associated with actinides but has been observed in compound nuclei with A as low as 197 through the ¹⁸¹Ta(¹⁶O,f) reaction [52]. With increasing nuclear mass, the fission barrier tends to lower, and thus the probability of spontaneous fission tends to increase. In some nuclei, the fission barrier is low enough that fission can be induced by a neutron with thermal kinetic energy. The excitation energy left in the compound nucleus by the absorption of the neutron (the neutron separation energy) is sufficient to cross the fission barrier and allow fission to proceed. Such target nuclei are referred to as "fissile." In the mass region near uranium, this effect causes target nuclei with odd neutron numbers to be fissile. This is because nucleon pairing results in a boost to the energy imparted to the compound nucleus by the absorption of a neutron that completes a pair with the odd neutron of the nucleus [11, p. 488].

In some nuclei, induced deformation can create an isomeric state. The deformation is severe enough that fission becomes possible, but not so severe that fission proceeds immediately. Because a significant change in deformation is required to either proceed to fission or revert to the ground state, the state exhibits a non-zero lifetime. These states are called "fission isomers." Fission isomers have been observed from thorium to berkelium and have lifetimes ranging from nanoseconds to tens of milliseconds [53].

2.1.1 Fission Observables

Fission is a complex process that results in the generation of several different particles in each fission event. Because of this, fission has many different observables. To generate a comprehensive list of fission observables, 300 publications in NSR on fission observables from 238 U(n,f) were reviewed. These publications spanned the years 1977 to 2019. In total, 32 different fission observables were found. Of these, the most commonly reported observables were the (n,f) cross section and fission yields. A list of the fission observables that were found and the number of times they were found is provided in Table 2.1.

Because the particles emitted from fission and their corresponding observables result from the same nuclear event, fission observables have strong correlations between them. These correlations can be determined experimentally or estimated from theoretical modeling. The number of times that multiple fission observables were measured in a single experiment was recorded during the review of NSR. These experiments are important because they have the potential to give information on the correlation between fission observables. Unfortunately, experiments involving fission do not often report more than one observable, making information on fission observable correlations scarce. Only 13.0% of all measurements for this compound system measured more than one observable. Figure 2.2 shows a matrix that tabulates the number of times that the fission observables listed in Table 2.1 were simultaneously measured.

2.1.2 The History of Fission

The existence of a process whereby an atomic nucleus would be split into fragments was initially posited by Ida Noddack in 1934 [54]. Between 1937 and 1938, Irene Joliot-Curie published papers that noted the presence of several chemical elements in a uranium sample that had been irradiated with neutrons [55, 56, 57]. This work prompted Lise Meitner to request additional experiments from Otto Hahn and Fritz Strassmann. The existence of the process of fission was confirmed by Hahn and Strassmann by bombarding uranium with

Figure 2.2: Lower triangular matrix of simultaneous measurements of the fission observables listed in Table 2.1 for neutron-induced fission of 238 U. The indices on the axes correspond to the matrix indices listed in Table 2.1. The diagonal is null as the diagonal of this matrix only reflects the measurement of a single observable. Only 13.0% of all measurements for this compound system measured more than one observable.

neutrons in December 1938 [58]. In this experiment, chemical analysis was used to confirm that barium was produced as a result of bombarding the uranium with neutrons. The first theoretical description of fission was offered by Meitner and Frisch in January 1939 [59]. The existence of fission was further confirmed by a team of physicists at Columbia University in late January of 1939 [60]. A uranium target was placed in an ionization chamber and bombarded with neutrons, allowing the energy released by each fission event to be measured.

Soon after its discovery, the details on the emissions from fission were clarified and the average number of neutrons emitted from each fission event was assessed [61]. A key observation was that the average number of neutrons emitted from fission was greater than one. This immediately raised the possibility that fissile actinides could be configured in a geometry that would allow a chain reaction to proceed. A controlled chain reaction, where the number of neutrons produced by fission and the number of neutrons inducing fission

remain constant in time, was recognized as a possible source of energy. An uncontrolled chain reaction, however, was recognized for its potential to create a very destructive release of energy [62].

Both controlled and uncontrolled systems were designed and tested by scientists in short order. On December 2, 1942, a research team led by Enrico Fermi achieved the first controlled nuclear chain reaction in the Chicago Pile-1 reactor at the University of Chicago [63]. Less than three years later, on July 16, 1945, the first uncontrolled nuclear chain reaction was initiated by a team of researchers led by J. Robert Oppenheimer with the Trinity nuclear test near Socorro, New Mexico [64]. The first nuclear reactor designed to produce electrical power, the Experimental Breeder Reactor I at the National Reactor Testing Station, became operational on December 20, 1951 [65].

Since these early developments, both nuclear reactors and nuclear weapons have been extensively developed and have become integral parts of society. Nuclear reactors are responsible for approximately 10% of global electricity production [66], are critical in radioiso-tope production, and aid basic research. Nuclear weapons are possessed by at least eight sovereign states and are a major concern for national and global security. As these two critical technologies have developed, the interest in nuclear fission – which is at their core – has continued to grow.

2.2 Descriptions of Fission

To describe the fundamental origin of fission and observed fission phenomena, a number of semi-empirical and theoretical descriptions of fission have been put forth. As time has progressed, more and more complex models have been developed, each offering more advanced descriptions of particular observables. Nevertheless, even the most simplistic model – the liquid drop model – can provide basic insights into the nature of fission. This section will review a series of fission models that are particularly useful to evaluation and applications.

2.2.1 The Liquid Drop Model

The first model that can be used to describe fission was developed in 1930, before the discovery of fission itself. This model, often referred to as the "liquid drop model", was first posited by George Gamow in order to describe empirical trends in nuclear binding energies [67]. In 1935, Carl Friedrich von Weizsäcker further developed this theory to give the formulation that is most commonly used today [68].

The model treats the nucleus as a drop of charged liquid. The charge of the liquid has a single polarity that is uniformly distributed across the volume of the drop. This creates a repulsive force within the drop that tends to drive it towards disintegration. Countering this repulsive Coulombic force is the nuclear force that attracts the matter of the drop together. Equation 2.1 gives the Semi-Empirical Mass Formula which represents the liquid drop model [11, p. 68]:

$$E = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(N,Z)$$
(2.1)

where E is the binding energy of the nucleus, A is the mass number of a particular nucleus, Z is the proton number of the nucleus, a_V is the volume term parameter, a_S is the surface term parameter, a_C is the Coulomb term parameter, a_A is the asymmetry term parameter, and δ is the pairing term which is given by:

$$\delta(A,Z) = \begin{cases} +a_P \ A - Z \text{ and } N \text{ even} \\ 0 \ A \text{ odd} \\ -a_P \ A - Z \text{ and } N \text{ odd} \end{cases}$$
(2.2)

where a_P is the pairing term parameter.

This model has five terms and five parameters, each with an underlying physical basis:

- volume term $-a_V A$ this term scales with A which is directly proportional to the volume of the nucleus. The term is positive and therefore represents an attractive force that holds the nucleus together. Physically, this term represents the nuclear force: the more volume per nucleon, the greater the attractive nucleon-nucleon interactions in the nucleus.
- surface term $-a_S A^{2/3}$ this term is a correction to the volume term; it accounts for the fact that nucleons on the surface of the nucleus have fewer attractive nucleonnucleon interactions as they are not surrounded by other nucleons on all sides. Therefore, this term is negative.
- Coulombic term $-a_C \frac{Z(Z-1)}{A^{1/3}}$ this term accounts for the repulsive force between the protons of the nucleus and is therefore negative. It is analytically derived from the energy required to add an infinitesimal shell of charge to a sphere of charge assuming Gauss's law.
- asymmetry term $-a_A \frac{(A-2Z)^2}{A}$ this term accounts for the fact that nuclear configurations with an uneven number of proton and neutron pairs are less bound than those with an even number of proton and neutron pairs. Except when the number of protons and neutrons is equal, this term is negative and thus destabilizing.
- pairing term $-\delta(N, Z)$ this term accounts for the observed enhancement in stability when all nucleons are paired. The term is positive when all are paired, zero when there is one odd nucleon, and negative when there is both an odd neutron and odd proton.
While different sources list different values for the parameters of the model, commonly used values are: $a_V = 15.5$ MeV, $a_S = 16.8$ MeV, $a_C = 0.72$ MeV, $a_A = 23$ MeV, and $a_P = 34$ MeV [11, p. 68].

The utility of this model lies in its simplicity: while the model only contains five terms and parameters, it has a remarkable ability to reproduce many observed trends in nuclear binding energies. And while the model was developed to describe nuclear binding energies, it also provides insights about the energetics of fission. Consider the example of fission of the ²³⁵U(n,f) compound nucleus, ²³⁶U. In the case of symmetric fission, ²³⁶U splits to form two ¹¹⁸Pd fragments. Table 2.2 shows values of the individual terms of the semi-empirical mass formula and how they change after the ²³⁶U fissions into symmetric fission fragments. It can be seen that the semi-empirical mass formula accurately predicts the energy release from fission. It also explains the mechanism by which fission occurs: the shape change that occurs in fission reduces the number of attractive nucleon-nucleon interactions, allowing the Surface term and the increase of the Coulombic term. While the liquid drop model provides important insights about the energetics and forces that drive the fission process, it falls short of describing more advanced fission phenomena.

2.2.2 The Shell Model

In 1949, the shell model of atomic nuclei was developed by Maria Goeppert Meyer [69]. The model was developed to address the observed "magic numbers" in atomic nuclei. Nuclei with a magic number of protons or neutrons were observed to have enhanced stability and low nuclear level density. This was especially true for nuclei with both a magic number of protons and a magic number of neutrons. While this behavior had been observed in the 1930s and 1940s [70], a physical model that successfully predicted all of these magic numbers had been elusive. Figure 2.3 shows an example of enhanced stability in nuclei with a magic number of protons or neutrons.

The nuclear shell model was inspired by the atomic shell model, which had done an excellent job of describing shell effects in atoms. However, applying the atomic shell model directly to the nucleus cannot work; there is a single force that holds an atom together (the Coulombic force), whereas a nucleus has nucleons that attract each other through the nuclear force and protons that repel each other through the Coulombic force. Moreover, an atom has a central, immobile potential that is created by the charged nucleus. The potential of a nucleus is created by the nucleons themselves and is thus non-central. As a result, a multi-termed potential is required to describe a nucleus in the Schrödinger equation and that is difficult to solve analytically.

In order to form a potential that describes a nucleus in a mathematically tractable way, the assumption that the nucleons form a nearly central potential is made. This potential is

Figure 2.3: The first excited states of nuclei as a function of N and Z. Enhanced stability is observed in even-even nuclei with a magic number of protons and/or neutrons; their first excited states occur at significantly higher energies on average. The color bar is truncated at 3 MeV to enhance the visibility of the effect in nuclei with $A \ge 20$. The data in this figure were taken from RIPL [35].

described with the Wood-Saxon potential [71], the mathematical form of which is shown in Eq. 2.3. This potential, which is a modified form of the three-dimensional harmonic oscillator potential, describes the nuclear potential as a well with a finite depth and a smooth edge or "skin." Figure 2.4 shows the Wood-Saxon potential as a function of nuclear radius and demonstrates its smooth edge.

$$V_{WS}(r) = \frac{-V_0}{1 + exp[(r - R/a)]}$$
(2.3)

where V_0 is the depth of the well (strength of the potential) and is commonly given the value $V_0 = 50$ MeV, R is the nuclear radius and is commonly given by $R = 1.25 A^{1/3} [fm]$, and a describes the "thickness" of the skin at the edge of the potential and is commonly given the value a = 0.524 fm [11, p. 122].

The Wood-Saxon potential begins to describe the shell structure of atomic nuclei, however, it falls short of accurately predicting the experimentally observed magic numbers. The Wood-Saxon potential predicts magic numbers of 2, 8, 20, 34, 58, 92, and 138, whereas the experimentally observed magic numbers are 2, 8, 20, 28, 50, 82, and 126 [11, p. 123].

Figure 2.4: The Wood-Saxon potential as a function of nuclear radius. The "skin" of the nucleus is shown between the red dotted lines. The thickness of the skin is controlled by the parameter a. As a decreases, the skin becomes thinner.

To further modify the nuclear potential and finally describe the experimentally observed magic numbers, Mayer introduced a term to account for the interaction between the spin of the nucleons with the orbital potential – the so-called "spin-orbit" coupling. This results in the nuclear potential that is given in Eq. 2.4, where the term, $V_{so}(r) \boldsymbol{\ell} \cdot \boldsymbol{s}$, is the modification for the spin-orbit coupling. The form of $V_{so}(r)$ is not particularly important [11, p. 124]. What is important is the factor, $\boldsymbol{\ell} \cdot \boldsymbol{s}$, which breaks the spin degeneracies from the Wood-Saxon levels.

$$V(r) = V_{WS}(r) + V_{so}(r) \boldsymbol{\ell} \cdot \boldsymbol{s}$$
(2.4)

where V(r) is the total radial nuclear potential, $V_{WS}(r)$ is the Wood-Saxon potential given in Eq. 2.3, and $V_{so}(r) \boldsymbol{\ell} \cdot \boldsymbol{s}$ is the modification for the spin-orbit coupling.

With the introduction of the spin-orbit coupling term to the nuclear potential, the experimentally observed magic numbers are reproduced exactly. This significant development in the description of the nuclear potential allows the origins of the shell structure in atomic nuclei to be understood. This shell structure is very important for understanding the dynamics of fission as well. At low excitation energies, binary fission produces two fragments with unequal mass; binary fission rarely produces two fragments of equal mass. This is explained by the shell model: fission preferentially produces one fragment near the doubly magic A = 132(Z = 50, N = 82). The other fragment receives the remainder of the mass. Figure 2.5 demonstrates the important effect that shell structure has on the process of fission. Mass yields in low-energy fissioning systems are anchored near the doubly magic A = 132. Shell effects give low-energy fission its characteristic asymmetry.

Figure 2.5: The thermal-neutron mass yields for 227 Th, 235 U, and 239 Pu and the spontaneousfission mass yields for 252 Cf and 256 Fm. The shaded regions show mass yields which are contributed to by at least one product with a magic number of protons or neutrons. Note that in the doubly magic region, there is an enhancement in the mass yield curve of all five nuclei. The low-mass centroid of each mass yield curve increases with increasing nucleus mass. This occurs because the left edge of the heavy-mass centroid is anchored near the doubly magic closure. The independent mass yields were taken as the sum of the independent fission yields with a given A using the data in the fission yield evaluation of ENDF/B-VIII.0 [28].

2.2.3 The Deformed Shell Model

In the early 1950s, experimental evidence emerged that suggested the existence of static deformation in atomic nuclei [72, 73, 74, 75]. These statically deformed nuclei exhibited rotational bands in their excitation spectra. The shell model that had been proposed by Maria Goeppert Mayer in 1949 had a spherical potential and therefore described spherical nuclei. This model was not sufficient for the description of deformed nuclei and could not predict the observed rotational phenomenology.

In 1955, Sven Nilsson modified the shell model potential to account for deformation in the nuclear shape [76]. Because a non-spherical, deformed potential was used, ℓ ceases to be a

good quantum number. Instead, the projection of j onto the symmetry axis of the nucleus, Ω , becomes a good quantum number. This means that the (2j + 1) degeneracy of the spherical shell model is broken as the result of a non-zero deformation. As the deformation increases, the greater the energy splitting. Figure 2.6 shows energy levels for single neutrons in a deformed nucleus as a function of deformation.

Figure 2.6: Energy levels for single neutrons in a prolate deformed potential as predicted by the Nilsson model. As deformation goes to zero, the energies and (2j+1) degeneracy of the spherical shell model are restored. This figure is reproduced from Figure 5.29 of Ref. [11, p. 155], which was produced from Ref. [77].

While this deformed shell model was successful at describing trends at small deformations, its accuracy at large deformations was poor [78]. This had made theoretical calculation and prediction of fission barrier values in heavy nuclei (which have high deformation) difficult. In 1967, Velin Strutinsky proposed a method that uses the Nilsson model to calculate a "shell correction" for the liquid drop model [79]. A deformed version of the liquid drop model was used [80]. The method suggests that this shell correction, δU , is given by Eq. 2.5:

$$\delta U = U - \tilde{U} \tag{2.5}$$

where U is the sum of the energies of the nucleons as calculated by the Nilsson model and \tilde{U} is the sum of the energies of the nucleons as calculated by the deformed liquid drop model.

In addition to allowing the accurate calculation of fission barrier values, this method also provides the first theoretical description of fission isomers. The deformation energy calculated using this method as a function of deformation showed two to three minima. The ground state of the nucleus exists in the first minimum. The fission isomer exists in the next minimum. Depending on the energy surface, the fission isomer can either tunnel back to the ground state or can tunnel to even higher deformation where fission will proceed. Figure 2.7 shows an example of a fission barrier calculated with this method.

Figure 2.7: An example of a fission barrier calculated with the Strutinsky Method. The dashed line is predicted by the deformed liquid drop model. The thin dashed line is a fission barrier that is typical when asymmetric fission is observed. The thick dashed line is typical of asymmetric fission. This figure was reproduced from Figure 3 of Ref. [81].

2.2.4 Advanced Models

There exist many advanced models of atomic nuclei and some of these models can be used to investigate fission phenomenology. An extensive number of advanced models of fission have been reviewed in Refs. [82, 83]; these include statistical models, microscopic models, and *ab initio* calculations. While many models of fission exist, only a handful are useful for applications and evaluations. As this dissertation is focused on the nuclear data of fission yields, only models that are useful to fission yield evaluation and applications will be discussed specifically.

Four models, in particular, are useful to applications that use fission yield information and evaluations of fission yields: the Wahl Systematics, the General Description of Fission Observables (GEF) code, the Hauser-Feshbach Fission Fragment Decay (HF³D) model, and the Fission Reaction Event Yield Algorithm (FREYA). Each of these models and their uses will be briefly discussed in Secs. 2.2.4.1-2.2.4.4.

2.2.4.1 Wahl Systematics

The Wahl systematics provide a set of mathematical equations that describe the charge distributions (including even-odd effects), mass distributions, and delayed-neutron yields of a fissioning system [84, 85]. The relative simplicity and limited number of parameters featured in this model make it a good candidate for use in evaluations. The model parameters can be tuned to experimental data with tractable regression methods. Because of this, the model was particularly useful in the most recent USNDP evaluation of fission yields conducted in 1994 [86]. The model was complemented with the Madland isomeric yield ratio tables [87, 88] to produce a complete evaluation. While this model has been useful to evaluation, advancements in computational resources have made the use of even more descriptive models in fission yield evaluation possible.

2.2.4.2 GEF

The General Description of Fission Observables (GEF) code is a model developed to describe the observables of fission from any compound nucleus with a given excitation energy and angular momentum [89]. Like the Wahl systematics, GEF is able to reproduce expected fission yield distributions and their even-odd effects. However, GEF not only models fission yield distributions, but it also predicts several other fission observables including prompt neutron and γ -ray distributions, fission barrier values, fission probabilities, isomeric yield ratios (a notable improvement over the Wahl systematics), and fragment kinetic energies. To accommodate such a broad range of predictive results, the model underlying the GEF code has 50 model parameters.

While GEF predicts a broad range of fission observables, it is not recommended for evaluations [89]. The GEF code and its model parameters are meant to be used to predict fission observables for several hundred fissioning systems from Z = 80 to Z = 112. Thus, by comparison to the large amount of experimental data covering this range of fissioning systems, the 50 model parameters are relatively restrictive. Therefore, at this time, GEF is only recommended for the validation of evaluations, not for the production of evaluations themselves.

2.2.4.3 HF³D

The Hauser-Feshbach Fission Fragment Decay ($HF^{3}D$) model has been implemented as a package inside of BeoH [90, 91] – a statistical Hauser-Feshbach code developed at Los Alamos National Laboratory (LANL). $HF^{3}D$ is a deterministic model. This makes $HF^{3}D$ ideal for fission yield modeling as the yields to all fission fragments/products are calculated with the same precision. Moreover, the calculations performed by $HF^{3}D$ require significantly less computational power than Monte-Carlo models of fission, making it an ideal evaluation tool [92].

Together with the Cascading Gamma-ray and Multiplicity for Fission (CGMF) code [93], HF³D is being used by researchers at Los Alamos National Laboratory to generate evaluations of fission observables that are physically consistent with each other [92]. CGMF will be used for some fission observables, such as average neutron multiplicities and prompt neutron energy spectra, while HF³D will be used for others, such as fission yields. The underlying models in CGMF and HF³D are nearly identical, allowing the same parameters to be used for both codes. Because of this, there is a high degree of consistency between evaluations of fission observables generated using CGMF and HF³D. This addresses an important problem: existing evaluations of fission observables have been conducted independently. Correlations between the observables are therefore missed and this results in the evaluations being inconsistent [94].

2.2.4.4 FREYA

As previously mentioned in Sec. 2.2.4.3, inconsistencies between fission observable evaluations exist. A similar issue was identified in event generators for nuclear transport codes: the conservation of physical quantities and correlations between observables were not properly handled. To address this problem, the Fission Reaction Event Yield Algorithm (FREYA) was developed to provide an event generator for Monte-Carlo transport codes that simulated fission events with physically consistent observables [95, 96]. FREYA has been integrated into standard Monte-Carlo transport codes such as MCNP and the Geometry and Tracking (GEANT) code [97].

While the previously mentioned models – the Wahl Systematics, GEF, and HF³D – are particularly useful for evaluation efforts, FREYA is focused on use in applications. The model underlying FREYA generates a complete and fully correlated set of fission observables for individual fission events, starting from pre-fission neutron emission, following the fission event all the way through to prompt γ -ray emission from the fission products. Because FREYA is an event generator it is more appropriate for radiation transport applications than evaluation itself. This is particularly true for fission yield evaluations where an intractable number of events would need to be generated to assess the full range of fission products (which have yields ranging 21 orders of magnitude [86]). While advanced models of nuclear fission exist, none can describe the process of fission and all of its observables with sufficient accuracy. As such, experimental measurement of fission observables is required to determine the properties of nuclear fission and to complement and inform theoretical models of fission. This dissertation focuses on the improvement of the nuclear data related to one category of fission observable: fission yields. The background presented in this chapter is complemented by the material that follows in Chapter 3, which offers a review of experimental methods used in fission yield measurements, with a particular focus given to measurement uncertainties. Together, these chapters provide a foundation for fission yield evaluation by detailing theoretical and experimental capabilities.

Matrix Index	Observable	No. Measurements
0	(n,f) Cross Section	41
1	Product Cumulative Yields	32
2	Mass Yields	12
3	Fragment Angular Correlations	12
4	Prompt Fission n Spectrum	10
5	Average n Multiplicity	10
6	Fragment TKE	8
7	Charge Yields	7
8	Product Independent Yields	6
9	Average n Energy	6
10	Fragment Mass Yields	5
11	Fragment Yields	4
12	Delayed n Group Numbers	4
13	Average TKE	4
14	Prompt n Angular Correlation	3
15	Prompt γ Spectrum (Low Res.)	3
16	Delayed n Energy Spectra	3
17	Average γ Multiplicity	3
18	Isomeric Ratios	2
19	Fragment Mass	2
20	Fragment Angular Momenta	2
21	Delayed n Yield	2
22	Average Total γ Energy per Fission	2
23	Prompt X-ray Spectra	1
24	Prompt γ Spectrum (High Res.)	1
25	Fragment Excitation Energy	1
26	Fragment γ Emission	1
27	Fractional Cumulative Yields	1
28	Average γ Energy	1
29	(nf) Cross Section Correlations	1
30	$\gamma - \gamma$ Coincidence	1
31	$\gamma - \gamma - \gamma$ Coincidences	1

Table 2.1: Observables matrix indices and number of measurements listed in NSR for the 300 measurements reviewed.

Table 2.2: Terms of the semi-empirical mass formula (Eq. 2.1) calculated for ²³⁶U and two symmetric fission fragments, ¹¹⁸Pd. The difference between these terms indicates approximately 235 MeV should be released from such a symmetric fission event.

Term (MeV)	²³⁶ U	$2 \times {}^{118}\text{Pd}$	Difference (MeV)
Volume	3658	3658	0
Surface	-641.6	-808.3	-166.7
Coulombic	-975.4	-607.7	367.7
Asymmetry	-263.5	-263.5	0
Pairing	34	68	-34
Total	1811.5	2046.5	235

Chapter 3

Expected Measurement Uncertainties in Fission Yield Measurements

The basis of this chapter is formed by "Templates of Expected Measurement Uncertainties" – Chapter IX – "Fission Yields" which was previously submitted to Nuclear Data Sheets [98]. Chapter IX – "Fission Yields" reviews the current state of experimental fission yield nuclear data and provides a useful guide to assist experimentalists and evaluators in their research. In particular, this work details what uncertainties should be quantified for a given measurement and what information should be provided for nuclear data evaluation purposes. This publication advances the current state of fission yield nuclear data.

3.1 Introduction

The templates of expected measurement uncertainties are a series of guides – or "templates" – which review common experimental techniques that are used for the measurement of a particular type of nuclear property. This review process generates templates on what measurement uncertainties should be reported for each of these techniques; reviewing the sources of uncertainty associated with them and, where possible, providing estimated minimum, mean, or maximum values for those uncertainties.

The need for these templates was first outlined by Dr. Denise Neudecker of Los Alamos National Laboratory [99, 100]. Since this need was identified, Neudecker has led a project to compile templates of expected measurement uncertainties for multiple measured nuclear properties. The initial efforts of this project have culminated in the aforementioned publication "Templates of Expected Measurement Uncertainties."

Each template is compiled from a variety of sources. Peer-reviewed literature and EXFOR reports are the primary sources for the templates. As these two sources have community-

wide recognition, they are preferred. However, peer-reviewed literature and EXFOR reports do not always provide enough information to compile a template. In this situation, the template in question is supplemented by consultation with experts on particular experimental methods.

The templates have a dual purpose: providing a guide for experimentalists and a guide for evaluators. As a guide for experimentalists, the templates provide a tabulation of the uncertainty sources associated with common experimental techniques and their expected values. The templates can assist experimentalists in the planning of their experiments; using the information in the templates, experimentalists can configure their experiments to appropriately track all sources of uncertainty and to minimize those sources as much as is reasonably achievable. In addition to this, the templates provide a listing of further information, beyond uncertainties, that is useful for evaluators. The templates also assist evaluators when they conduct their evaluations. As the templates provide a comprehensive listing of uncertainty sources and their expected values, evaluators can use them to assess the quality of various published measurements. As a last resort, evaluators can also use the suggested template uncertainty values to fill in missing sources of uncertainty in legacy measurements that did not fully account for all sources of uncertainty.

While the templates provide a list of uncertainty sources and their expected values, it should be clear that these values should not be viewed as immutable. Advances in technology or the implementation of existing technology can render the values in the template obsolete. It is intended that the templates will be continuously updated so that they remain current. It should also be noted that the values in the templates should not be viewed as targets; experimentalists should strive to achieve the lowest uncertainties that are reasonably possible for the techniques and technology they use. Similarly, evaluators should not use the templates in place of the uncertainties detailed in publication as the details of each individual experiment are unique.

3.2 The Fission Yields Template

In this section, neutron-induced fission yield measurements will be reviewed. Neutroninduced fission yields are measured using a number of experimental techniques that will be discussed in Sec. 3.2.1. In Sec. 3.2.2, a review of current neutron-induced fission yield evaluations is conducted and this review guided the identification of needs for future evaluations. Sec. 3.2.3 outlines the template of expected uncertainties for neutron-induced fission yields and details a review of EXFOR that was conducted to help guide the values in the template.

Fission is the process by which a nucleus crosses its fission barrier and splits into at least two fragments. These fission fragments then de-excite by the emission of neutrons and

 γ rays. A fission fragment that has completed neutron emission is called a **fission prod**uct. This chapter will focus on the assessment of **fission product yields**. A fission yield is the probability that a given fission product will be produced as the result of a fission event.

Each fission event will create two macroscopic (A>60) fission fragments/products and will occasionally also create one or two light charged particles (A<10). The yields to the macroscopic fission products are called **binary fission yields** and the yield to light charged particles are referred to as **ternary** or **quaternary fission yields**. The probability of producing ternary or quaternary fission products is small compared to binary fission, and as a result, experimental measurements have focused predominately on binary fission yields. Thus, this chapter will focus on the assessment of binary fission product yields.

Fission can occur spontaneously or it can be induced. Spontaneous fission is the decay of a nucleus via fission; it occurs in certain heavy actinides where the fission barrier is sufficiently low to allow the fission process to proceed without an external source of excitation. Fission can be induced by imparting sufficient energy to a nucleus to allow it to cross the fission barrier. Any particle can induce fission including photons, neutrons, and charged particles. Because of the importance of neutron-induced fission to applications, both measurements and evaluations have focused on neutron-induced fission yields. Therefore, this chapter will only discuss neutron-induced fission product yield measurements.

Fission yields can be measured as a function of mass number, atomic number, and isomeric state. Evaluations of independent and cumulative yields report fission yields as a function of these three quantities. There are several different types of fission product yields that are measured. There are five definitions of fission yields that will be discussed in this chapter:

- **Independent** the probability that a given product is produced by a fission event immediately after scission and neutron emission,
- **Cumulative** the probability that a given product will exist at some point in time after a fission event, either from direct production from the fission event itself or from the decay of another fission product,
- **Chain** the probability that a product with a given mass number will be produced in a fission event after beta-delayed neutron emission has occurred,
- Mass the probability that a product with a given mass number will be produced in a fission event before beta-delayed neutron emission has occurred,
- **Charge** the probability that a product with a given atomic number will be produced in a fission event.

It should be noted that chain and mass yields are sometimes used interchangeably in literature, however, they are different.

In general, the specificity and immediacy of a fission yield type correlate with the uncertainty with which it can be measured. Specificity describes whether the yield is specific in mass/atomic number alone (such as mass, chain, and charge yields) or whether it is specific to atomic number, mass number, and isomeric state (such as independent and cumulative yields). Immediacy describes the time scale on which the yield must be measured. Fission yields of short-lived fission products (either independent or cumulative) require greater immediacy in the assay of the fissionable sample in measurements and thus tend to have larger uncertainty due to decay corrections.

This behavior is confirmed by the EXFOR review that is conducted in Sec. 3.2.3.1. For example, Fig. 3.5 in Sec. 3.2.3.1 shows that the measured independent yields of ²³⁸U exhibit the highest average uncertainty as they are the most specific and require the greatest experimental immediacy. Cumulative yields exhibit a lower average uncertainty than independent fission yields; while they are specific in both atomic and mass numbers, they do not require the same experimental immediacy. Chain yields exhibit the lowest average uncertainty as they are specific only in mass number and allow for long periods of radioactive decay between irradiation and assay.

In addition to the above definitions of fission yield types, each type can be measured as three different quantities:

- Absolute the total probability that a given fission product will be produced by a fission event,
- **Relative** the probability that a given fission product will be produced relative to a reference fission product yield of the same type,
- **Fractional** an independent or cumulative fission yield relative to a chain or mass yield.

Two fundamental equations define the determination of relative versus absolute fission yield measurements. In the case of an absolute fission yield measurement, the experimental data analysis process ultimately seeks to determine the fission yield using Eq. 3.1:

$$Y_f^i = \frac{N_i}{N_f} \tag{3.1}$$

where Y_f^i is the absolute fission yield of the i^{th} fission product, N_i is the number of the i^{th} fission product produced in the experiment, and N_f is the total number of fissions that occurred in the experiment.

In a relative fission yield measurement, the experimental data analysis process ultimately seeks to determine the fission yield using Eq. 3.2:

$$y_f^i = \frac{N_i}{N_{ref}} \tag{3.2}$$

where y_f^i is the relative fission yield of the i^{th} fission product, N_i is the number of the i^{th} fission product produced in the experiment, and N_{ref} is the total number of a reference fission product that was produced in the experiment.

The templates that are presented in Sec. 3.2.3 are established using a combination of information taken from an EXFOR review of fission yield measurements (Sec. 3.2.3.1), peer-reviewed literature, and private communication and consultation with experts on various techniques used in fission yield measurement. The template for activation-type fission yield measurements relied on all three of these sources. Due to its relative novelty, limited useful information on the "2E-2v" method for fission yield measurement was found in the EX-FOR review. Therefore, that template only relies on peer-reviewed literature and expert consultation.

3.2.1 Measurement Types

A large number of experimental techniques have been used to measure neutron-induced fission product yields [101, 102, 103]. While some of these techniques involve unique and specialized procedures and equipment, many others – namely activation measurements – are all closely related and often only differ by assay method, neutron source, and whether a chemical separation was performed. Section 3.2.1.1 will detail the methods and techniques associated with these activation-type measurements. Section 3.2.1.5 will discuss the "2E-2v" method for fission yield measurements. This is a specialized technique that has yielded a series of important results in recent years.

3.2.1.1 Activation Measurements

Activation-type experiments for fission yield measurement employ several different experimental techniques depending on the needs and goals of the experimentalist. Figure 3.1 summarizes a generalized experimental chronology of such activation-type experiments in fission yield measurements. There are three possible stages to these experiments: irradiation, separation, and assay. The neutron source and irradiation method used to activate the sample introduces a number of uncertainties that are discussed in Sec. 3.2.1.2. The fission products from the activated sample may or may not then be separated using a chemical process. The uncertainties introduced by these separation processes are discussed in Sec. 3.2.1.3. Finally, the number of fission products produced must be assayed. Most experiments perform this assay using one or more of the following three techniques: mass spectrometry, γ spectroscopy, and β counting. The uncertainties introduced by these assay methods are

discussed in Sec. 3.2.1.4.

Figure 3.1: Generalized experimental chronology for activation experiments in fission yield measurements.

Many activation measurements involve a single irradiation of a sample followed by assay without chemical separation. Often the experimentalists will manually transport the irradiated sample to the detection apparatus (e.g., [104]), however, a mechanical/pneumatic device can be used to transport the sample (e.g., [105]). Depending on the method of transport and safety regulations at the facility used, the delay between the end of irradiation and the start of counting can be between seconds and hours. Usually, cumulative and chain yields are observed with these measurements, but if transport times are rapid enough, independent yields can also be observed. The transport time between the irradiation apparatus and the detection apparatus can be a source of uncertainty in these measurements, however, it is rarely a dominant source.

In recent years, cyclical neutron activation analysis (CNAA) has become a promising method for neutron-induced fission yield measurements [105, 106]. CNAA employs a mechanical/pneumatic device to rapidly and repeatedly transport the irradiated sample between the irradiation apparatus and the detection apparatus. The rapidity of the transport allows for short-lived fission products to be observed and the repeated nature of the measurement allows the counting uncertainties related to the short-lived fission products to be reduced. This ultimately allows for independent, cumulative, and chain yields to be measured. Like standard activation measurements, the transport time between the irradiation

apparatus and the detection apparatus can be a source of uncertainty in these measurements.

Because fission produces around one thousand fission products, each with their own β/γ radiations, chemical separations are often used to increase the sensitivity to products with a particular atomic number and/or mass number. Because of this increased sensitivity, the total uncertainty in fission yield measurements that employ chemical separations may be reduced relative to methods and techniques without chemical separation. Nevertheless, because they involve the alteration of the target sample, chemical separation processes introduce additional uncertainties that are not present in other methods.

3.2.1.2 Irradiation Methods

A number of neutron sources have been used to irradiate fissionable material to create fission products. Virtually any neutron source with energy sufficient to induce fission in the target is acceptable and has been used. Past measurements have focused heavily on reactor-generated thermal neutrons, fission-spectrum neutrons, and 14-MeV DT fusion neutrons. These three neutron energy spectra form the basis of all three major fission yield evaluations discussed in Sec. 3.2.2.

Any neutron source has uncertainty in its energy spectrum. Unless a monitor foil is used to determine the fluence on the target, uncertainty in the neutron energy spectrum has not traditionally contributed directly to the reported uncertainty of the measured fission product yields due to the use of the energy groupings discussed above. However, as will be discussed in Sec. 3.2.2, uncertainty in the neutron energy spectrum is potentially important information that will allow assessments of fission yield energy dependence in future nuclear data evaluations.

Two common methods for determining the incident neutron energy spectrum are neutron time-of-flight (nTOF) and foil activation spectral unfolding. In nTOF measurements, one or more neutron detectors are placed at a fixed distance from a neutron source and the time between the generation of a neutron at the source and arrival in the detector (time-of-flight) is measured. The energy of the neutron is then inferred from its time-of-flight. The major sources of uncertainty that contribute to the neutron energy spectrum resulting from nTOF include the time-of-flight length, the neutron detection system timing resolution, and counting statistics [107]. In foil activation measurements, multiple monitor foils with well-known energy-dependent cross sections are irradiated by the neutron source in question [108]. The measured activities are used in regression analysis to determine the neutron energy spectrum using their respective monitor reaction cross sections. The uncertainties in neutron energy spectra from foil activation are primarily reflective of the monitor reaction product activity uncertainties and the uncertainties in the evaluated monitor reaction cross sections.

As demonstrated by Eqs. 3.1 and 3.2, relative fission yield measurements do not need to determine the total number of fissions that occurred in the experiment, unlike absolute fission yield measurements. Relative fission yield measurements only require the number of two fission products that are produced, both of which can often be determined with the same experimental techniques. As relative fission yields are ratio values, some experimental uncertainties cancel. Absolute fission yield measurements require the total number of fissions that occurred in the experiment to be known. Determining the total number of fissions usually requires additional experimental techniques and/or the incorporation of additional nuclear data. This results in absolute fission yields having more sources of uncertainty and thus larger total uncertainties on average.

Actinide targets are required for fission yield measurements. Often these actinide targets have undergone some level of enrichment to increase the presence of the target nucleus of interest. Similarly, in the cases of Th and U, the natural abundance of a particular isotope is of importance. Both enrichment and natural isotopic abundance can contribute to the uncertainty in the number of target nuclei irradiated in a given experiment.

In absolute fission yield measurements, the total number of fissions must be determined. One common way to determine the total number of fissions in a sample is to use the neutron flux of the neutron source if this quantity is known *a priori*. Equation 3.3 gives the calculation of the total number of fissions in a sample as a function of neutron flux:

$$N_f = N t_i \phi \int \sigma_f(E_{inc}) P(E_{inc}) \, dE_{inc} \tag{3.3}$$

where ϕ is the (time-averaged) neutron flux, $\sigma_f(E_{inc})$ is the fission cross section, N is the total number of target atoms in the irradiated sample, t_i is the irradiation time, and $P(E_{inc})$ is the incident neutron energy spectrum. This equation assumes a thin sample with negligible neutron attenuation across its geometry.

When the neutron flux of the neutron source is not known *a priori*, another method for determining the total number of fissions is the use of a monitor foil. In this method, a sample of material with an energy-dependent cross section that is well-known across the incident neutron energy spectrum is co-loaded with the actinide target and exposed to the same neutron source. The resulting activity of the monitor foil is determined using some assay method, often γ spectroscopy, and this is used to determine the neutron flux. This neutron flux is then used in Eq. 3.3 to determine the number of fissions that occurred. Equation 3.4 gives the (time-averaged) neutron flux that is determined with a monitor foil:

$$\phi = \frac{A}{N\lambda t_i \int \sigma(E_{inc}) P(E_{inc}) \, dE_{inc}} \tag{3.4}$$

where A is the activity of the product produced in the monitor foil reaction of interest at the end of irradiation, N is the number of monitor foil nuclei present, λ is the decay constant

of the monitor reaction product, t_i is the irradiation time, $\sigma(E_{inc})$ is the monitor reaction cross section, and $P(E_{inc})$ is the incident neutron energy spectrum.

Similar to the use of a monitor foil, the number of fissions may sometimes be determined using a "monitor" fission product yield. In this case, the number of fissions that occurred in the target sample is determined from the measured activity of one particular fission product that has a well-known fission yield for the incident neutron energy spectrum used in the irradiation. When this is done, Eq. 3.4 becomes modified to be the form presented in Eq. 3.5:

$$\phi = \frac{A}{N\lambda t_i Y \int \sigma_f(E_{inc}) P(E_{inc}) \, dE_{inc}} \tag{3.5}$$

where A is the produced activity of the monitor fission product at the end of irradiation, N is the number of target nuclei present, λ is the decay constant of the monitor fission product, t_i is the irradiation time, Y is the monitor fission product yield, $\sigma_f(E_{inc})$ is the fission cross section of the target nucleus, and $P(E_{inc})$ is the incident neutron energy spectrum.

The cross sections for monitor foils are generally known to within a few percent. Monitor reaction cross sections and covariance matrices can be found in specialized databases, such as the International Reactor Dosimetry and Fusion File [109], where special attention is given to their characterization. In general, the uncertainty from the use of a monitor foil will be driven by the evaluated nuclear data uncertainties in the cross section and the uncertainty in the incident neutron energy spectrum.

As thermal and fission-spectrum neutron-induced fission is of special interest to applications, many fission yield measurements have been performed using reactor beam ports as a neutron source. When this neutron source is used, the burnup of the reactor at the time of irradiation may be used to correct the neutron flux from the beam port [110]. If this is done, additional uncertainty is introduced.

Another common way to determine the total number of fissions induced is the use of a fission chamber. This technique places a target sample in a gas detector which is co-loaded with one or two thin reference samples of the same fissionable/fissile material [111, 112, 113]. The number of fissions in the target sample is then proportional to the product of the ratio of the mass of the target and the reference mass(es) and the number of high-energy pulses created by the fission fragments, as described in Eq. 3.6. Sometimes the number of high-energy signals produced is adjusted by a geometric correction factor that represents the probability that the fission fragments are emitted parallel to the plane of the target sample and thus do not produce a sufficiently large signal in the gas chamber due to Coulombic stopping. As can be seen from Eq. 3.6, the uncertainty introduced by the use of fission chambers can usually be determined from uncertainties in masses and counting statistics.

$$N_f = \frac{m_t}{m_{ref}} \frac{N_c}{\varepsilon} \tag{3.6}$$

where m_t is the mass of the target sample and m_{ref} is the total mass of the reference sample(s), N_c is the number of high-energy signals created in the gas chamber by each fission event, and ε is an optional geometric correction factor that represents the probability that the fission fragments are emitted parallel to the plane of the target sample and thus do not produce a sufficiently large signal in the gas chamber. Often it is assumed all fission fragments escape the target such that ε is equal to one.

Yet another method for determining the number of fissions that occurred in a target sample is fission fragment track counting. In this method, a target sample is placed in direct contact with a material (often CR-39 plastic) that will produce microscopic tracks for each fission fragment that travels through it. The tracks created by fission fragments in this material are then counted under magnification, either manually [114] or using an automated optical detection scheme [115]. The number of fissions that occurred in the target sample is proportional to the number of tracks seen in the tracking material scaled by a fragment escape probability/track detection efficiency. This is similar to the operation of a standard fission chamber. The uncertainties arise primarily from counting statistics and uncertainties/biases from the track detection method.

Uncertainties in the geometry of the irradiation apparatus can contribute to the net uncertainty of any of the sources listed above. This includes, but is not limited to time-of-flight length, the solid angle coverage of the target sample, the shape of the incident neutron field, fission chamber geometric correction factors, and self-shielding in thick target samples. It is difficult to broadly characterize sources of geometric uncertainty as each experiment uses different experimental apparatuses. However, geometric sources of uncertainty are generally fixed units of length/area/volume and their effect on the total experimental uncertainty can be minimized by setting the scale of the dimension in question to be much larger than its geometric uncertainty. For example, a time-of-flight length will generally have a fixed uncertainty in units of mm/cm dictated by the measurement device used, but the relative effect of this uncertainty is reduced by choosing a large time-of-flight length that is orders of magnitude larger than this fixed uncertainty.

Tables 3.3 and 3.4 in Sec. 3.2.3.2 present the template for irradiation methods in fission yield measurements. Due to the wide variety of irradiation methods that can be employed in fission yield measurements, assigning mean and/or maximum expected values to the uncertainty sources is not reasonable. Rather, only minimum expected uncertainties for each of these sources will be enumerated based on literature review and expert opinion.

3.2.1.3 Chemical Separations

The main goal of chemical separations in fission yield measurements is to separate fission products of a given element or elements with similar chemical properties for subsequent assay. Fig. 3.2 shows a general schematic for chemical separations in fission yield measurements.

Figure 3.2: General schematic for chemical separation measurements. The fissionable/fissile sample is irradiated by a neutron source. The irradiated sample undergoes some chemical process that allows an element or set of elements to be separated. The separated fission products are then assayed using β or γ spectroscopy.

The chemical separation of fission products meets one or both of the following goals: separate fission products of a given element for yield determination via direct activity measurement (β counting) or separate fission products to allow detailed mass or γ spectroscopy of lower-yield products by reducing background and interference from high-yield products.

There is a wide variety of chemical separation techniques and methods that can be employed in fission yield measurements, each comes with its own sources of uncertainty and bias. Cumulative and chain yields can be determined using β counting of separated products for total activity determinations. Some independent fission product yields can be determined using rapid separations and on-line separators. Resin column separations can be employed to obtain high-quality elemental separations. Isotope dilution mass spectrometry can be used to determine the total number of fissions in a sample with high precision [111]. A comprehensive review of the techniques used for chemical separations in fission yield measurements is difficult due to this wide variety, however, a review article by Prakash et al. [111] offers a detailed review of some common techniques.

A review of uncertainties in radiochemical neutron activation analysis was conducted by Kučera et al. in the year 2000 and offers insight into the standard sources of uncertainty that are associated with activation-type experiments [116]. This review article acknowledges that each experiment has different sources of uncertainty but identified three commonly observed sources of uncertainty: mass determination of the stable carrier and/or radiotracer, chemical yield determination, and isotopic exchange between the radiotracer and stable carrier. This review suggested that the relative uncertainty of the radiotracer/stable carrier mass determination should be between 0.02% and 0.5%, but that if the mass was determined

gravimetrically this uncertainty value should be near 0.075%. The chemical yield of the process should have uncertainty between 0.3% and 0.5%. Finally, the review asserts that isotopic exchange should be negligible when a homogenous system is obtained by sample decomposition.

Gravimetric mass uncertainties with modern scales could be as low as 0.001%. Oxidation of metallic targets can be particularly problematic for mass determinations in the case of fission yield measurements, where metallic actinide targets are often used. This oxidation can create a bias in the measurement mass. The upper bound of this bias is determined by the stoichiometry of the oxidation reaction. For example, the upper bound of this oxidation bias for a uranium target is 17% (if the target is fully oxidized to produce UO₃). However, the degree of oxidation of a target varies due to a number of factors such as the target geometry and amount of exposure to oxygen or other reactive gases, thus determining this bias can be difficult. Metallic targets should be acid dipped and then massed to ensure the effects of oxidation bias are minimized. Further oxidation after massing can be avoided by flame sealing the target in quartz that is back-filled with inert gas or press-sealing the target in aluminum. Quartz sealing targets can introduce bias itself as a fraction of the fission products will be embedded in the quartz and thus are lost during dissolution.

The chemical yield of the separation process can be affected by the ability to fully dissolve the target. In the case of high-fired oxide targets, in particular, as much as 3% of the original target mass may fail to be dissolved. The chemistry of the separation should ideally be performed in triplicate in order to estimate the uncertainty of the chemical yield and to test the consistency of the process. Additionally, if possible, tracer and reagent blank control experiments should be performed in tandem to further test the reliability of the process. Experiments that do not execute these tasks will have uncharacterized sources of uncertainty that the evaluator will need to take into account.

There are several places where unintended uncertainty/bias can be introduced in radiochemical processing. Experimentalists need to fully document and openly publish the radiochemical methods they use so that an evaluator can assess the reliability of their measurement. A potential remedy to this issue is discussed in the following paragraph where standards for uncertainty quantification in chemical separations are discussed.

A number of community-recognized standards exist to guide uncertainty quantification in chemical separations. These documents have a broad scope and are applicable to most radiochemical separations. The most notable of these standards, ISO/TS 21748, was published by the International Organization for Standards (ISO) in 2004 and was subsequently revised in 2010 and 2017 [117]. A review of chemical separation uncertainties by Saffaj et al. recommended this standard and a number of other suitable standards [118]. Saffaj notes that while these standards exist, many laboratories have not adhered to them, due in part to their complexity. Nevertheless, experimentalists should make every reasonable effort to

follow these guidelines and fully characterize their uncertainty. Similarly, evaluators with detailed knowledge of chemical separations need to review whether proper standards on uncertainty estimation in radiochemical separations were used. While chemical separations are highly regarded in fission yield measurements due to their ability to decrease total measurement uncertainties by increasing sensitivity to selected fission products, it should be kept in mind that many legacy measurements did not fully characterize the uncertainties introduced by the chemical separations used, as noted by Saffaj.

Table 3.5 in Sec. 3.2.3.3 presents the template for chemical separations in fission yield measurements.

3.2.1.4 Assay Methods

A number of diverse assay methods have been used in fission yield measurements. While these methods differ in the tools and techniques that they employ, many of the sources of uncertainty associated with them are the same and thus they will be considered together in this section. In some measurements, assay of the fission products begins immediately after the irradiation of the target sample. In other measurements, the fission products undergo some separation process immediately after irradiation before proceeding to assay, namely measurements that include chemical separation.

Methods that undergo some separation stage tend to offer the advantage of lower assay backgrounds as the fission products have been separated from each other. However, the separation stage introduces additional sources of uncertainty and/or bias as discussed in Sec. 3.2.1.3. The separation stage will also introduce a delay between irradiation and assay, preventing the observation of short-lived fission products. Methods that do not undergo some separation stage often require less complex experimental capabilities and have the potential to observe short-lived fission products. However, these methods observe all of the fission products at once and therefore tend to have higher assay backgrounds.

Regardless of the amount of delay between the irradiation stage and assay stage of a given experiment, three assay methods appear often in fission yield measurement experiments: mass spectrometry, γ spectrometry, and β counting. Indeed, these three methods appeared most often in the EXFOR review of fission yield measurements (presented in Sec. 3.2.3.1) that was performed as a part of the background research for this chapter. The sources of uncertainties associated with each of these three methods will be detailed in the following sections:

Mass Spectrometry Mass spectrometry has been commonly used in fission yield measurements either with or without chemical separations [119]. Several mass spectrometry techniques and configurations exist. Among these techniques, the following have appeared commonly in fission yield measurements: accelerator mass spectrometry (AMS) [120], time-

of-flight mass spectrometry (TOFMS) [121], isotope dilution mass spectrometry (IDMS) [122], thermal ion mass spectrometry (TIMS) [123], inductively coupled plasma mass spectrometry (ICPMS) [124], and recoil mass spectrometry (RMS) [125].

The mass spectrometry methods that commonly appear in fission yield measurements are selected because they feature ion sources that are able to break molecular bonds that may have formed between the fission products and the medium that they were born into; mitigating multiplets in mass spectra that are commonly seen in other mass spectrometry methods that are optimized for analysis of molecules and chemical compounds. Each of these mass spectrometry techniques has particular advantages and disadvantages that are balanced when they are selected for use in a particular fission yield measurement. In general though, all mass spectroscopy methods seek to produce data that separate particles of different mass and/or charge. In most mass spectrometry methods, this is achieved by ionizing individual atoms of fission product nuclei, accelerating these ions through a magnetic field, and measuring their deflection through this field using a position-sensitive detector. In TOFMS, the mass of a particle is determined not by its deflection, but rather by its measured velocity and energy with a "start" and "stop" detector [121].

Depending on the mass/charge selectivity of the mass spectrometry technique used and the time delay between irradiation and assay, all five types of fission yields discussed in this introduction to this section can be measured. Mass spectroscopy features high sensitivity/low backgrounds allowing for mass/charge assignment with low uncertainty compared to other assay methods used in fission yield measurements. AMS in particular is known for its superior mass sensitivity and resultantly low uncertainties, as mentioned in Reference [121]. Together these factors have made this technology a staple in assay methods for fission yield measurements.

Mass spectrometry most often produces information on isotopic ratios, thus, mass spectrometry in fission yield measurements is usually used to determine the relative presence of fission products. A normalization may be used to determine absolute yields, which carries its own uncertainty (see Sec. 3.2.1.2).

Several publications have been produced on uncertainty quantification in mass spectroscopy measurements in order to reduce measurement inconsistencies between different facilities [126, 127, 128]. In recent years, enhanced focus has been placed on the "Guide to the Expression of Uncertainty in Measurements" (GUM) ISO standard [126, 127, 129]. This standard seeks to identify individual sources of uncertainty that contribute to a measured value (commonly called "forward propagation"). The uncertainty from these sources is determined where possible and propagated forward to the measured value. A second method of uncertainty quantification is the "integrated" or "repeatability" method where an identical sample is analyzed multiple times and the uncertainty in the measurement is taken from the standard deviation between these trials [126, 128]. In this way, sources of uncertainty

in the measurement are integrated together in the trial deviation rather than having their values assessed individually. This method is attractive in its simplicity and generally low uncertainty, however, it does not properly account for sources of systematic uncertainty/bias and thus does not allow for valid comparison between different facilities and experiment apparatuses.

The integrated method appears often in legacy fission yield measurements that used mass spectroscopy. Evaluators will need to be aware of this issue, which harkens back to the lack of standards in the uncertainty quantification of chemical separations that was discussed in Sec. 3.2.1.3. A strong background in or discussions with experimentalists on mass spectrometry is important to properly incorporate measurements that used the integrated method into future evaluations.

The work of Essex et al. [126] lists a number of common sources of uncertainty that can arise in these different mass spectrometry techniques including electronics gain and baseline, Faraday cup efficiency, Schottky noise, counting statistics, yield calibrations, linearity calibrations, and filament geometry. There is little published research on forward propagation uncertainty analysis in mass spectrometry as used in fission yield measurements. Reference [130] discusses forward propagation of uncertainties when measuring uranium isotope ratios with TIMS. This publication lists the electronics baseline, mass peak shaping (such as tailing and flatness), and linearity calibrations as sources of uncertainty.

Table 3.1 lists the sources of uncertainty for the two mass spectrometry uncertainty methods that were discussed above. There likely exist many additional sources of uncertainty associated with mass spectrometry depending both on the type of mass spectrometry used and the specifics of each experiment. Therefore, it is noted that this table is not exhaustive and experimentalists and evaluators need to carefully consider sources of uncertainty on a case-by-case basis.

For the "integrated"/"repeatability" uncertainty quantification method, a minimum uncertainty value of 1% is suggested. This value is taken to be consistent with the minimum value suggested for the repeatability uncertainty of AMS that was detailed in Chapter IV of "Templates of Expected Measurement Uncertainties." AMS was selected from the six methods of mass spectrometry commonly used in fission yield measurements to represent the minimum uncertainty due to its reputation in literature for producing results with low uncertainty [121]. It is stressed that this value is a minimum and that the integrated/repeatability uncertainty quantification method is discouraged over the use of the forward propagation method.

There is very limited information in currently published literature on the forward propagation/GUM method of uncertainty quantification in mass spectrometry. This is because this method has only gained traction relatively recently. Further still, there is even less in-

formation published on the forward propagation/GUM method as it applies to fission yield measurements and the specific types of mass spectrometry used in them. The EXFOR review revealed no reports of mass spectrometry uncertainty sources. Therefore, a template will not be recommended for mass spectrometry in Sec. 3.2.3. Rather this discussion is presented in order to stimulate further progress in this area of fission yield assay methods.

Symbol	Description		
Forward Propagation (GUM):			
g	electronics gain		
bl	electronics baseline		
ε_{FC}	Faraday cup efficiency		
n_S	Schottky noise		
Y	yield calibrations		
l	linearity calibrations		
f	filament geometry		
s_{mass}	mass peak shaping		
с	counting statistics		
Integrated Quantification:			
σ_{MS}^{rep}	standard deviation of repeated trials		

Table 3.1: List of uncertainty sources for mass spectrometry.

 γ **Spectroscopy** Several γ detection methods are employed in fission yield measurements. These detection methods can generally be grouped into two categories: energy-resolved and energy-unresolved. Energy-resolved detection is the detection of γ rays with sufficient energy resolution such that source identification and quantitative activity determination are possible using at least one photopeak. Energy-unresolved detection is the detection of γ rays with limited to no energy information and is commonly used in coincidence methods for Compton scatter rejection.

Both energy-resolved and energy-unresolved detection seek to determine the number of a fission product produced, N_i , using Eq. 3.7:

$$N_i = \frac{C(E^i_{\gamma})}{\varepsilon(E^i_{\gamma}) I_{\gamma}(E^i_{\gamma}) \left[-e^{-\lambda t}\right]_{t_0}^{t_1}}$$
(3.7)

where C is the number of counts from the detector, $\varepsilon(E_{\gamma}^{i})$ is the detector efficiency for γ rays with energy E_{γ}^{i} , $I_{\gamma}(E_{\gamma}^{i})$ is the decay intensity of the γ ray with energy E_{γ}^{i} , λ is the decay constant of the γ emitter, and t_{0} and t_{1} are the start and stop times of the detector counting,

respectively.

Commonly-used detectors in the energy-resolved category include:

• Ge - Germanium solid-state detectors

HPGe - high-purity Germanium

Ge(Li) - lithium drifted Germanium

- NaI sodium iodide scintillator
- LaBr₃ lanthanum bromide scintillator

These detectors are used in experiments in fundamentally the same way, the key difference between them in fission yield measurements is their efficiency and energy resolution. High energy resolution (such as that possible with HPGe detectors) allows for improved ability to identify and separate photopeaks emitted by individual fission products. Lower energy resolution makes individual photopeak identification increasingly difficult; however, decreased energy resolution typically comes with improved timing resolution, decreased dead-time, and increased detection efficiency. The specific detector used in any given fission yield measurement will be selected to balance these factors. For example, an experiment looking for γ - γ coincidences to determine fission yields might choose a LaBr₃ detector for its high timing resolution and detection efficiency, accepting its moderate energy resolution. Whereas, another experiment that seeks to determine fission yields from individual photopeaks in a singles spectrum might choose an HPGe detector for its high energy resolution.

Detectors in the energy-resolved category usually require an energy-dependent photopeak efficiency calibration. This efficiency calibration carries uncertainty with it, which will vary with the detector type used. Nuclear decay data relevant to the calibration source used (e.g., half-lives and γ intensities) contribute to this uncertainty. In a limited number of experiments, the γ ray(s) of interest also belong to a standard calibration source. In this situation, the detection efficiency for the γ ray(s) of interest can be obtained directly from the measurement of a calibration standard in what is often called an "internal calibration." Internal calibrations tend to have lower uncertainty than energy-dependent calibrations as they avoid model-parameter covariance and interpolation and/or extrapolation biases. The efficiency data points used for both energy-dependent calibration and internal calibration are calculated with Eqs. 3.8 and 3.9.

$$\varepsilon(E^i_{\gamma}) = \frac{C(E^i_{\gamma})}{N(E^i_{\gamma})} \tag{3.8}$$

where $C(E^i_{\gamma})$ is the number of γ rays of energy E^i_{γ} counted by the detector and $N(E^i_{\gamma})$ is the number of γ rays of energy E^i_{γ} emitted by the calibration source. The uncertainty in the number of γ rays counted by the detector will rarely follow Poisson statistics alone due

to background subtractions and photopeak fitting uncertainty. It should also be noted that strong correlations between efficiencies determined using different γ rays from the same calibration source will exist.

The number of γ rays emitted by a calibration source between times t_0 and t_1 is determined with:

$$N(E_{\gamma}^{i}) = I_{\gamma}(E_{\gamma}^{i}) A_{0} \int_{t_{0}}^{t_{1}} e^{-\lambda t} dt$$
(3.9)

where I_{γ} is the intensity of calibration γ ray with energy E_{γ}^{i} , A_{0} is the initial activity of the calibration source, and λ is the decay constant of the calibration source, which is inversely proportional to its half-life $T_{1/2}$.

In addition to the uncertainties that accompany the variables in Eqs. 3.8 and 3.9, there will be fit/model uncertainty and covariance associated with energy-dependent efficiency calibrations. Fit/model uncertainty in energy-dependent efficiency calibration can be particularly troubling when extrapolated to high γ -ray energies. Standard calibration sources do not usually have γ rays with energies above the 2.7-MeV ²⁴Na photopeak, thus calculating efficiencies above that energy (or the highest γ -ray energy in a particular calibration) will introduce non-trivial extrapolation bias/uncertainty.

The energy resolution of a detector and its uncertainty can be important when a dense γ ray spectrum results from a particular measurement. In experiments where fission products are not separated and all of the fission products are observed simultaneously, the energy resolution of the detector governs the ability of photopeaks to be separated. This is important to photopeak fitting in γ -ray spectroscopy, where background subtraction and photopeak deconvolution are needed to determine the true number of events in a photopeak. These fitting processes introduce uncertainty beyond standard Poisson counting statistics and energy resolution uncertainty is generally included as a part of that γ spectroscopy fitting uncertainty. When count rates from the measured sample are high, pile-up will occur in the detector. This effect needs to be accounted for, otherwise, the photopeak area will be underestimated.

Commonly-used detectors in the energy-unresolved category include:

- BGO bismuth germanate scintillator
- BaF_2 barium fluoride scintillator
- Liquid scintillators
- NaI sodium iodide scintillator

These energy-unresolved detectors are commonly used in coincidence with energy-resolved detectors for the purposes of Compton rejection. Because of this, often the efficiency of energy-unresolved detectors is not calculated directly. In this situation, their efficiency is folded into the efficiency calibration for the greater coincidence detector system and Eqs. 3.8 and 3.9 remain applicable. For example, an HPGe detector is surrounded by a BGO shield for Compton suppression. The signals from the BGO are used to veto coincident signals from the HPGe. The efficiency calibration for the system is determined using a calibration source, effectively folding together the efficiencies of both the HPGe and BGO detectors into one net efficiency.

There are uncertainty sources that affect both resolved and unresolved detection systems. The total dead time of the detection system must be assessed and corrected. When a detector array is used there may need to be a correction for correlations due to the angular distribution of γ emissions from the same nucleus.

Uncertainties in the counting geometry of the detection system may need to be accounted for. This is particularly true when Monte-Carlo simulations are used to assist the efficiency calibration. Another aspect of geometry that must be considered is self attenuation of γ rays by the source. While γ attenuation through the detector dead layer is usually captured in the efficiency calibration, γ attenuation through the source itself will not be accounted for. Thus this self attenuation must be corrected and this will impart additional uncertainty.

When observing γ - γ coincidences, accounting for angular correlation between γ rays is important. There exists limited experimental information about angular correlation between γ cascades, making accurate correction for this phenomenon difficult. Nevertheless, both experimentalists and evaluators should keep this factor in mind when assessing measured data.

Tables 3.6 and 3.7 in Sec. 3.2.3.4 present the template for γ assay in fission yield measurements.

 β **Counting** Beta counting is a commonly used method in fission yield measurements. Beta particles are emitted with a broad spectrum of energies and β detectors often have low energy resolution. Because of this, β detectors are used primarily to assess the total activity of a sample by counting the total number of emissions rather than any energy-dependent behavior. Thus, β counting is usually used only after a chemical separation has been performed so that the observed β activity only describes one or a few fission products.

Similar to Eq. 3.7, β counting seeks to determine the number of a fission product produced, N_i , using Eq. 3.10:

$$N_i = \frac{C}{\varepsilon BR_\beta [-e^{-\lambda t}]_{t_0}^{t_1}}$$
(3.10)

where C is the number of counts from the detector, ε is the detector efficiency for β particles, BR_{β} is the beta decay branching ratio of the β emitter, λ is the decay constant of the β emitter, and t_0 and t_1 are the start and stop times of the counting, respectively.

Commonly-used detectors for β counting include:

- Gas-filled Detectors (e.g., ionization chamber)
- Silicon Detectors
- Solid-state Scintillators
- Liquid Scintillation Counter

Gas-filled detectors, silicon detectors, and solid-state scintillators are all used in similar ways in fission yield measurements; they are placed near the fission product sample to determine its activity. Liquid Scintillation Counting (LSC) involves the placement of the fission products directly into the active volume of the scintillator for counting, entailing additional sources of uncertainty.

Gas-filled detectors, silicon detectors, and solid-state scintillators are placed near the sample of fission products. The absolute efficiency of the detector will be a source of uncertainty. Due to the short range of β particles in matter, the absolute efficiency is largely dependent on the solid angle coverage of the detector. As with other detectors, β counters experience dead time which must be corrected for and this introduces additional uncertainty. The physical form and shape of the fission product sample will determine if a self attenuation correction is required. Again due to the short range of β particles in matter, this correction will need to be applied to most geometries.

While liquid scintillation counters can be used for beta counting, there is a lack of literature on their application to fission yield measurements. Therefore, liquid scintillation counters will not be considered in this chapter.

Tables 3.8 and 3.9 in Sec. 3.2.3.4 present the template for β assay in fission yield measurements.

3.2.1.5 The 2E-2v Method

The "2E-2v" method for fission yield measurements has gained importance due to its ability to accurately measure mass yields with several results and facility updates published in recent years [131, 132, 133, 134, 135]. This method was developed in the 1980s at the Laue-Langevin Institute (ILL) [136]. The name of the method is derived from its measurement of both the energy and velocity (through time-of-flight) for two fission products emitted from

a single fission event.

Figure 3.3 illustrates the experimental apparatus for a typical 2E-2v measurement. An actinide target is located in the center of the apparatus and fission is induced with a neutron beam. Some fission product pairs will be emitted into the solid angle of the arms of the apparatus. When a fission occurs, a "start" signal is generated. This start signal can be taken as the prompt γ -ray flash from the fission event, the sputtering of electrons from the target when a fragment is generated, the start time of a finely pulsed neutron beam, or can be determined through the use of timing detectors. The products from the fission event travel along the flight path and reach the *E* detectors at the end of each arm. The energy of the fission product is taken as the total energy deposited in each *E* detector.

Because each arm of the 2E-2v detector covers a non-trivial solid angle, the flight path that the fission products transverse from each individual fission event has variability. To correct the flight path for each fission event, each arm of the apparatus may be lined with electronics to detect the trajectory of the fission product. This trajectory is then used to correct the nominal path length to obtain the true path length for each event.

Figure 3.3: General schematic for the 2E-2v method. Fission is induced in an actinide target using a neutron beam. The energy and timing of the fission products from each fission event are detected using a two-arm apparatus. This measurement approach is also used for spontaneously fissioning actinides.

With the energy and timing information, the mass of each fission product can be determined using the non-relativistic mass-energy-velocity relationship given by Eq. 3.11:

$$m = \frac{2E}{v^2} = \frac{2Et^2}{L^2} \tag{3.11}$$

where E is the measured energy of the fission product, v is the velocity of the fission product, t is the time-of-flight of the fission product, and L is the flight path length of the fission

product.

Because Eq. 3.11 is linear, the mass resolution of the 2E-2v detection system can be determined by standard uncertainty propagation as shown in Eq. 3.12:

$$\sigma_m = m \sqrt{\left(\frac{\sigma_E}{E}\right)^2 + 4\left(\frac{\sigma_t}{t}\right)^2 + 4\left(\frac{\sigma_L}{L}\right)^2} \tag{3.12}$$

Mass yields are determined by normalizing the total number of observed events to 200%. The distribution of measured yields is fitted to a functional form that describes their physical behavior [137]. Because of its limited number of measurement parameters and experimental techniques that allow for relatively precise measurement of these parameters (as will be discussed in Sec. 3.2.3.5), the 2E-2v method offers one of the most precise capabilities for the measurement of mass yields.

While evaluated mass yields have not been directly published in the most recent fission yields evaluations, they serve as an important piece of information for both modeling fission product distributions and benchmarking evaluations of independent and cumulative yields. Because the 2E-2v method measures mass yields (before β decay) it has the potential to improve consistency between cumulative and independent fission yields. This is because independent fission yields are often inferred from cumulative yields using decay corrections. These inferred independent yields can be benchmarked using the precise mass yields measured using the 2E-2v method.

The 2E-2v method also has the potential to help address inconsistencies between evaluated fission product yields and evaluated prompt-neutron yields and distributions. The inconsistency between these two pieces of evaluated data has been noted in peer-reviewed literature [94]. The 2E-2v method has the potential to address this because the number of prompt neutrons emitted in a given fission event can be inferred from the mass difference between the compound fissioning system and the measured masses of the two fission products. This experimentally measured prompt neutron distribution could help to constrain future fission yield evaluations. However, it should be noted that non-trivial deviation from the assumption of isotropic neutron emission in the center-of-mass frame, which leads to near (but not exact) conservation of the average values of fission product velocities, has been found [132]. This does not affect the measured mass of the post-neutron-emission products, but it does alter inferred quantities such as the pre-neutron-emission mass. Corrections for this are possible [132] but will result in the inflation of reported uncertainties.

Similar to the 2E-2v method, but not included in this template, is the 2E method for fission yield measurements. In the 2E method, a pair of particle spectrometers are used to measure the total energy deposited by each fission product, and this information is used to infer the mass of the fission products. The 2E method has a mass resolution of 2-5 a.m.u.

[138, 131], approximately twice that of the 2E-2v method. Therefore, this template will focus on the 2E-2v method.

Table 3.10 in Sec. 3.2.3.5 presents the template for the 2E-2v method in fission yield measurements.

3.2.2 Information Needed for Evaluations

3.2.2.1 State of Current Evaluations

Unlike many other nuclear data quantities, fission yields have been reviewed rather infrequently and there is limited standardization in their evaluation methodology. As a result, the most current evaluations that have been conducted for three nuclear data libraries will be reviewed individually to determine what information was important to them and to infer what information will be useful to future evaluations. A fourth evaluation by M. N. Nikolaev exists for the BROND-3.1 nuclear data library, however, a report on that evaluation is not available. Table 3.2 lists these three evaluations, and the experimental data and theoretical tools required for these evaluations are detailed in the following sections.

Table 3.2: Evaluations of fission product yields included in the most current version of international nuclear data libraries.

Library	Reference(s)	Year(s)
ENDF/B-VIII.0	[86], [139]	1994, 2010
JEFF-3.3	[140], [141]	1995, 2004
JENDL-4.0	[142], [143], [144]	2001, 2011, 2016

ENDF/B-VIII.0 The last complete evaluation of fission product yields for the United States Nuclear Data Program was published in 1994 by T. R. England and B. F. Rider [86]. In 2010, an evaluation for fission yields from fission-spectrum neutrons on plutonium was performed by Chadwick et al. to update the 1994 evaluation [139].

The 1994 evaluation incorporated measured fission yield data from 1989 and prior. Independent yields were determined from a Gaussian charge distribution that was fit to match uncertainty-weighted averages of experimental independent yields. These modeled independent yields were normalized to ensure their sum along each A chain equals the chain yield. Cumulative yields were taken to be the weighted average of two different methods. One method calculated the cumulative yields by summing the independent yields along an Achain. The other method calculated the cumulative yields by subtracting independent yields

along an A chain from the chain yield.

Experimental uncertainties on the yields used in the evaluation were tabulated by the evaluators. Relative yields were converted to absolute yields using the value of a reference yield. The uncertainties of relative yield measurements were combined statistically with the uncertainty of the relevant reference yield. Absolute yield measurements were assumed to have at least 2% systematic uncertainty and the measurement uncertainties were updated to meet this minimum. Reported uncertainties were adjusted to a minimum set of values based on the detection method and year of publication. For example, Ge(Li) radiochemical measurements made after 1965 were all assigned a minimum uncertainty of 5%. This enforcement of minimum uncertainties based on the detection method is similar in philosophy to what this template seeks to foster. However, this was not undertaken at the level of partial uncertainty sources as is the case in the templates.

Light ternary fission yield data were incorporated from Madland [145] and Wahl [84, 85]. A model by Madland [87] was used to assign the isomer-to-ground state splitting of independent fission yields in cases were experimental data were not available. These calculated splittings were assigned uncertainties of $\pm 50\%$. When the angular momentum of a isomeric state of a fission product was not known, the yield to that nucleus was split evenly across the ground state and isomeric states. Pairing effects were added to the Gaussian charge distribution model using a model by Madland [88].

The decay data considered in this evaluation include half-lives, decay chains, and decay modes and branching ratios. In particular, delayed neutron emission probabilities were important to this evaluation as these probabilities were used to convert independent yields to cumulative yields. These delayed neutron probabilities were obtained from the ENDF/B-VI decay library.

The 2010 evaluation of plutonium yields was focused on improving evaluated fission yields that are important in reactor burnup calculations. Because of this goal, the evaluation was focused on relative yield quantities (so-called K-factors, Q-values, and R-values) which tend to have lower systematic uncertainty than absolute measurements. This update made the important contribution of adding energy dependence in fission yield evaluations, whereas evaluations before this update focused on fission yields in three energy-averaged groups.

JEFF-3.3 The JEFF-3.3 fission yield evaluation is based on the 1995 "UKFY3" evaluation by R. W. Mills [140]. A 2004 update to this evaluation [141] featured an updated experimental database and modifications to isomeric splitting, cumulative yield calculation, and uncertainty analysis.

The 1995 evaluation fit a five Gaussian model of chain yields [146] to statistically com-

bined experimental chain yield data. This fit was then used to calculate chain yields for A chains where experimental data were not available. This combined set of modeled and experimental chain yields were normalized and used to fit the parameters of a model similar to the Wahl Zp model [84]. Fractional independent yields were then modeled using this Wahl Zp model. Because of large discrepancies in the measured fractional independent yield data, the model was used to generate all of the fractional independent yields used in the evaluation, not just to fill in missing data. Independent yields were calculated by summing the modeled fractional independent yields. These independent yields were then used to calculate cumulative yields using the decay modes and branching ratios of the parents of each fission product. Finally, the chain yields were calculated to be the sum of the cumulative yields to the stable fission products in each A chain. Mills notes that some fission products undergo α decay with long half-lives and that the resulting diversion of yield into different A chains as a result of these decays is not corrected in measurements. As a result, corrections to cumulative and chain yields as a result of α decaying fission products were not made.

JENDL-4.0 The JENDL-4.0 fission yield evaluation is based primarily on the evaluations of J. Katakura, et al. The original evaluation was published in 2001 [142] with an update in 2011 [143] and revisions to the 2011 update performed in 2016 [144]. These documents do not detail the process followed to combine experimental fission yield data to produce the evaluation, however, they do detail the decay data that were used.

The 2001 evaluation primarily used the 1992 ENSDF library from Bhat [147] to obtain decay data for fission products in the evaluation. The report lists decay modes, branching ratios, half-lives, Q-values, and emission types, energies, and intensities as necessary quantities. The report also makes explicit mention of the "Beta Pandemonium" [148] problem as present in decay data relevant to numerous fission products with high β Q-values. The Beta Pandemonium problem affects nuclei with high Q_{β} values. These highly unstable nuclei populate the continuum or quasi-continuum of their daughter upon decay. As the decay daughter de-excites out of the continuum, many low-intensity γ transitions occur. These low-intensity transitions are not able to be detected over the signal produced by higher intensity transitions, and this results in the systematic underestimation of β feeding at high energies. These inaccuracies in the measured β feeding are then propagated forward when γ decay intensities are determined. Knowing these decay γ intensities accurately is vital to the determination of fission yields in activation-type experiments (see Eq. 3.7). As most fission products have high Q_{β} values, many fission product γ decay intensities may be affected. In this evaluation, nuclei with a maximum observed energy level that is small compared to their Q_{β} value were identified as nuclei that were potentially impacted by the Beta Pandemonium problem.

When the decay data of a certain nucleus were suspected to be deficient or when decay data were absent for a given nucleus, the evaluators used a theoretical estimation of the
decay data. The "Gross Theory of Beta Decay" [149] was used to estimate half-lives and average emitted β and γ energies. The Brink-Axel hypothesis [150, 151] was used to estimate the γ strength function, and the Gilbert and Cameron model [152] was used to calculate the nuclear level density.

3.2.2.2 Future Evaluation Needs

Experimental Fission Yields and Supporting Data Experimentally measured fission yield data are the central input for an evaluation. These data must include absolute independent, cumulative, and chain yields. The evaluation should also incorporate relative independent and cumulative yields as these can be converted to absolute values given a sufficiently well-known reference yield. In addition, the following supporting information is needed for each experiment: details on the uncertainty analysis, the incident neutron energy spectrum, and a record of the evaluated nuclear data values that were used in the data analysis. The uncertainty sources that should be provided for experimental results obtained with a particular measurement type are listed in the template tables in Sec. 3.2.3.

Decay Data All three of the current fission yield evaluations demonstrate the need for accurate decay data. These data are vital to ensuring the consistency between independent yields and cumulative/chain yields. These decay data are also important in the review of measured data by the evaluator; previous measurements may need to be adjusted when decay data values in the relevant experimental analysis have changed. Specific decay data quantities required are decay modes, branching ratios, half-lives, Q-values, and emission types, energies, and intensities with special attention required for delayed neutron emission probabilities and decay γ intensities.

ENSDF can provide a considerable portion of these data. However, as discussed in Sec. 3.2.2.1, the Katakura evaluation highlighted the non-trivial effect of the Beta Pandemonium problem [148] on decay γ intensities for short-lived, high Q-value fission product yields. Indeed, the Beta Pandemonium problem has been previously demonstrated as problematic for decay heat calculations [153, 154], for which fission product yields are crucial input data. Therefore, updated and improved decay γ intensities are of use to future evaluations. Due to limitations in experimental techniques and the large expanse of the issue, this problem cannot be addressed in the near future solely experimentally. Thus, improved predictive capabilities are also of use to future evaluations.

Neutron Energy Spectra The incident neutron energy spectrum used in a particular experiment is an important detail for any fission yield measurement. Previous evaluations have grouped measurements and their resulting yields into thermal, fast, and DT fusion energy-averaged groupings. Future evaluations may seek to capture the energy dependence of fission yields. In order to extract this dependence from literature, the incident neutron energy spectrum and its uncertainty must be analyzed and published. This information

has often been excluded from publication as it does not usually have a direct effect on the reported fission yield (unless a monitor foil is used). However, it is important information for future fission yield evaluations.

Covariances As none of the current fission yield evaluations include covariance data between fission yields, there is currently great interest in providing covariances for the first time in upcoming evaluations. Fission yield covariances have been identified as critically needed information for a number of applications, such as decay heat and reactor antineutrino rate calculations [44, 47]. To address this, several methods have been developed to estimate correlation/covariance matrices for existing fission yield libraries [47, 155, 156, 157, 158]. These estimated covariances are a useful starting point for applications but validating the results of these methods is important. To that end, empirical information on the covariance between experimental uncertainty sources and between fission product yields would be of great use to future evaluations. Having this information could validate fission covariance estimation methods and enhance the consistency between experimental data and evaluations. However, very few experiments provide fission yield covariance data currently.

3.2.3 Template

3.2.3.1 EXFOR Review

To help guide the assignment of uncertainty values that follow in the templates presented in Secs. 3.2.3.2, 3.2.3.3, 3.2.3.4, and 3.2.3.5, a review of the entries in the Experimental Nuclear Reaction Data library (EXFOR) for neutron-induced fission yields of ²³⁵U, ²³⁸U, and ²³⁹Pu was conducted. This review covered 812 entries spanning the years 1943 to 2019. Within these entries were 1433 subentries which contained 18214 quoted fission yield uncertainty values. The ERR_ANALYS section of an EXFOR entry details sources of uncertainty that contribute to the uncertainty budget of a given measurement. This section was particularly useful in guiding uncertainty assignments for the templates. However, it should be noted that an overwhelming majority of the entries in EXFOR contain no information in the ERR_ANALYS section about the sources of uncertainty in the measurement due to none being reported in the relevant publication. This includes 6.8% of entries self-reporting that their quoted uncertainties only detailed statistical uncertainties. Because of this, a broader literature review and expert consultation were needed to supplement the information found in the EXFOR review. A total of 25 sources of uncertainty were found in this EXFOR review and these are discussed in the relevant templates listed below.

As mentioned in the introduction to this section, different types of fission yields can be measured with varying degrees of uncertainty. Figures. 3.4, 3.5, and 3.6 show histograms of the quoted uncertainties for the three predominant fission yield types found in this review (independent, cumulative, and chain) for the three fissioning systems that were covered. In all three cases, it can be seen that the mean quoted uncertainty for each fission yield type

ranks in descending order from independent, to cumulative, to chain.

Figure 3.4: Histogram of quoted uncertainties as a function of fission yield type for ²³⁵U. The types of fission yields are defined in the introduction to this chapter.

This EXFOR review also revealed an absence of covariances between different sources of uncertainty. Due to this lack of data, covariances between these sources of uncertainty will not be discussed in this chapter. Future updates to these templates may include recommendations on covariances between sources of uncertainty if subsequently published literature begins to offer more insight into these values.

Irradiation Methods 3.2.3.2

As discussed in Sec. 3.2.1.2, due to the wide variety of irradiation methods that can be employed in fission yield measurements, assigning mean and/or maximum expected values for the uncertainty sources discussed in Table 3.3 is not yet reasonable. Rather, the template for irradiation methods presented in this section will enumerate minimum expected uncertainties for each of these sources based on literature review and expert opinion. The EXFOR review was able to inform the lower bound estimates of a number of the uncertainty sources listed in Table 3.3. Recommended correlations between the fission yields of products measured within a single experiment are given for selected uncertainty sources in Table 3.4.

• incident neutron energy spectrum $(P(E_{inc}))$ - A recommendation for the minimum uncertainty in the incident neutron energy spectrum is not offered due to the wide variety of neutron sources used in fission yield measurements. The correlation

Figure 3.5: Histogram of quoted uncertainties as a function of fission yield type for 238 U. The types of fission yields are defined in the introduction to this chapter.

between fission yields measured in the same experiment due to the incident neutron energy source is an active area of research. Both positive and negative correlations are expected.

• geometry (\oslash), solid angle (Ω), time-of-flight length (L) - With the use of modern measurement devices, namely those that use laser positioning technologies, various dimensions can be measured to very high precision [159]. Therefore, quantities such as time-of-flight length, L, can be measured with uncertainty much less than 0.1% uncertainty. This also applies generally to other geometric measurements. However, for dimensions that are particularly small, the measurement uncertainty could be non-negligible. Therefore, the minimum geometry uncertainty, \oslash , and solid angle uncertainty, Ω , assigned in the template below has been set at less than 0.1%. Evaluators should remain aware of the particulars of each experiment and acknowledge that some experiments may have geometric uncertainties that are much larger than this. In nTOF measurements, the uncertainty on the time-of-flight length can be inflated by the spatial distribution of the neutron source and the neutron detector(s). Neutron time-of-flight lengths have been measured with absolute uncertainties as low as 1 mm. Therefore, the minimum uncertainty in nTOF time-of-flight length has been set to 1 mm for this template. The correlation between fission yields measured in the same experiment due to geometry depends on the specifics of each experiment and thus a recommended correlation is not offered. There is no expected correlation between fission yields measured in the same experiment due to solid angle. This is because solid

Figure 3.6: Histogram of quoted uncertainties as a function of fission yield type for ²³⁹Pu. The types of fission yields are defined in the introduction to this chapter.

angle simultaneously increases both the number of products produced and the number of fissions (see Eq. 3.1).

- timing resolution (Δt) The timing resolution of detectors used in neutron timeof-flight measurements can be very small in absolute terms. In most cases, the timing resolution can be measured to less than 1 ns [160, 107]. The timing resolution can be inflated by the width of the neutron pulse from the neutron source.
- monitor reaction product activities (A_{mon}) The uncertainty in the monitor reaction product activity from a foil irradiation can come from several different sources. Counting statistics, γ spectroscopy uncertainties, and detector efficiency often dominate this quantity. In an idealized case (where γ spectroscopy and efficiency calibration uncertainties are minimal), counting statistics represents the lower bound for this uncertainty. As mentioned below, counting statistics will follow a Poisson distribution at a minimum. Therefore, the minimum uncertainty for this quantity is set as a Poisson distribution. However, it should be noted this uncertainty will likely be larger than this.
- number of fissions (N_f) The number of fissions that occurred in a target sample can be affected by one or more of the sublisted quantities in Table 3.3, depending on the measurement methodology. Therefore, taken together, the minimum values for the sources of uncertainty that contribute to the number of fissions/fission rate suggest that the lower bound for the net uncertainty on that quantity should be 1%. Equation 3.1

indicates that the correlation between fission yields measured in the same experiment due to the number of fissions should be fully correlated.

- neutron flux (ϕ) Without regard to its measurement methodology, the uncertainty in the neutron flux experienced by the target material was reported in 17 measurements in the EXFOR review. The lowest such value was listed as 1% [161]. Therefore, the minimum value for this uncertainty source has been set at 1%. Equations 3.1, 3.3, 3.4, and 3.5 indicate that the correlation between fission yields measured in the same experiment due to the neutron flux should be fully correlated.
- fission cross section (σ_f) The fission cross section is generally taken from evaluation and therefore its uncertainty should be taken from the corresponding evaluation. Equations 3.1, 3.3, 3.4, and 3.5 indicate that the correlation between fission yields measured in the same experiment due to the fission cross section should be fully correlated.
- number of atoms/mass (N) As was discussed in Sec. 3.2.1.3, the number of atoms/mass present in a sample can be determined using gravimetric scaling with uncertainties as low as 0.001%. Therefore, the minimum value for this uncertainty source has been set at 0.001%. However, other methods of mass/number determination may be less accurate. Equations 3.1, 3.3, 3.4, and 3.5 indicate that the correlation between fission yields measured in the same experiment due to the number of atoms/mass of the target should be fully correlated. If different targets are used for the two measurements, a strong correlation is still expected.
- isotopic abundance (w) Databases of isotopic abundances and their uncertainties are maintained by various scientific institutions such as the National Institute of Standards and Technology (NIST) [162] and the International Union of Pure and Applied Chemistry (IUPAC) [163]. These database values should be used in calculations where relevant. For non-natural sources, isotopic abundance is often the result of an enrichment process. These uncertainties should be given by the manufacturer and are expected to be relatively small (< 0.1%).
- irradiation time (t_i) Modern computers and electronic stopwatches can be used to track intervals of time, such as irradiation time, with a precision of less than 1 ms. Therefore, it is often acceptable to treat the uncertainty on those time intervals as negligible relative to other sources of uncertainty. Equations 3.1 and 3.3 indicate that the correlation between fission yields measured in the same experiment due to the irradiation time should be fully correlated.
- reactor burn-up (B_u) The EXFOR review found a single fission yield measurement that reported the uncertainty on the reactor burn-up value, B_u , included in their calculations as 1.3% [110]. Therefore, the minimum value for this uncertainty source has been set at 1%. When reactor burn-up increases, the calibrated neutron flux of a beam port will need to be decreased; making these two quantities strongly correlated.

As the correlation between fission yields measured in the same experiment due to neutron flux should be fully correlated, the correlation due to reactor burn-up should be strongly correlated.

- fission fragment track counting (c_T) Track counting uncertainties were found twice in the EXFOR review, with the lowest reported uncertainty being 1.5% [164]. Therefore, the minimum value for this uncertainty source has been set at 1.5%. As the number of fission fragment tracks counted in an experiment increases, the number of fissions in the target increases (within counting statistics uncertainty); making these two quantities strongly correlated. As the correlation between fission yields measured in the same experiment due to the number of fissions should be fully correlated, the correlation due to fission fragment track counting should be strongly correlated.
- fission chambers (F_C) Uncertainties due to the use of fission chambers were found twice in the EXFOR review, with the lowest reported uncertainty being 1.5% [164]. Therefore, the minimum value for this uncertainty source has been set at 1.5%. Equations 3.1 and 3.6 indicate that the correlation between fission yields measured in the same experiment due to fission chamber counting should be fully correlated.
- counting statistics (c) In general, counting statistics will follow a Poisson distribution at a minimum. However, some counting systems/methodologies may introduce non-Poisson elements to their counting statistics, increasing their counting uncertainty. In general, the correlation between data points due to counting statistics is expected to be uncorrelated.

3.2.3.3 Chemical Separations

Table 3.5 lists the expected range of values for the sources of uncertainty for chemical separations that were discussed in Sec. 3.2.1.3. The chemical separations discussed in this chapter are used to separate fission products, not to directly assay the quantity of those fission products. Therefore, correlations between fission product yields that result from chemical separations will vary from experiment to experiment. Thus, recommended correlations between fission yields as a result of chemical separation are not offered.

- number of atoms/mass (N) As discussed in Sec. 3.2.1.3, the number of atoms/mass can be determined gravimetrically to within uncertainties as low as 0.001%. The publication by Kučera et al. [116] suggests the upper limit for these uncertainties to be 0.5%, however, this could be larger if oxidation bias is not corrected.
- isotopic abundance (w) Section 3.2.3.2 discussed the uncertainties present in sample enrichment/isotopic abundance. The uncertainty in the isotopic abundance in a sample is given by databases for a natural sample or given by the manufacturer when using an enriched sample.

Table 3.3: List of uncertainty sources associated with the irradiation methods detailed in Sec. 3.2.1.2. δ denotes relative uncertainties given in % and Δ notes absolute uncertainties with units. Uncertainties are relative to each source listed.

Symbol	Minimum σ	
Relative and Absolute:		
$\delta P(E_{inc})$		
nTOF		
$-\Delta L$	1 mm	
$-\Delta t$	1 ns	
$-\delta c$	Poisson dist.	
Foil Act.		
$-\delta A_{mon}$	Poisson dist.	
$-\delta c$	Poisson dist.	
$-\delta\sigma_{mon}$	given by evaluation	
Absolute On	ly:	
δN_f	1	
$-\delta\phi$	1	
$-\delta\sigma_f$	given by evaluation	
$-\delta N$	0.001	
- δw	abundance: See databases	
	or given by enrichment	
- δt_i	~ 0	
$-\delta B_u$	1	
$-\delta c_T$	1.5	
$-\delta F_C$	1.5	
$\delta \oslash$	<0.1	
δN	0.001	
- δw	enrichment: given by manufacturer	
	abundance: See databases	
$\delta\Omega$	<0.1	
δc	Poisson dist.	

- oxidation bias (o) Section 3.2.1.3 gives the upper limit for oxidation bias in number/mass is determined by stoichiometry, but could be negligible if proper chemical protocols are followed.
- chemical yield (y) The publication from Kučera et al. [116] suggests the lower limit for chemical yield uncertainty to be 0.3% and the upper limit to be 0.5%. However,

Table 3.4: Recommended correlations for the uncertainty sources in Table 3.3. These correlations are between fission yields of products measured in the same experiment.

Symbol	Correlation	
Relative and Absolute:		
$P(E_{inc})$	_	
Absolute	Only:	
N_f	Fully Correlated	
ϕ	Fully Correlated	
σ_{f}	Fully Correlated	
N	Fully Correlated	
	(strongly if different targets)	
t_i	Fully Correlated	
B_u	Strongly Correlated	
c_T	Strongly Correlated	
F_C	Fully Correlated	
\oslash	_	
Ω	Uncorrelated	
С	Uncorrelated	

a higher upper limit of 3% is possible if full dissolution of the target sample is not achieved.

• isotopic exchange (x) - Kučera et al. assert that uncertainty induced by isotopic exchange should be negligible if a homogenous system is achieved. However, there is insufficient literature material to assign an upper limit for this uncertainty.

Finally, the importance of adherence to established chemical uncertainty protocols is stressed. The use of these standards is encouraged in the publication by Saffaj et al. [118]. This publication also notes that these standards are often ignored. This will impact legacy fission yield measurements that include chemical separations in untold ways. An evaluator with experience in radiochemistry is needed to assess the quality of each publication. The list of sources of uncertainty presented in Table 3.5 only seeks to detail common and predominate sources of uncertainty and thus is not exhaustive. The judgment of a qualified evaluator is needed to properly incorporate fission yield measurements with chemical separations into future evaluations.

Table 3.5: List of uncertainty sources associated with chemical separations in fission measurements as detailed in Sec. 3.2.1.3. Uncertainties are relative to each source listed. "—" indicates an upper bound is not recommended due to lack of information.

Symbol	Min. σ (%)	Max. σ (%)
δN	0.001	0.5
- δw	abundance: See databases	
	or given by enrichment	
<i>- δο</i>	~ 0	stoichometry
		$(\sim 17 \text{ for } O_2)$
δy	0.3	3
δx	~0	_

3.2.3.4 Assay Methods

 γ **Spectroscopy** Table 3.6 lists the expected range of values for the sources of uncertainty in γ assay methods that were discussed in Sec. 3.2.1.4. Recommended correlations between the fission yields of products measured within a single experiment are given for these uncertainty sources in Table 3.7.

- γ detection efficiency (ε) The EXFOR review found 43 reports of efficiency uncertainties with the mean of these values equaling 5%. Energy-resolved γ spectroscopy produced lower uncertainty values on average than energy-unresolved spectroscopy. The largest uncertainties in efficiency calibration values generally result from energy-unresolved measurements before the wide-spread adoption of Ge-based detectors in the late-1960s. Energy-resolved detection efficiency values ranged from 0.51% [113] to 20% [165]. Energy-unresolved detection efficiency ranged from 1.9% to 50% both in Reference [166]. The lower and upper bounds for efficiency uncertainty values in energy-resolved and energy-unresolved spectroscopy were set to these values. Equations 3.1 and 3.2 with Eq. 3.7 indicate that the correlation between fission yields measured in the same experiment due to the γ detection efficiency should be fully correlated.
- γ decay intensity (I_{γ}) The uncertainty in a decay γ intensity is generally taken from evaluation. Equations 3.1 and 3.2 with Eq. 3.7 indicate that the correlation between fission yields measured in the same experiment due to the γ decay intensity should be fully correlated.
- half-life $(T_{1/2})$ The uncertainty in a half-life is generally taken from evaluation. $T_{1/2}$ appears in the exponential term of Eq. 3.7 (through λ). Therefore, the correlation

between fission yields measured in the same experiment due to the half-life should be strongly (not fully) correlated, as indicated by Eq. 3.7 with Eqs 3.1 and 3.2.

- calibration source activity (A_0) The uncertainties in the activity of calibration sources are generally given in the calibration certificate provided by the manufacturer. For most standard calibration source isotopes, the associated activity will have uncertainty between 1-2%. Equations 3.1 and 3.2 with Eqs. 3.7, 3.8, and 3.9 indicate that the correlation between fission yields measured in the same experiment due to the calibration source activity should be fully correlated.
- gamma spectroscopy (g) Gamma spectroscopy fitting methods are often used in fission yield measurements to separate overlapping photopeaks in dense fission product γ -ray spectra. These methods introduce uncertainty in the extracted photopeak area that is beyond standard Poisson counting statistics. The EXFOR review found four reports for γ spectroscopy uncertainties, ranging from 0.18% [113] to 5% [124]. Reference [113] could represent a reasonable lower bound for γ spectroscopy uncertainties (in spectra where counting statistics are high and photopeak shapes are well defined). However, in γ -ray spectra with low counting statistics and/or poor photopeak shaping, these γ spectroscopy uncertainties could be larger than 5%. Because of this, an upper limit for the uncertainty in γ -ray spectroscopy is not set in this template. The correlation between fission yields measured in the same experiment due to γ spectroscopy fitting could be positive or negative depending on the specifics of the spectrum being analyzed. Therefore, a recommendation on this correlation is not offered in Table 3.7.
- dead-time (τ) Uncertainties in assay counting related dead-times were found in the EXFOR review in only one publication, with values ranging from 0.5% to 2.0% [105]. Several dead-time models predict that given the correct conditions, the deadtime uncertainty can be equal to or less than the uncertainty given by Poisson counting statistics [167]. Thus, it is theoretically possible to obtain negligible dead-time uncertainty if the counting system used is well-optimized and sufficient counting statistics are obtained during the calibration. This also suggests dead-time uncertainty could be very large if the counting system is unoptimized and low counting statistics are obtained during the calibration. Therefore, the lower limit for dead-time uncertainty has been set near zero and an upper limit is not suggested for this template. As a dead-time correction can be seen as a correction to the γ detection efficiency, and as the correlation between fission yields measured in the same experiment due to the γ detection efficiency should be fully correlated, the correlation due to dead-time is also expected to be fully correlated.
- geometry (\oslash , η) and solid angle (Ω) As discussed in Sec. 3.2.3.2, with modern measurement technologies, geometry uncertainties can often be very small in relation to their respective dimensions (<0.1%). It is difficult to assign a reasonable upper bound to geometry uncertainties as some experimental apparatuses may have dimensions that

are small relative to their uncertainty. Therefore, an upper limit is not assigned in this template. The correlation between fission yields measured in the same experiment due to geometry depends on the specifics of each experiment and thus a recommended correlation is not offered. The correlation between fission yields measured in the same experiment due to counting geometry/solid angle is expected to be uncorrelated as both of these quantities simultaneously increase the number of products produced and the number of fissions (see Eq. 3.1).

- self-shielding (ξ) Closely related to geometry and of particular concern to fission yield measurements (where high-Z actinide targets are used) are self-shielding/self-attenuation corrections. The EXFOR review found 11 reports of self-shielding correction uncertainties, ranging from 0.18% [168] to 10% [105]. These values have been set as the lower and upper bounds for the template. As a self-shielding correction can be seen as a correction to the γ detection efficiency, and as the correlation between fission yields measured in the same experiment due to the γ detection efficiency should be fully correlated, the correlation due to self-shielding is also expected to be fully correlated.
- counting statistics (c) As discussed in Sec. 3.2.3.2, counting statistics will at a minimum follow a Poisson distribution. However, some counting systems may introduce non-Poisson elements to their counting statistics, increasing their counting uncertainty. In general, the correlation between data points due to counting statistics is expected to be uncorrelated.

Section. 3.2.1.4 discussed that throughout this publication it has been noted that there are limited data available about γ angular correlation shapes. Moreover, these angular correlations only become important when observing γ - γ coincidences in fission yield measurements. While observing these coincidences is a powerful tool that can limit backgrounds, it is not often used. Given this and the lack of detailed information about γ angular correlations, this template will not make a recommendation about lower or upper bounds for angular correlation uncertainties.

 β **Counting** Table 3.8 lists the expected range of values for the sources of uncertainty in γ assay methods that were discussed in Sec. 3.2.1.4. Recommended correlations between the fission yields of products measured within a single experiment are given for these uncertainty sources in Table 3.9.

β detection efficiency (ε) - Of the 43 efficiency values that were found in the EXFOR review, none were related to β counting. Because of the short range of β particles in matter and the fact that β counting does not require energy deposition information, the efficiencies of β counters are very closely related to their solid angle coverage. A correction to solid angle is usually required to account for stopping of low-energy β particles in the dead layer/air between the source and the counter. Also, some β

Table 3.6: List of uncertainty sources associated with the γ assay methods detailed in Sec. 3.2.1.4. Uncertainties are relative to each source listed. "—" indicates an upper bound is not recommended due to lack of information.

Symbol	Min. σ (%)	Max. σ (%)	
Resolved	Resolved Only:		
$\delta arepsilon$	0.5	20	
$-\delta I_{\gamma}$	given by evaluation		
$-\delta T_{1/2}$	given by evaluation		
$-\delta A_0$	calib. certificate		
$-\delta g$	0.2	_	
$-\delta c$	Poisson dist.	_	
δg	0.2	_	
Unresolv	nresolved Only:		
$\delta arepsilon$	2	50	
Unresolv	Unresolved and Resolved:		
δau	~ 0	_	
$\delta \eta / \Omega$	< 0.1	-	
$\delta \xi$	0.2	10	
δc	Poisson dist.	_	

counters may have limited γ efficiency. In this case, if a β emitter that also emits γ rays is counted, a correction for signals produced by γ rays will need to be applied. Because of the issues related to energy-dependent corrections and γ sensitivity, an upper bound for β counting efficiency uncertainty is not recommended in this template. The lower limit for this uncertainty is set to match that of counting geometry/solid angle at 0.1%. However, it should be noted that most β counters will have uncertainty greater than this and that this value is only a lower limit. Equations 3.1 and 3.2 with Eq. 3.10 indicate that the correlation between fission yields measured in the same experiment due to the β detection efficiency should be fully correlated.

- dead-time (τ) The lower limit for dead-time uncertainty has been set near zero and an upper limit is not suggested for this template. This lower limit is based on the γ assay template as dead-time uncertainties should be similar for γ and β detectors. As a dead-time correction can be seen as a correction to the β detection efficiency, and as the correlation between fission yields measured in the same experiment due to the β detection efficiency should be fully correlated, the correlation due to dead-time is also expected to be fully correlated.
- counting geometry (η) and solid angle (Ω) As discussed in previous sections,

Table 3.7: Recommended correlations for the uncertainty sources in Table 3.6. These correlations are between fission yields of products measured in the same experiment.

Symbol	Correlation		
Resolved	Resolved Only:		
ε	Fully Correlated		
$-I_{\gamma}$	Fully Correlated		
$-T_{1/2}$	Strongly Correlated		
$-A_0$	Fully Correlated		
g	_		
Unresolv	Unresolved Only:		
ε	Fully Correlated		
Unresolved and Resolved:			
τ	Fully Correlated		
η/Ω	Uncorrelated		
ξ	Fully Correlated		
С	Uncorrelated		

counting geometries and solid angles can often be determined with very low relative uncertainty. The lower bound for counting geometries and solid angles is thus set to the previously suggested lower limit of 0.1%. However, it should be noted that β counting geometries often feature small dimensions as β particles are highly attenuated in matter and air. Therefore, relative geometric uncertainties in β counting experiments are likely to be larger on average than in the other assay methods detailed in this template. The correlation between fission yields measured in the same experiment due to counting geometry/solid angle is expected to be uncorrelated as both of these quantities simultaneously increase both the number of products produced and the number of fissions (see Eq. 3.1).

• self-shielding (ξ) - The self-shielding/self-attenuation correction in β counting is almost certainly present in any β counting experiment due to the very low range of β particles in matter and the high-Z of actinide targets. These corrections are closely related to those for γ spectroscopy that were discussed in Sec. 3.2.3.4. Therefore, the lower limit for these uncertainties is set equal to those of γ spectroscopy at 0.2%. However, because β particles are much more quickly attenuated in matter than γ rays, an upper bound is not set for this uncertainty. As a self-shielding correction can be seen as a correction to the β detection efficiency, and as the correlation between fission yields measured in the same experiment due to the β detection efficiency should be fully correlated, the correlation due to self-shielding is also expected to be fully correlated.

• counting statistics (c) - As discussed in previous sections, counting statistics is at a minimum described by a Poisson distribution, and no upper limit for this is set in this template. In general, the correlation between data points due to counting statistics is expected to be uncorrelated.

Table 3.8: List of uncertainty sources associated with the β assay methods detailed in Sec. 3.2.1.4. Uncertainties are relative to each source listed.

Symbol	Min. σ (%)
$\delta \varepsilon$	0.1
$\delta \tau$	~ 0
$\delta \eta / \delta \Omega$	0.1
$\delta \xi$	0.2
δc	Poisson dist.

Table 3.9: Recommended correlations for the uncertainty sources in Table 3.8. These correlations are between fission yields of products measured in the same experiment.

Symbol	Correlation
ε	Fully Correlated
τ	Fully Correlated
η/Ω	Uncorrelated
ξ	Fully Correlated
С	Uncorrelated

3.2.3.5 2E-2v Method

Because of the relatively recent popularity of the 2E-2v method and the new construction of 2E-2v devices, only minimum values for the uncertainty sources for this method will be suggested in this template. The 2E-2v method determines the masses of fission products on an event-by-event basis; each product mass is measured independently of others. Therefore, recommended correlations between fission yields measured using the 2E-2v method are not offered.

• fission product energy (E) - The energy detectors usually used in the 2E-2v method are ionization chambers, though Si detectors can be used. The energy resolution for the

fission products varies with mass. For ionization chambers, it is estimated that 0.5% energy resolution can be achieved for the lightest fission products, while 1% can be achieved for the heaviest. For Si detectors, peer-reviewed publications have indicated that an energy resolution of 0.3% can be achieved for the lightest fission products [135].

- fission product time-of-flight (t) For the SPIDER 2E-2v spectrometer, the timing electronics have a resolution of 150 ps for each arm. This timing resolution needs to be added in quadrature for each arm, for a total uncertainty of 210 ps. With a flight path length of approximately 70 cm, this would amount to a timing resolution of 0.5% for the lightest fission products. This value is consistent with the timing resolution claimed by the VERDI spectrometer [135]. In the case that sputtered electrons from the target are used as the start signal in the time-of-flight determination (as is done with the VERDI spectrometer), there will be a plasma delay time that results from the bending of the sputtered electrons through an electrostatic mirror into a micro-channel plate (MCP) detector.
- fission product flight path length (L) The flight path length of each arm of the apparatus is often calibrated using an α -emitting source with a known energy. This allows the flight path to be determined to within approximately 1 mm. For the SPIDER spectrometer, this would be a relative uncertainty of approximately 0.1%. However, it should be noted that the flight path of the fission products from each fission event will be different. This is due to both the angle that the products are emitted at and the extended geometry of the target sample. Corrections for these factors can be made if electronics are implemented to track the trajectory of the fission products, however, these corrections will inflate the uncertainty in the flight path length.
- counting statistics (c) As discussed in Sec. 3.2.1.5, the uncertainty in the number of fissions observed is determined by counting. At the very minimum, this uncertainty will be given by Poisson counting statistics.

3.3 Conclusions

This work provides a summary of the current state of fission product yield measurements. In providing this summary, the above set of templates provides a number of benefits to the scientific community: a general guide to help develop an understanding of experimental fission yield data, a guide to help experimentalists fully document their uncertainties, and a guide to help evaluators appropriately compile experimental fission yield data into their evaluations.

The templates are a community-based effort and the community can continuously use, critique, and update the templates. In the near future, NNDC will host a condensed version

Symbol	Min. σ (%)
δE	
Ion. Cham.	0.5
Si	0.3
δt	0.5
δL	0.1
δc	Poisson dist.

Table 3.10: List of uncertainty sources associated with the 2E-2v method detailed in Sec. 3.2.1.5. Uncertainties are relative to each source listed.

of the templates on its homepage, providing quick access to the templates for the scientific community. Journal editors are being engaged in the hopes that reviewers can be provided with the templates for use in their peer-review process. Subgroup 50 of the Working Party on International Nuclear Data Evaluation Cooperation at the Organization for Economic Cooperation and Development (OECD) at the NEA, has been assembled with the goal of developing a comprehensive and machine-readable database of experimental reaction data (similar to EXFOR). Such an advancement would enable the uncertainty sources listed in the templates and their expected values to be more consistently and easily updated.

Again it should be noted that these templates are not an immutable set of rules. The templates serve as a guideline based on the state-of-the-art at the time of their publication. As new technologies or the employment of existing technologies advance, the values listed in the templates may become obsolete. For this reason, the templates should only be viewed as a guide; the expected values in the templates can be exceeded. Similarly, the templates should not discourage further advancements in experimental methods by setting an "acceptable" level for uncertainties that no one endeavors to surpass. Experimentalists should always strive to produce measurements with uncertainties that are as low as is physically achievable. As experimental methods advance, the templates will need to be updated and it is planned that future publications will be released to continuously update the templates.

The presented template of expected measurement uncertainties in fission product yields improves the overall understanding of experimental fission yield data. As the template comes into use by the scientific community, it will improve the quality of future fission yield evaluations and experiments.

Chapter 4

Estimation of Independent and Cumulative Fission Yield Covariances

As was discussed in Sec. 1.2.2, no existing fission yield evaluation includes information on the covariance between fission product yields and this information has been identified as a critical need. To address this need, a Monte-Carlo method for the generation of correlation and covariance matrices for independent and cumulative fission yields has been developed. The method uses a constrained Monte-Carlo resampling structure in order to vary evaluated fission yield libraries in a way that meets basic conservation principles. This results in the generation of correlation/covariance matrices with limited model bias and uncertainty; the matrices are primarily reflective of the evaluated fission yield uncertainties and correlations that arise from the evaluation process. This method has been applied to generate correlation and covariance matrices for all of the fissioning systems of the ENDF/B-VIII.0 and JEFF-3.3 evaluations, marking the first time such matrices have been generated for all of these systems. These covariance matrices have been published online for immediate public use. These correlation and covariance matrices can be used to improve uncertainty estimation in calculations of reactor antineutrino emission rates, decay heat problems, and nuclear forensics. This method, and the results thereof, were published as a peer-reviewed article "Stochastically Estimated Covariance Matrices for Independent and Cumulative Fission Yields in the ENDF/B-VIII.0 and JEFF-3.3 Evaluations" in Atomic Data and Nuclear Data Tables [169].

4.1 Motivation

In fission, a nucleus undergoes a deformation that leads to the scission of the nucleus into at least two fragments. These fragments have high excitation energy and undergo prompt neutron and photon emission. When the prompt neutron emission has ceased, the fragments are referred to as "products." The probability that a particular fission product will be produced directly from a fission event is called an "independent yield." The probability that a

particular fission product will exist at some point in time after fission, either due to direct production from fission or due to production from the decay of a parent fission product, is called a "cumulative yield."

The measurement and evaluation of independent and cumulative fission yields is the result of decades of exceptional research by scientists from across the globe. Continued research in this area is needed to meet the ever-advancing needs of users. Neither the fission yield evaluation (based on Refs. [86, 139]) in the ENDF/B-VIII.0 (Evaluated Nuclear Data File) evaluated library [28] nor the fission yield evaluation (based on Refs. [140, 170]) in the JEFF-3.3 (Joint Evaluated File for Fission and Fusion) evaluated library [29] contain an estimation of correlation/covariance between fission product yields. These covariance and correlation matrices for independent and cumulative fission product yields have been identified as a pressing nuclear data need [1, 42, 28]. These matrices are needed for applications in reactor antineutrino rate calculations [43, 44, 45, 46], decay heat calculations [47], and any other calculations that incorporate fission yield data such as nuclear forensics.

Nuclear data libraries that are used in applications, such as those listed above, are produced by scientists with specialized skills in a process called "evaluation". The evaluation process brings together experimental measurements of nuclear properties, nuclear physics modeling, and the expertise of the evaluator to produce these nuclear data libraries. Therefore, there are three keys sources where correlation arises from in evaluated nuclear data libraries: **physics, experiment,** and **evaluation**.

Each of these three sources introduces a unique set of errors and correlations and all three of these sources are present in all evaluated nuclear data libraries to some degree. In an ideal case – if experimental capabilities and measurements were perfect and errorless and the evaluation was conducted flawlessly with exact modeling capabilities – the correlation between the values in a nuclear data library would be purely physical (i.e., those that arise from the underlying physics of the measured property). However, this ideal case does not occur in reality and consideration of correlations arising from experimental and evaluation sources is required in order provide users of nuclear data libraries with realistic uncertainties and covariance matrices.

Ideally, fission yield covariances would be generated with the evaluation in order to maximize consistency. In the interim, methods for estimating fission product yield covariance matrices have been proposed [47, 171, 155, 172, 156]. These methods rely on an underlying model of the fission process to determine correlations between fission products and therefore give an estimation of the physical correlations that are discussed above. For example, the works of Rochman et al. [171] and Leray et al. [155] use the GEF code [173, 174] to generate their matrices. These methods require that the model of fission is reliably accurate and that model parameters exist for a compound system of interest. Often parameters for these models have been determined for only a small number of well-known compound sys-

tems [155, 172], limiting their scope to be less than that of the compound systems currently listed in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. These model-based methods are an important component of determining fission yield covariance matrices; they estimate the physical component of correlations in evaluated nuclear data libraries. Nevertheless, these only provide a part of the correlation information that users need and must be complemented with estimations of the experimental and evaluation components.

The fact that these model-based methods do not take experimental correlations fully into consideration has been previously noted in literature [175]. It should also be noted that the evaluation process and its potential to introduce additional error and correlation into evaluated fission yield libraries has been previously observed through inconsistencies between evaluated fission yields and fission neutron multiplicity distributions [94]. This observed inconsistency, and the evaluation correlation introduced by it, is captured by the new method presented in this publication, as will be detailed in Sec. 4.2.3.

In order to address the topics discussed above, the method presented was formulated. It seeks to limit model dependence and focuses primarily on correlations that arise from the ENDF/B-VIII.0 and JEFF-3.3 evaluations and the experimental data that underlie them. In addition to this, this publication also seeks to ensure open access to the correlation and covariance matrices resulting from this method. While the alternative methods listed above for covariance/correlation matrix generation exist, the results of these methods have not been made publicly available. To address this issue, the matrices that result from the method presented have been made immediately available to the nuclear science community at nucleardata.berkeley.edu/FYCoM. In the interest of reproducible science, a workflow for the calculation of these matrices has been preserved in Ref. [158].

4.2 Method

4.2.1 Independent Yields

Independent fission yield libraries should obey a number of conserved relationships. The following Monte-Carlo resampling method is structured to conserve the five conditions given below. These conditions are modified from similar conditions proposed by Fiorito et al. [47].

In a fission event, at least two fission products must be produced. Therefore, binary fission yields should sum to two:

$$\sum_{i} Y_i = 2 \tag{4.1}$$

where Y_i is the independent yield of nuclide *i*.

The total charge must be conserved, therefore the total charge of the compound system, Z_{CN} , should be recovered:

$$\sum_{i} Y_i Z_i = Z_{CN} \tag{4.2}$$

where Z_i is the atomic number of nuclide *i*.

The total baryon number must be conserved, therefore the total baryon number of the compound system, A_{CN} , less the average number of fission neutrons emitted, $\bar{\nu}$, should be recovered:

$$\sum_{i} Y_i A_i = A_{CN} - \bar{\nu} \tag{4.3}$$

where A_i is the mass number of nuclide *i*.

Assuming charged particle emission from fission fragments is negligible, the net yield to products with a particular atomic number, Z, should be equal to the net yield to products with the complementary atomic number, $Z_{CN} - Z$:

$$\sum_{i} Y(Z, A_i) = \sum_{j} Y(Z_{CN} - Z, A_j)$$
(4.4)

For a given fission yield library there should exist some midpoint mass number, A_{mid} , such that yields on either side of this midpoint should sum to one:

$$\sum_{A_i > A_{mid}} Y(A_i) = \sum_{A_i \le A_{mid}} Y(A_i) = 1$$
(4.5)

Equation 4.5 determines which nuclei are heavy $(A > A_{mid})$ and which are light $(A \le A_{mid})$ in the resampling method. It also states the midpoint of the fission product distribution is constant. This is expected even in the extreme case of symmetric fission as changing this midpoint also changes the total mass distributed to the fission fragments from the compound nucleus. In reality, Eq. 4.5 may only be approximately true due to mass number being an integer and not a continuous variable. However, exploiting this condition allows the Monte-Carlo resampling method to be structured such that the conditions in Eqs. 4.1, 4.2, 4.3, and 4.4 are also conserved. In this method, A_{mid} is selected by finding the A in each fission yield library that best reproduces Eq. 4.5.

The following steps give the method that is used to produce resampled fission yield libraries that meet the conditions given in Eqs. 4.1, 4.2, 4.3, 4.4, and 4.5:

1. Select a random number, X, between 0 and 1. If X is less than 0.5, the yields on the 'light' side $(A \leq A_{mid})$ will be resampled. Otherwise, yields on the 'heavy' side $(A > A_{mid})$ will be resampled.

- 2. For each A chain on the selected side, randomly select a fission product yield to be resampled. The probability that a given product is selected should be set such that high-yield, low-uncertainty products are preferentially selected. Resample that yield about a normal distribution with a centroid equal to its evaluated yield and width equal to its evaluated yield uncertainty.
- 3. Scale the other fission product yields in the A chain by the same percent change realized for the product yield in Step 2.
- 4. Normalize the yields on the selected side such that their sum equals 1.
- 5. Generate fission yields on the complementary side using the fission neutron multiplicity distribution, $P(\nu, A)$:

$$Y_{frac}(Z_{CN} - Z, A_{CN} - A - \nu) = P(\nu, A)Y(Z, A)$$
(4.6)
$$Y(Z, A) = \sum_{A} \sum_{\nu} Y_{frac}(Z_{CN} - Z, A_{CN} - A - \nu)$$

$$Y(Z, A) = \sum_{A} \sum_{\nu} \left[P(\nu, A_{CN} - A - \nu) \right]$$

$$\times Y(Z_{CN} - Z, A_{CN} - A - \nu)$$
(4.7)

- 6. Repeat Steps 1-5 N times. Select N such that statistical noise is minimized.
- 7. Calculate the resulting correlation and covariance matrices from the N trials.

Conservation of Eq. 4.5 is a given of the method. The conservation of Eq. 4.1 and Eq. 4.4 can be proven analytically. Equations 4.2 and 4.3 are numerically verified to be conserved to within 0.01% for the ENDF/B-VIII.0 evaluation and to within 0.05% for the JEFF-3.3 evaluation. In principle, one can combine Steps 2 and 3 and simply resample each fission product yield about its evaluated yield and yield uncertainty. However, the ENDF/B-VIII.0 evaluation assumed a Gaussian distribution of yield in Z for each A chain [86]. Therefore, Step 3 is justified as it introduces the positive correlation between product yields within a given A chain that the ENDF/B-VIII.0 evaluation process would have introduced. Step 5 relies on the accuracy of the $P(\nu, A)$ data used, and Sec. 4.2.3 will address how $P(\nu, A)$ data are obtained for all of the compound systems in the evaluations. For Step 6, this study used N = 10000 to produce the presented matrices. The Mersenne Twister pseudo-random number generator with a seed of 0 was used for each matrix generated.

As will be detailed in Sec. 4.2.3, the fission yield evaluations did not take into consideration the consistency of fission neutron multiplicity distributions with independent fission yields. Because of this, the covariance matrix that is directly obtained from Step 7 gives variances in the yields that are larger than their corresponding evaluated variances. The

correlation and covariance matrices obtained from Step 7 will be called "primary" matrices throughout this publication as they are the matrices that are obtained directly from the method presented.

The covariance matrices that result from this process exhibit variances in the independent yields that are larger than those in the evaluations. In order to address this, a pair of "normalized" correlation and covariance matrices are calculated. The fission yield variances in the normalized covariance matrix are equal to those in the evaluation. The normalized covariance matrix is calculated as the product of the primary correlation matrix and the evaluated fission yield uncertainties. In order to conserve total yield, the sum of the normalized covariance matrix must be zero (as it is in the primary covariance matrix). For all of the compound systems considered, the sum of the covariance matrix obtained by simply taking the product of the primary correlation matrix and the evaluated fission yield uncertainties was greater than zero. To enforce that the sum of the normalized covariance matrix is zero, the negative correlations in the primary correlation matrix were scaled slightly. This scaling was less than 2% in all cases. Both the primary and normalized correlation and covariance matrices are presented to the user at nucleardata.berkeley.edu/FYCoM.

4.2.2 Cumulative Yields

Correlation and covariance matrices can be generated for cumulative yields using the covariance matrices generated for the independent yields. In order to do this, the transformation of independent yields into a given cumulative yield must be known. Evaluations make specific adjustments to these transformations. For example, the ENDF/B-VIII.0 evaluation obtained cumulative yields from independent yields by taking a weighted average of two different methods [86]. Replicating these adjustments would enhance the consistency of this method with the evaluations, however, a full tabulation of these specific adjustments is not readily available. Instead, this method transformed the independent yields to cumulative yields directly using evaluated decay data. The cumulative yields were obtained by calculating the probability that an independent product will follow a decay path leading to a cumulative product using Eq. 4.8:

$$Y_C(Z,A) = \sum_i \left[Y_I(Z_i,A_i) \prod_{k=1}^i \beta_{k \to k+1} \right]$$
(4.8)

where $Y_C(Z, A)$ is the cumulative yield being calculated, $Y_I(Z_i, A_i)$ are the independent yields that contribute to the cumulative yield, and $\prod_{k=1}^i \beta_{k\to k+1}$ represents the probability that product (Z_i, A_i) follows a decay path to product (Z, A) where each $\beta_{k\to k+1}$ is the decay branching ratio of the k^{th} product into the $(k+1)^{th}$ product in the decay chain.

The decay chains required for Eq. 4.8 are generated using the Fission Induced Electromagnetic Response code (FIER) [176]. The decay chains generated by FIER include all possible

decay paths for each fission product. FIER also provides a table of decay branching ratios parsed from ENDF/B-VIII.0 File 8 [28]. The independent yields are statistically resampled about a multivariate normal distribution using their evaluated values and their covariance matrices generated from the process in Sec. 4.2.1. Cumulative yields are then calculated from these resampled independent yields using Eq. 4.8. This is repeated N times such that statistical noise is minimized and the correlation and covariance matrices are calculated from the resulting N trials. In this study, N = 10000 was used to produce the presented matrices.

It was again seen that the covariance matrices that result from this process exhibit variances that are larger than those of the evaluated variances in the cumulative yields. This is because the cumulative yield covariance matrices are generated from the primary independent yield covariance matrix. Evaluated independent yields generally have larger evaluated uncertainties than cumulative yields and, as mentioned in Sec 4.2.1, the primary independent yield covariance matrix has larger variances than the evaluation. Therefore, a normalized cumulative yield covariance matrix is also produced using the correlation matrix and the evaluated variances in the cumulative yields. This normalized covariance matrix is simply the product of the correlation matrix and the evaluated uncertainties. Both the primary and normalized cumulative yield covariance matrix and the evaluated uncertainties. Both the user at nucleardata.berkeley.edu/FYCoM.

4.2.3 Generation of Consistent $P(\nu, A)$ Data

Neither the ENDF/B-VIII.0 nor JEFF-3.3 evaluations enforced consistency between fission neutron multiplicity distributions and independent fission yields. Because of this, there is no evaluated or experimental dataset that gives $P(\nu, A)$ values that are fully consistent with the independent yields in the evaluation, nor is there complete $P(\nu, A)$ data that cover all of the compound systems in the evaluation. In order to address this issue, a procedure was developed to obtain $P(\nu, A)$ data that have the greatest degree of consistency possible with evaluated yields. Perfect consistency would be achieved if each independent fission yield in the library could be reproduced using Eq. 4.7. This is the basis for the χ^2 metric in Eq. 4.9 which judges the consistency between evaluated independent fission yields and those generated using $P(\nu, A)$ data and Eq. 4.7; perfect consistency would result in $\chi^2 = 0$.

$$\chi^{2} = \sum_{i} \frac{[Y_{eval}(Z_{i}, A) - Y_{gen}(Z_{i}, A)]^{2}}{Y_{eval}(Z_{i}, A)}$$
(4.9)

where Y_{eval} are the evaluated independent yields in a given A chain and Y_{gen} are those same yields that are generated using $P(\nu, A)$ data using Eq. 4.7.

The χ^2 metric in Eq. 4.9 was minimized for each A chain in each of the fissioning systems in the evaluations in order to generate a set of $P(\nu, A)$ data for use in the method presented in Sec. 4.2.1. An example of this minimization technique is shown in Fig. 4.1 which shows

the result of minimizing χ^2 in Eq. 4.9 to obtain $P(\nu, A)$ data for the A = 135 chain of the ²³⁵U fast fission ENDF/B-VIII.0 evaluation.

Figure 4.1: Result of the minimization of χ^2 in Eq. 4.9 for the A = 135 chain of the ²³⁵U fast fission ENDF/B-VIII.0 evaluation. The blue data are the evaluated yields and the red data are yields generated using Eq. 4.7 and $P(\nu, A)$ data that minimized Eq. 4.9.

In order to conserve mass, $P(\nu, A)$ should ideally obey the physical condition that $P(\nu, A) = P(\nu, A_{CN} - A - \nu)$. An attempt was made to introduce a term to minimize the differences between $P(\nu, A)$ and $P(\nu, A_{CN} - A - \nu)$ in Eq. 4.9, however, this introduction made the minimization of Eq. 4.9 intractable. An iterative normalization method was developed in an attempt to force $P(\nu, A) = P(\nu, A_{CN} - A - \nu)$, however, this resulted in the χ^2 metric becoming unacceptably large. Future work could include attempts to improve the minimization method and metric such that $P(\nu, A) = P(\nu, A_{CN} - A - \nu)$ is met.

It should again be noted that inconsistency between the evaluated yields and those generated using the $P(\nu, A)$ data results directly from the evaluation itself and the fact that it did not take fission neutron multiplicity data into consideration. This inconsistency has been previously noted by Jaffke et al. [94]. These $P(\nu, A)$ data are generated to mitigate the effects of this inconsistency on the method presented in Sec. 4.2.1. An example of how these generated $P(\nu, A)$ data improve this method is presented in Fig. 4.2. It can be seen that a simplistic choice of $P(\nu)$ creates a bimodal distribution when resampling fission yields: one peak is seen when the heavy side of the fission product distribution is chosen in Step 1 of the method and another when the light side is chosen. Using these generated $P(\nu, A)$ data

yield much-improved results.

The use of these generated $P(\nu, A)$ data for other applications is not recommended. Certainly ensuring consistency between fission neutron multiplicity data and independent fission yields would add to the complexity of an evaluation and may very well be impractical. Future evaluations could attempt to address this by reporting "event" yields rather than independent yields. The "event" yields would report the probability that a given pair of fission products and number of prompt fission neutrons are produced from a given fission event.

(a) The independent yield of ¹³²Te resampled 10000 times using this method. Here the choice of the $P(\nu)$ distribution used in the method was an A-independent distribution for ²³⁵U(n,f) taken from Ref. [177].

(b) The independent yield of 132 Te resampled 10000 times using this method. Here the $P(\nu, A)$ distributions used in the method are the generated distributions described in Sec. 4.2.3.

Figure 4.2: Histograms of resampled yields for ¹³²Te with different choices of $P(\nu, A)$. Each histogram contains 10000 entries. The evaluated yields are shown at the black line, banded by red lines representing the evaluated uncertainty of that yield.

4.2.4 Limitations and Benchmarking

This method is able to capture fission yield correlations within a given A chain through Step 3 and correlations between complementary fission products through the use of $P(\nu, A)$ data in Step 5. However, this method does not fully capture correlations between A chains on the same side of the fission product distribution. This is because those yields are resampled independently of each other. As a result of this deficit, the correlations calculated using

this method are expected to be somewhat underestimated.

Without an underlying model of fission, it is difficult to conceive how these correlations would be introduced. This method should be viewed as complementary to the model-based methods mentioned in Sec. 4.1. Where this method offers the capability to focus on correlations from the evaluation itself, model-based methods offer the ability to see physical correlations, such as those existing between A chains.

In order to assess the efficacy of the method and the effect of the limitations that are acknowledged above, a benchmarking of the method was performed with a model of mass yields. This simple model is detailed in Eq. 4.10 and consists of two Gaussians, one for the heavy peak and one for the light peak of the fission product distribution.

$$Y(A) = \frac{1}{\sqrt{2\pi}} e^{(A-\mu)^2/2\sigma^2} + \frac{1}{\sqrt{2\pi}} e^{(A-(A_{CN}-\mu-\bar{\nu}))^2/2\sigma^2}$$
(4.10)

where μ is the centroid of the heavy-product Gaussian, A_{CN} is the mass of the compound nucleus, $\bar{\nu}$ is the average neutron multiplicity of the fissioning system, and σ is the width of both Gaussians.

The neutron multiplicity distribution in this model was set to be a Poisson distribution with a mean of 2.0 for each mass number. This ensures the important condition discussed in Sec. 4.2.3 that $P(\nu, A) = P(\nu, A_{CN} - A - \nu)$ is met.

This model of fission has three parameters: μ , σ , and $\bar{\nu}$. Reasonable selections for the values of these three parameters are $\mu = 132 \pm 0.5$, $\sigma = 5 \pm 0.1$, and $\bar{\nu} = 2.0 \pm 0.1$. Using the model in Eq. 4.10, the mass yields for each A were calculated. A Monte-Carlo resampling of the covariances between the mass yields was then performed: the model parameters were varied about their uncertainties 10000 times, the mass yields were recalculated on each of these trials, and the correlations between the mass yields were assessed from these trial results. Figure 4.3 shows the correlation matrix between the mass yields calculated from the model given in Eq. 4.10.

To benchmark the efficacy of the method presented, the yields from Eq. 4.10 were input to the method to see if their known correlations could be reproduced. In the first test, Step 3 was modified such that the mass yields on the selected side of the fission product distribution were varied using their respective half of the correlation matrix shown in Fig. 4.3. This was done because of the above-stated limitation that correlations between mass chains are underestimated. By using half of the model correlation matrix in this test, this known limitation is compensated for, thus offering a more direct comparison for benchmarking. The correlation matrix that results from this test is shown in Fig. 4.4 and the difference between this correlation matrix and the model correlation matrix is shown in Fig. 4.5. The average

absolute difference between the model correlations and these correlations was 9%.

In the second test, the method was not modified as in the first test; the model yields and their uncertainties were input to the method without any prior knowledge of their correlations. This reflects the same situation as when the evaluated yields are used: only their uncertainties are known, not their correlations. In this test, it is expected that the correlations will be underestimated due to the above-stated limitation that correlations between mass chains are underestimated. The correlation matrix that results from this test is shown in Fig. 4.6 and the difference between this correlation matrix and the model correlation matrix is shown in Fig. 4.7. The average absolute difference between the model correlations and these correlations was 18%. On average, the correlations from the method were 15% less than those of the model, reflecting the known limitation of the method.

This benchmarking demonstrates the overall efficacy of this method. The first test demonstrates that the method is able to reproduce known model correlations. The second test demonstrates the limitation of the method. It shows that while the known limitation is non-trivial, it is still reasonably small for a first-order estimate of fission yield correlations.

Figure 4.4: Correlations between the mass yields generated from this method with resampling of half the model correlation matrix (Fig. 4.3).

4.3 Results

Figure 4.8 shows the independent fission yield correlation matrix that was calculated for fast fission of ²³⁵U from the ENDF/B-VIII.0 evaluation. Both positive and negative correlations can be seen and indeed the diagonal is identically one. Figure 4.9 shows a more illustrative subset of these data; it shows the covariance between the independent yield of ¹³⁵Te and those of other fission products as a function of Z and A. A number of expected trends can be seen in this figure. First, the yields along the A = 135 axis are all positively correlated; this is expected as the method varies all yields in a given A chain in tandem. Second, this positive correlation is reflected strongly along the A = 99 axis; this is expected as this A chain corresponds to the most probable complementary mass number for the A = 135 chain, $A_{CN} - A - 2$. Finally, negative covariance can be seen surrounding each voxel of strong positive covariance along each Z axis. For example, the Z = 39 axis features positive covariance. This is expected in order to conserve the normalization of $P(\nu, A)$ distributions; if the yield to one complementary product in the $P(\nu, A)$ distribution is increased the yield to other

Figure 4.5: Comparison between the model correlation (Fig. 4.3) and method correlation (Fig. 4.4).

complementary products must be decreased.

Because this method does not require an underlying model of fission, it is able to be applied to any fission yield library with uncertainties. This method was successfully applied to all of the target nuclei and energy groups in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. Table 4.1 lists the systems to which this method was applied.

4.4 Conclusions

The method presented in Sec. 4.2 has been applied to all compound systems in the current ENDF/B-VIII.0 and JEFF-3.3 evaluations to produce independent and cumulative yield correlation and covariance matrices. This method has been benchmarked and code to generate the consistent $P(\nu, A)$ data and calculate these matrices has been preserved in Ref. [158] as an annotated reproducible workflow. In addition to this, these matrices have been published online at nucleardata.berkeley.edu/FYCoM, making them available for immediate

Figure 4.6: Correlations between the mass yields generated from this method (without modifications to the method).

use in applications and calculations by the nuclear science community. This marks the first time that correlation and covariance matrices have been produced for both the independent and cumulative fission product yields for all of the fissioning systems in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. The presented matrices offer a first-order estimate of correlation/covariance between evaluated fission yields and serve as an interim solution until a new evaluation with a full treatment of these correlations and covariances is conducted.

Figure 4.7: Comparison between the model correlation (Fig. 4.3) and method correlation (Fig. 4.6).

Figure 4.8: The primary correlation matrix for the independent fission yields of the 235 U fast fission ENDF/B-VIII.0 evaluation. "FY Index" is an index assigned to each fission product and is sorted by atomic number, mass number, and isomeric number in descending order. Thus FY Index 0 has the heaviest Z and A while FY Index 1016 has the lightest Z and A.

Figure 4.9: A plot of the covariance between the independent yield of 135 Te and those of other fission products as a function of Z and A for the 235 U fast fission ENDF/B-VIII.0 evaluation.

	ENDF/B-VIII.0	JEFF-3.3
Compound System	Energy Group	
²²⁷ Th	thermal	
²²⁹ Th	thermal	
²³² Th	fast	fast
	DT neutrons (14 MeV)	DT neutrons (14 MeV)
²³¹ Pa	fast	
²³² U	thermal	
^{-233}U	thermal	thermal
	fast	fast
- 234 **	DT neutrons (14 MeV)	DT neutrons (14 MeV)
2040	tast	fast
23511	D1 neutrons (14 MeV)	th
0	fact	fact
	DT neutrons (14 MeV)	DT neutrons (14 MeV)
²³⁶ U	fast	fast
	DT neutrons (14 MeV)	
⁻²³⁷ U	fast	
²³⁸ U	fast	fast
	DT neutrons (14 MeV)	DT neutrons (14 MeV)
	spontaneous fission	
²³⁷ Np	thermal	thermal
	fast	fast
238 M	DT neutrons (14 MeV)	th
los NB	last	fact
-238 Du	fact	thermal
1 u	last	fast
239Pu	thermal	thermal
1 4	fast	fast
	DD neutrons (2 MeV)	
	DT neutrons (14 MeV)	
²⁴⁰ Pu	thermal	fast
	fast	
	DT neutrons (14 MeV)	
²⁴¹ Pu	thermal	thermal
-2425	fast	fast
242 Pu	thermal	fast
	DT neutrons (14 MeV)	
⁻²⁴¹ Am	thermal	thermal
	fast	fast
	DT neutrons (14 MeV)	
^{242m}Am	thermal	thermal
		fast
^{243}Am	fast	thermal
- 949 ~		fast
²⁴² Cm 	fast	spontaneous fission
245 Cm	thermal	thermal
244 Cm	fact	thormal
0m	spontaneous fission	fast
	spontaneous nosion	spontaneous fission
²⁴⁵ Cm	thermal	thermal
		fast
²⁴⁶ Cm	fast	
	spontaneous fission	
²⁴⁸ Cm	fast	
249.00	spontaneous fission	
250 Ct	thermal	
UI 251.Cf	spontaneous fission	
252 Cf	anontanoous fasion	spontanoous fasion
253Fs	spontaneous fission	spontaneous fission
254 F.s	thermal	
²⁵⁴ Fm	spontaneous fission	
²⁵⁵ Fm	thermal	
²⁵⁶ Fm	spontaneous fission	

Table 4.1: The target nuclei and energy groups in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. This method was successfully applied to all of the systems listed in this table.

Chapter 5

Short-lived Fission Product Yield Measurements Using the Fast Loading User Facility for Fission Yields

5.1 Introduction

This chapter will detail the construction, commissioning, and operation of FLUFFY and will detail some initial results from ²³⁸U fission yield measurements using FLUFFY. As was discussed in Chapter 1, fission product yields are important to a wide variety of applications, yet they suffer from large uncertainties and gaps in knowledge. Chapter 4 presented a method to estimate fission yield covariances and Chapter 3 worked to assist the standardization of future fission yield evaluations. This chapter will detail experimental efforts to make improved measurements of fission yields, particularly those of short-lived fission products. This new measurement of fission product yields offers additional information that contributes to the current understanding of fission product yields through experimentation.

In recent years, cyclical neutron activation analysis (CNAA) has been identified as a particularly powerful technique by which to measure short-lived fission product yields [105, 106]. In CNAA, an actinide target is repeatedly and rapidly transported between a γ -ray detection apparatus and a neutron source. Generally, the irradiation period is short (seconds to tens of seconds) and the subsequent counting period is long (tens of seconds to minutes), allowing for saturation of short-lived activities while mitigating the build-up of intermediate- to longlived fission products. To facilitate new CNAA fission yield measurements, FLUFFY was constructed at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL).

This chapter will first detail the design and construction of FLUFFY, offering insight about the quantities that it is tailored to measure and the experimental data that it produces. Results from the measurement of $^{238}U(n,f)$ fission yields using FLUFFY are then
presented. During this presentation, a new method for fission yield determination using the FIER code is described. Together with the results of the measurement itself, this information advances the current state of experimental fission yield data.

5.2 Design and Construction

FLUFFY is a pneumatic system that shuttles a high-density polyethylene capsule between a high-purity germanium (HPGe) detector array and a high-intensity deuteron breakup neutron source. Construction of FLUFFY began in early 2019 at the 88-Inch Cyclotron at LBNL. FLUFFY is located at the high-radiation level cave ("Cave 0") of the 88-Inch Cyclotron (shown in Fig. 5.1). This cave was selected because capabilities for neutron production via deuteron breakup have been extensively developed there and because the concrete shielding of the cave features a cable porthole through which the FLUFFY pneumatic tube was placed. The thick concrete shielding of Cave 0 is useful for shielding the HPGe detector array from neutron damage while the neutron beam is on and for reducing backgrounds from activation products of the neutron beam.

Figure 5.1: Schematic of the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. FLUFFY was constructed in Cave 0, which is shown in the upper right-hand corner of this figure. This figure was modified from the publication "The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing" by M. Kireeff Covo et al. [178]

FLUFFY, the neutron source, and the detection array it uses are shown in Fig. 5.2. The neutron source used in FLUFFY experiments is a high-purity graphite deuteron breakup target. A deuteron beam is extracted from the 88-Inch Cyclotron, directed to Cave 0 by a bending magnet, and impinges on the 6-mm thick graphite target that is located in a beam box at the end of the beam pipe. Deuteron breakup produces a forward-focused neutron beam that is incident upon the beam-side end of the FLUFFY pneumatic tube. The location

Figure 5.2: Schematic of FLUFFY within Cave 0 of the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory.

of the actinide sample inside of the capsule is 17 cm back from the graphite target, a solid angle coverage of 0.013 steradians, spanning $\pm 1.8^{\circ}$. Further details on the characterization of the energy spectrum of the neutron beam using a neutron time-of-flight measurement and foil-pack spectral adjustment are presented in Sec. 5.3.3.

The detector array used by FLUFFY consists of two segmented HPGe "clover" detectors with accompanying 16-segment BGO Compton-suppression shields. Figure 5.3 shows a 3-D model of the detector end of FLUFFY. The clovers were each set back approximately 20 cm from the location of the target inside of the capsule. This was done both to accommodate the incoming bend of the FLUFFY tube and to eliminate coincidence summing. The signals from the HPGe clovers and BGO shields were read by a data acquisition system (DAQ) based on the Mesytec MDPP16 digitizer [179]. This DAQ records filtered detector signals and timestamps for the logic signals produced by the capsule-positioning lasers, allowing for precise tracking of the capsule location as a function of time.

The FLUFFY pneumatic tube is constructed of transparent PVC tubing. This tubing was selected so that the capsule can be quickly located in the event that it jams. The joints of the tube were fitted with 3D-printed rings to fill the gap that was present at each cou-

Figure 5.3: Three-dimensional model of the HPGe clover array used in FLUFFY. Labels 1 and 2 show the locations of the HPGe clovers, which are supported by an aluminum frame. Label 3 shows the cuff that holds one end of the FLUFFY pneumatic tube (not shown). When the capsule is at rest, the target is located in the middle of the cuff. Figure courtesy of Dr. Joshua Brown of the University of California, Berkeley.

pling; this prevents clipping and catching of the capsule. Each end of the pneumatic tube was connected to two solenoids: one for input air pressure and one for air pressure outlet. A 3D-printed cuff was placed at each end of the tube. This cuff held a laser-photodiode pair. When the capsule reaches the end of the tube, it breaks the laser beam into the photodiode, creating a readable electronic signal indicating that the capsule is at one end of the tube.

The capsule that is transported through the FLUFFY pneumatic tube is made of highdensity polyethylene (HDPE). This material was chosen due to its high mechanical durability and resistance to fracture. This is important because the capsule is not slowed before stopping against each end of the pneumatic tube, and thus the capsule must be robust against repeated, sudden impacts (in this experiment the capsule experienced over 7000 impacts from 3659 cycles). The choice of HDPE has the added benefit of limiting backgrounds due to activation of the capsule material; HPDE is composed solely of C and H. The top end of the capsule screws on and contains a recess that can hold a foil with an 11 mm diameter and 1.25 mm thickness. Figure 5.4 shows the design of this capsule.

The 88-Inch Cyclotron is equipped with a beam chopper that can be rapidly (<10 μ s)

Figure 5.4: The design of the capsule used in the FLUFFY pneumatic tube. Figure courtesy of Dr. Jonathan Morrell of Los Alamos National Laboratory (formerly the University of California, Berkeley).

triggered/inhibited by a TTL logic signal [178]. This beam chopper is controlled by FLUFFY to turn the neutron beam off when the capsule is not present at the beam-side end of the pneumatic tube. This greatly reduces the γ background seen by the HPGe clover array while the capsule is being counted.

FLUFFY is controlled by a Raspberry-Pi single-board computer. The Raspberry-Pi is able to read/output 3.3 V logic signals on 18 pins. A short program reads input signals from the laser-photodiode pairs at each end of the pneumatic tube, outputs logic signals to the pressure/outlet solenoid to control the movement of the capsule, and outputs logic signals to the beam chopper to turn the neutron beam on and off. The program executes the following process:

- 1. Shuttle the capsule to the beam-side end of FLUFFY.
 - a) Send high signals to open both the detector-side pressure solenoid and the beamside outlet solenoid.
 - b) Wait for the beam-side laser signal to read high, indicating the arrival of the capsule.
 - c) Immediately send a high signal to the beam chopper to turn the beam on and start a countdown for the user-specified irradiation period.

- d) Send a low signal to the detector-side pressure solenoid to close it. Wait 100 ms and send a low signal to the beam-side outlet solenoid to close it (this delay prevents excess tube pressure).
- e) After the countdown is complete, send a low signal to the beam chopper to turn the beam off.
- 2. Shuttle the capsule to the detector-side end of FLUFFY.
 - a) Send high signals to open both the beam-side pressure solenoid and the detectorside outlet solenoid.
 - b) Wait for the detector-side laser signal to read high, indicating the arrival of the capsule.
 - c) Start a countdown for the user-specified counting period.
 - d) Send a low signal to the beam-side pressure solenoid to close it. Wait 100 ms and send a low signal to the detector-side outlet solenoid to close it.
 - e) After the countdown is complete, if the user has not terminated the program, return to Step 1.

5.3 Measurement of ²³⁸U Fission Yields

A series of experiments to measure fission yields on 238 U using FLUFFY were conducted between July 20-26, 2020. In these experiments, a 455.3 \pm 0.5 mg highly-enriched 238 U sample was irradiated. First, a 24-hour irradiation comprised of cycles of 1 s of irradiation followed by 25 s of counting ("1 s–25 s") was conducted. This timing scheme was chosen to maximize the visibility of the shortest-lived ($t_{1/2} < 2$ s) fission products in the resulting fission product γ -ray spectrum. Next, a 24-hour irradiation comprised of cycles of 5 s of irradiation followed by 125 s of counting ("5 s–125 s") was conducted. This timing scheme was chosen to maximize the visibility of short-lived (2 s $< t_{1/2} < 10+$ s) fission products in the resulting fission product γ -ray spectrum. Both the 1 s–25 s scheme and the 5 s–125 s scheme featured a 1:25 duty cycle to allow for significant decay of intermediate-half-life fission products between each cycle.

The lengths of the 1 s and 5 s irradiation periods maximized sensitivity to the shortestlived fission products in each mass chain. Approximately 80% of the independent yield to a given mass chain occurs in fission products with half-lives less than a few tens of seconds (see Figs. 5.14, 5.15, 5.16, and 5.17). This is because fission minimizes the total nuclear binding energy by favoring the formation of fragments with a Z/A ratio similar to the compound system. This tends to lead to the production of neutron-rich fission fragments with high Q_{β^-} and half-lives on the order of a few seconds. In contrast, longer-lived lower Q_{β^-} products are more likely to be the product of the β -decay rather than directly formed in the fission

process itself.

It should be noted that measurements conducted using FLUFFY and its deuteron breakup source are energy-integral measurements, not energy-differential measurements. While energydifferential measurements are useful in assessing the energy dependence of fission yields, the high fluxes produced by deuteron breakup paired with the rapid transport times of FLUFFY maximize sensitivity to short-lived fission yields with short irradiation periods and long counting/decay periods. It is this sensitivity that allows for approximately 80% of the independent yield to a given mass chain to be measured. This is the value these measurements provide to future fission yield evaluations. Additionally, these measurements may also serve as an integral benchmark once energy-differential data are produced [106].

The ²³⁸U target was co-loaded with a high-purity synthetic sapphire (Al₂O₃) disc. The mass of the disc was 391.4 \pm 0.5 mg. This sapphire disc provided an *in situ* neutron flux monitor with the ²⁷Al(n, α) and ²⁷Al(n,p) reactions together with a high energy calibration via the observation of the 6128.63-keV and 7115.15-keV γ rays that result from the decay of ¹⁶N produced in the ¹⁶O(n,p) reaction.

The detector array used in the experiment consisted of two HPGe clover detectors each surrounded by a bismuth germanate (BGO) scintillator. The HPGe crystals in the clover detectors were used to detect the energy of the γ emissions from the fission products with high energy resolution. The primary purpose of the BGO detectors was to provide active Compton suppression capabilities (further discussed in Sec. 5.3.1). The BGO detectors also provided a monitor of the cycle-by-cycle flux that was incident on the target. Because of their high detection efficiency, the count rate of the BGO shields during irradiation was used to monitor prompt γ rays produced during deuteron breakup and secondary reactions between the neutrons and the environment. This information, together with the timestamps from the laser positioning system, allowed for a full reconstruction of the irradiation scheme of the experiment is given in Appendix B as a formatted input deck for FIER. Figure 5.5 shows a graphical representation of this irradiation scheme. The average transport time for the capsule from the neutron source to the HPGe detector array was 1.22 s.

In addition to the irradiation of the 238 U target, a neutron time-of-flight (nTOF) irradiation and a foil-pack irradiation were conducted. The purpose of these two irradiations was to determine the neutron energy spectrum from the graphite deuteron breakup source. The nTOF irradiation used an EJ-309 scintillator [180] with a 1"×1" right cylindrical geometry to measure the time-of-flight of neutrons from each cyclotron pulse. The activation analysis irradiated foils of natural abundance Au, Al, V, Zr, and In. The activation information from reactions on these foils was input to the spectral adjustment code STAYSL [108] with the nTOF spectrum as an initial guess. The details of this neutron energy spectrum characterization are further detailed in Sec. 5.3.3.

Figure 5.5: Graphical representation of the first five cycles of the 1 s-25 s irradiation scheme. The dashed lines represent the time at which the capsule returned to the HPGe array, illustrating the transport time for each cycle.

5.3.1 Gamma-ray Spectral Data Processing

Data parsing and processing software was collaboratively written with Dr. Joshua Brown of the University of California, Berkeley. This software reads the raw output of the aforementioned Mesytec MDPP16 DAQ and reduces that data to γ -ray spectra stored in ROOT TTree data files [181]. This software performs two processes: add-back between the crystals of each clover and Compton suppression using the BGO detector signals. These processes are detailed below:

Add-Back - When two or more signals are generated in different crystals of the same HPGe clover within a given timeframe, the energies of those signals are added together and reported as a single energy deposition event. This is performed to maximize the photopeak efficiency of each HPGe clover; γ rays that undergo multiple scatters but deposit their full energy in the HPGe crystals are reconstructed into one event that records the full energy of the γ -ray.

Compton Suppression - When one or more signals are generated in the crystals of an HPGe clover within a given timeframe of a signal in the surrounding BGO detector, the event is rejected. This constraint is applied to minimize the number of events in the spectrum that did not deposit the full energy of the γ ray in the HPGe crystals; if a BGO signal occurs

in coincidence with an HPGe signal, then it is likely the γ ray scattered and deposited a part of its energy in the BGO (which does not have sufficient energy resolution for add-back).

A ¹⁵²Eu source was used to obtain calibration constants for the add-back and Compton suppression processes. A γ - γ time-difference distribution was assembled for each HPGe crystal and the BGO detector of each clover. The centroid of the distribution was used as the time offset for each detector and the full width of the distribution was used to set the coincidence window for add-back and Compton suppression. Figure 5.6 shows an example fission product γ -ray spectrum from the 1 s– 25 s ²³⁸U data with add-back and Compton suppression applied.

Figure 5.6: An example fission product γ -ray spectrum from the 1 s–25 s ²³⁸U data. Particularly strong photopeaks from the decay of ¹⁶N, ²⁴Na, and ²⁷Mg activation products formed in the co-loaded sapphire disc can be seen at 843.76 keV, 1368.626 keV, 2754.007 keV, 6128.63 keV, and 7115.15 keV.

5.3.2 Detector Array Calibration

The HPGe clover array used in FLUFFY was calibrated using two calibration sources designed to fit inside of the FLUFFY capsule so that their geometry would match that of the ²³⁸U target. One calibration source was a custom-ordered, NIST-traceable ¹⁵²Eu source. This source has several strong γ -ray emissions up to 1408 keV.

The other calibration source was made at the 88-Inch Cyclotron by irradiating a natural Fe foil with protons to produce ⁵⁶Co via the ⁵⁶Fe(p,n) reaction. ⁵⁶Co offers the advantage of allowing high-energy γ efficiency calibrations due to its strong γ -ray emissions up to 3273 keV. The activity of ⁵⁶Co present in this source was determined by a cross-calibration with a NIST-traceable ⁶⁰Co source. The cross-calibration was performed with the ratio given in Eq. 5.1:

$$A_{Co56} = A_{Co60} \frac{I_{\gamma}^{1173} N_{1175}}{I_{\gamma}^{1175} N_{1173}}$$
(5.1)

where A_{Co56} is the activity of ⁵⁶Co that was produced, A_{Co60} is the activity of the ⁶⁰Co calibration source, I_{γ}^{1173} and I_{γ}^{1175} are the evaluated decay γ intensities for the 1173-keV γ from ⁶⁰Co and the 1175-keV γ from ⁵⁶Co, and N_{1173} and N_{1175} are the number of photopeak counts in 1173-keV and 1175-keV photopeaks, respectively.

Equation 5.1 is valid because the detection efficiency for the 1173-keV and 1175-keV photopeaks are nearly identical and thus an efficiency correction is not needed. The efficiencies for these two γ rays were determined to be within 0.1%.

In addition to the HPGe clover array that was used in FLUFFY, a different single-crystal HPGe detector was used for counting the foil pack and the sapphire monitor. This detector was calibrated with NIST-traceable ¹⁵²Eu, ¹³³Ba, ¹³⁷Cs, and ⁶⁰Co sources. Table 5.1 summarizes the calibration sources and activities used in the calibration of the HPGe detectors.

Table 5.1: Calibration sources used in the calibration of HPGe detectors used in this exper-

iment.				
	Source	Activity (μ Ci)	Calibration Date	

Source	Activity (μ Ci)	Calibration Date			
Clovers:					
$^{152}\mathrm{Eu}$	10.56 ± 0.11	July 1, 2020			
$^{56}\mathrm{Co}$	1.65 ± 0.02	July 15, 2020			
Single	Crystal:				
$^{152}\mathrm{Eu}$	1.033 ± 0.011	March 1, 2019			
¹³³ Ba	1.043 ± 0.011	March 1, 2019			
$^{137}\mathrm{Cs}$	0.9920 ± 0.0099	March 1, 2019			
$^{60}\mathrm{Co}$	1.041 ± 0.011	March 1, 2019			

The energy calibrations of the HPGe detectors were fit using the linear form in Eq. 5.2:

$$E = B_0 + B_1 x \tag{5.2}$$

where E is the energy of the channel, x, and B_0 and B_1 are the parameters of the linear model. An energy calibration for each of the individual crystals of the HPGe clover array was obtained and these were used in the add-back stage of the γ -ray spectrum processing detailed in Sec. 5.3.1. Non-negligible non-linearities were observed in the energy calibrations for the HPGe clover crystals, making precise energy determination difficult for γ -rays with energies less than 800 keV. These non-linearities were not resolved with a quadratic calibration model. Therefore, the decision was made to remove calibration data points below 800 keV in the energy calibration of the HPGe clover leaves. This means those energy calibrations cannot be safely extrapolated below 800 keV. However, this is of limited consequence to the analysis of the data as fission product γ -ray spectra are often too crowded below 1 MeV to be successfully analyzed.

A single efficiency calibration for the HPGe clover array as a system was determined. The calibration γ -ray spectrum was reduced from the data using the same add-back and Compton suppression settings as were used for the fission product γ -ray spectra. The functional form used for the efficiency calibrations of the HPGe detectors is given in Eq. 5.3 which is modified from the form proposed in Ref. [182]:

$$\varepsilon(E_{\gamma}) = B_0 e^{-B_1 E_{\gamma}^{B_2}} \tag{5.3}$$

where $\varepsilon(E_{\gamma})$ is the detection efficiency for a γ ray with energy E_{γ} , B_0 , B_1 , and B_2 are the parameters of the model, and E_{γ} is the energy of the incident γ ray. The parameters of this form were determined by fitting to the experimental data using the Differential Evolution heuristic global optimization algorithm [183] as implemented in the Scientific Python (SciPy) package [184]. The uncertainties and covariance in the parameters were determined by varying the experimental data 10000 times, refitting the parameters, and calculating the covariance matrix from the trial results. Figure 5.7 shows the net efficiency calibration for the HPGe clover array used in FLUFFY. Figure 5.8 shows the efficiency calibration for the single-crystal HPGe detector used for foil counting.

The Mesytec MDPP16 DAQ does not perform automatic detector dead-time recording. Therefore, a dead-time calibration was performed to determine if there was appreciable dead-time in the HPGe clover array system. A set of ¹³⁷Cs sources were counted in between the two HPGe clovers. Thirteen different permutations of these sources were counted, with net ¹³⁷Cs activities ranging from 0.96 μ Ci to 31.71 μ Ci. The net count rate for the HPGe clovers was measured for each permutation. These net count rate versus ¹³⁷Cs activity data were fit to the functional form given in Eq. 5.4. Equation 5.4 describes the theoretical count rate as a function of event rate for a system that is α % paralyzable and $(1 - \alpha)$ % non-paralyzable:

$$m = \alpha \left(\frac{n}{n\tau + 1}\right) + (1 - \alpha)(n \ exp(-n\tau)) \tag{5.4}$$

where m is the observed count rate on the detector array, α is a coefficient describing how paralyzable the detection system is, τ is the dead-time of the detection system, and n is the

Figure 5.7: Net efficiency calibration for the HPGe clover array system used in FLUFFY.

Figure 5.8: Efficiency calibration for the single-crystal HPGe detector used for foil counting.

event rate on the detector array, which is given by Eq. 5.5:

$$n = \varepsilon A + B \tag{5.5}$$

where A is the activity of the source being counted, ε is the net efficiency for detecting γ emissions from that source (both photopeak and Compton), and B is the background event rate of the environment. This model is based on the paralyzable and non-paralyzable models given in Ref. [185, p. 122].

The result of fitting these data is shown in Fig. 5.9. The optimal model parameters were determined to be: $\tau = 8 \ \mu s$, $\varepsilon = 0.0076$, $\alpha = 0.1$, and $B = 285 \ \text{counts/s}$. The fitted net detection efficiency for the 661.657-keV γ from ¹³⁷Cs is consistent with the efficiency curve determined for the HPGe clover system. However, there was limited sensitivity for the paralyzable coefficient, α . This is because the data did not extend to high enough activities to see the expected shape of either the paralyzable or non-paralyzable models. The activity of fission products produced during the FLUFFY irradiations was well below the highest activity measured in this dataset. Therefore, interpolation with this model should be reliable.

Figure 5.9: Count rate versus source activity on the HPGe clover array system. These data were fit using the functional form given in Eq. 5.4.

5.3.3 Neutron Energy Spectrum Characterization

To characterize the neutron energy spectrum that was incident upon the ²³⁸U target, two experiments were conducted: a neutron time-of-flight (nTOF) measurement and a foil-pack activation measurement. These two measurements were performed to supply information about the incident neutron energy spectrum across the full energy range of interest. Single nTOF measurements are limited in the scope of their energy by the wraparound effect [186]. Due to the short flightpath in Cave 0, this nTOF measurement does not report neutron energies below 1.75 MeV. Foil pack activation allows for the measurement of the magnitude of the flux and can be used in spectral adjustment analysis codes such as STAYSL [108]. However, the spectral adjustment analysis in STAYSL requires a reasonable initial guess of the incident neutron energy spectrum. Together nTOF and foil pack activation can give an estimate of the incident neutron energy spectrum; nTOF provides a reasonable initial guess of the incident neutron energy spectrum for spectral adjustment analysis using the foil-pack activation measurement results.

5.3.3.1 Neutron Time-of-Flight

To provide a measurement of the incident neutron energy spectrum in the energy region without wraparound effects, an nTOF measurement was conducted. An EJ-309 scintillator [180] with a $1^{"}\times1^{"}$ right cylindrical geometry was placed 210.4 cm away from the location of interaction in the graphite deuteron breakup target. The scintillator was placed at 0° and was aligned using a laser leveling device. A 10 nA deuteron beam was run on the graphite deuteron breakup target for 30 minutes to enable the collection of an nTOF spectrum with sufficient statistics.

The same Mesytec MDPP16 module that was used for data acquisition on the HPGe clover arrays was used for the nTOF measurement. The charge-to-digital converter (QDC) settings of the module were used to perform pulse shape discrimination (PSD) on signals from the EJ-309 scintillator using the charge integration method [187] [185, p. 700]. The short integration time was set to 12.5 ns and the long integration time was set to 312.5 ns for the PSD.

An energy was calculated for each event with a PSD signature characteristic of a neutron using Eq. 5.6 for relativistic kinetic energy:

$$E_n = m_n c^2 \left(\sqrt{\frac{1}{1 - v^2/c^2}} - 1 \right)$$
(5.6)

where m_n is the rest mass of a neutron, c is the speed of light, and v is the measured velocity which is given by Eq. 5.7:

$$v = \frac{L}{t} \tag{5.7}$$

where L is the length of the neutron flight path and t is the measured time-of-flight for the neutron.

The measured neutron energies were histogrammed to obtain a raw neutron energy spectrum. This raw spectrum was then corrected with a simulated detector efficiency curve [188]. A GEANT4 simulation impinged neutrons with a uniform energy distribution on the detector volume. Each neutron in the simulation was tracked through the detector volume and recoil events were recorded. Using the light yield relation in Refs. [189, 190], the energy deposited by the recoiling particle in each recoil event was converted to a relative light

unit. The light produced by the individual recoil events was summed to give the total light produced by the neutron. A ¹³⁷Cs calibration spectrum was used to calibrate the experimental data to quantify a user-defined light detection threshold. This threshold was then applied to the simulation to reject low-light events that would not have been detectable in the experiment. The efficiency curve was then determined as the ratio of the number of neutrons of a given energy that were detectable over the number of neutrons of that energy that were impinged on the detector. The efficiency-corrected spectrum was used as the estimate of the incident neutron energy spectrum above 1.75 MeV, as shown in Fig. 5.10.

5.3.3.2 Foil Pack Activation

A foil pack containing thin foils of Au, Al, V, Zr, and In was irradiated for 8 hours, 11 minutes, and 58 seconds. These foils were 1 cm circular disks with varying thicknesses (which are specified in Table 5.2). The foils were placed inside the FLUFFY capsule and were shuttled into Cave 0 using FLUFFY. This was done so that the foil pack location matched that of the ²³⁸U foil. Once the irradiation was complete, the foil pack was shuttled back out using FLUFFY and was rapidly transported to the single-crystal HPGe for assay; the counting of the foil began less than five minutes after the end of irradiation.

The photopeaks from the γ -ray signatures of each reaction product were fit to determine their net area. This net area was then used to determine the activity using Eq. 5.8:

$$A_0 = \frac{C(E_\gamma)\,\lambda}{I_\gamma \varepsilon(E_\gamma)\,(e^{-\lambda t_0} - e^{-\lambda t_1})}\tag{5.8}$$

where $C(E_{\gamma})$ is the number of observed counts in the γ -ray spectrum for the γ -ray signature with energy E_{γ} , λ is the decay constant of the reaction product, I_{γ} is the decay γ intensity of the γ -ray signature, $\varepsilon(E_{\gamma})$ is the detection efficiency for the γ -ray signature, t_0 is the time between the end of irradiation and the start of counting, and t_1 is the time between the end of irradiation and the end of counting.

The reaction product activities were then input to the SigPhi calculator that is a part of the STAYSL software package. SigPhi applies various corrections to the activities, namely neutron attenuation, γ -ray self-absorption, and flux history corrections [108]. Table 5.2 summarizes the SigPhi-processed activities from the foil pack irradiation. These activities were input to STAYSL to perform the spectral adjustment calculation on the input trial neutron energy spectrum.

Table 5.2: Foil pack activation products and activities. The produced activities are given in units of atoms of the product per atom of the target per second as these are the units that are required for use in STAYSL. All of the foils had a circular disk geometry with a 1 cm diameter.

		Foil		Gamma	Produced
Product	Reaction	Thickness	Foil Mass (g)	Signature	Activity
		(mm)		(keV)	(atom/atom/s)
⁸⁹ Zr	90 Zr(n,2n)	0.5	0.2568 ± 0.0005	909.15	$7.93 \pm 0.20 \times 10^{-20}$
$^{27}\mathrm{Mg}$	$^{27}Al(n,p)$	1.0	0.2317 ± 0.0005	843.76	$1.39 \pm 0.03 \times 10^{-17}$
24 Na	$^{27}\mathrm{Al}(\mathrm{n},\alpha)$	1.0	0.2317 ± 0.0005	1368.626	$2.48 \pm 0.06 \times 10^{-18}$
$^{48}\mathrm{Sc}$	$^{51}V(n,\alpha)$	1.0	0.5130 ± 0.0005	983.526	$3.84 \pm 0.13 \times 10^{-20}$
$^{198}\mathrm{Au}$	$^{197}Au(n,\gamma)$	0.1	0.1525 ± 0.0005	411.80205	$1.79 \pm 0.05 \times 10^{-17}$
$^{196}\mathrm{Au}$	$^{197}Au(n,2n)$	0.1	0.1525 ± 0.0005	355.73	$2.15 \pm 0.06 \times 10^{-18}$
116m In	115 In(n, γ)	0.1	0.0582 ± 0.0005	1293.56	$3.27 \pm 0.10 \times 10^{-16}$
115m In	$^{115}In(n,n')$	0.1	0.0582 ± 0.0005	336.241	$7.13 \pm 0.24 \times 10^{-17}$

5.3.3.3 Estimate of Incident Neutron Energy Spectrum

The incident neutron energy spectrum from the experiment was determined using an nTOFinformed trial spectrum and the foil pack activation data as inputs to the spectral adjustment analysis code STAYSL [108]. STAYSL uses evaluated neutron activation cross sections to calculate the expected activities of reaction products. These calculated activities are then compared against the measured activities using the χ^2 statistic. The incident neutron energy spectrum is adjusted in a least-squares routine until χ^2 is minimized.

The user specifies the binning of the neutron energy spectrum that is to be produced by STAYSL. Generally, the binning consists of 100-140 bins. This means that in most cases the problem STAYSL solves is severely under-constrained with a few knowns (i.e., the foil pack activation data) and 100-140 unknowns (i.e., the flux in each bin of the neutron energy spectrum). STAYSL uses evaluated correlations between energy groupings of the activation reaction cross section data to reduce the total number of degrees of freedom in the problem. However, for most problems, even this reduction is not enough to make the problem constrained or over-constrained. Therefore, STAYSL does not necessarily produce a unique solution for the incident neutron energy spectrum. Furthermore, the solution that STAYSL produces is highly dependent on the user-provided initial guess of the incident neutron energy spectrum.

To provide STAYSL with a reasonable trial input for the neutron energy spectrum, the nTOF-measured neutron energy spectrum was used as a basis. However, as previously

mentioned, the nTOF measurement only produces a spectrum with neutron energies above 1.75 MeV. Therefore, an estimate of the low-energy portion of the neutron energy spectrum is required. The low-energy portion of the neutron energy spectrum was assumed to take the form of a Maxwell-Boltzmann distribution with a centroid temperature of 0.0253 eV (i.e., room temperature). The form of the Maxwell-Boltzmann distribution that was used is given in Eq. 5.9:

$$N(E) = \sqrt{\frac{2}{\pi}} \frac{E^2 e^{-E^2/2a^2}}{a^3}$$
(5.9)

where a is given by Eq. 5.10:

$$a = \frac{E_0}{2\sqrt{2/\pi}}\tag{5.10}$$

where E_0 is the mean energy of the distribution.

This Maxwell-Boltzmann distribution spanned energies ranging from 10^{-5} eV to 0.1 eV and its magnitude was estimated using the measured activity from the ¹¹⁵In(n, γ) reaction. In the epithermal region (0.1 eV to 1.75 MeV), a reasonable guess of the neutron energy was difficult to make. This is because this region spans many resolved resonances in the activation cross sections of the foil pack materials. Therefore, a simple log-log line between the Maxwell-Boltzmann distribution and the measured nTOF spectrum was used. The initial guess of the neutron spectrum that was supplied to STAYSL is shown in Fig. 5.10.

The SigPhi-processed activities given in Table 5.2 and the initial guess of the incident neutron energy spectrum shown in Fig. 5.10 were input to STAYSL. STAYSL was used to perform the spectral adjustment and determine the neutron energy spectrum shown in Fig. 5.11. It can be seen that STAYSL produces a neutron energy spectrum that is similar in shape to the initial guess spectrum. The χ^2 metric between the measured foil pack activities and the STAYSL calculated activities was 4.2. There is very limited thermalization of the neutrons produced from the deuteron breakup target; less than 0.001% of the total flux occurs below 1 eV.

5.3.3.4 Spectrum-Averaged Fission Cross Section

The spectrum-averaged neutron-induced fission cross section for 238 U was calculated with the above neutron energy spectrum and the ENDF/B-VIII.0 238 U(n,f) point-wise cross section [28] using Eq. 5.11:

$$\bar{\sigma} = \int_0^\infty \sigma_{n,f}(E) \times P(E) \, dE \tag{5.11}$$

Figure 5.10: The initial guess of the incident neutron energy spectrum that was supplied to STAYSL. The spectrum is normalized such that the sum of the bins in the spectrum is $1 \text{ n/cm}^2/\text{s}$.

where $\sigma_{n,f}(E)$ is the ²³⁸U(n,f) cross section and P(E) is the measured incident neutron energy spectrum.

The point-wise ²³⁸U(n,f) cross section from the ENDF/B-VIII.0 evaluation with the neutron energy spectrum overlaid is shown in Fig. 5.12. Using these data, the spectrum-averaged ²³⁸U(n,f) cross section was determined to be 0.586 \pm 0.015 b. Figure 5.13 shows the ²³⁸U(n,f) cross section and neutron energy spectrum above 0.1 MeV. This figure shows that the neutron energy spectrum mostly covers the domain of first-chance fission. Only 2 \times 10⁻⁵% of the spectrum-averaged fission cross section is due to neutrons below 0.1 MeV.

5.3.4 Data Analysis Using the Fission Induced Electromagnetic Response Code

Historically, measured fission product yields are often reported as cumulative yields (see definition in Sec. 3.2.3). This is because transport times between the end of irradiation and the beginning of assay are often long, resulting in the complete decay of short-lived fission products before assay. This results in the cumulative yields to long-lived ($t_{1/2} > 1$ h) fission products being most commonly reported in literature. Thus, measurement of short-lived fission product yields and independent yields are less common.

Figure 5.11: The incident neutron energy spectrum determined by STAYSL. The initial guess of the spectrum is shown for comparison. The total neutron flux was determined to be $7.15 \pm 0.20 \times 10^8 \text{ n/cm}^2/\text{s}$.

Because FLUFFY features such rapid transport times, it is possible to observe γ -ray emissions from very short-lived ($t_{1/2} > 0.5$ s) fission products. This means that cumulative yields can be determined for the shortest-lived fission products and independent yields can be determined for any subsequent fission products in the mass chain. However, this can only be done if the appropriate decay corrections are applied, and the decay networks that exist at the neutron-rich end of mass chains are generally complex due to in-feeding from other mass chains caused by β -delayed neutron emission. Figure 5.14 shows an example of such a decay network.

5.3.4.1 Minimization Method

To apply the aforementioned decay correction accurately, the Fission Induced Electromagnetic Response code [176] was used. FIER uses evaluated nuclear data and analytical solutions to the Bateman equations to calculate the expected delayed γ -ray spectra that result from a user-specified irradiation scheme. FIER uses the nuclei decay modes that are listed in its input libraries (which are generated from ENDF File-8 [28, 191]) to generate the decay chains and networks that exist for the fission products. Therefore, in-feeding to a given mass chain from other mass chains is automatically accounted for. However, because FIER uses evaluated nuclear data as inputs to the solutions to the Bateman equations, the spectra output by FIER are only as accurate as the evaluated input nuclear data.

Figure 5.12: 238 U(n,f) cross section as a function of incident neutron energy. The data in this plot are taken from the ENDF/B-VIII.0 evaluation [28].

An example of how FIER can be used in fission yield determination using measured γ -ray emission data was offered in Sec. 4 of Ref. [176]. Fission yields (or other nuclear data values) can be determined by varying them in a minimization method that compares the output data from FIER with experimentally measured fission product γ -ray spectra. This technique is possible because the output from FIER is in units of number of γ -ray emissions and the efficiency-corrected photopeak count data from the FLUFFY experiment is also in units of number of γ -ray emissions, allowing for a one-to-one comparison in the minimization routine.

This minimization routine was developed for the purposes of analyzing the data from FLUFFY. The minimization routine that was used was the Differential Evolution heuristic global optimization algorithm [183] as implemented in the pagmo C++ software package [192]. A basic χ^2 metric was used as the objective for the minimization routine as shown in Eq. 5.12:

$$\chi^{2} = \frac{N_{\gamma}(Z, A, I, t_{0}, t_{1}, c) - FIER(Z, A, I, t_{0}, t_{1}, c)}{\sigma_{N_{\gamma}}^{2}}$$
(5.12)

where N_{γ} is the number experimentally observed γ -ray emissions (as a function of Z product atomic number, A product mass number, I product isomeric state, t_0 time between the capsule arrival at the HPGe clover array and the start of counting, t_1 time between the capsule arrival at the HPGe clover array and the end of counting, and c number of cycles), FIER is the number of γ -ray emissions predicted by FIER (as a function of Z, A, I, t_0 , t_1 ,

Figure 5.13: Figure 5.12 zoomed to neutron energies above 0.1 MeV.

and c), and $\sigma_{N_{\gamma}}$ is the experimental uncertainty in N_{γ} . N_{γ} is determined from photopeak counts observed in the fission product γ -ray spectrum and the HPGe clover array efficiency curve using Eq. 5.13:

$$N_{\gamma} = \frac{C_{\gamma}}{\varepsilon(E_{\gamma})} \tag{5.13}$$

where C_{γ} is the number of photopeak counts observed in the fission product γ -ray spectrum for a particular γ ray of energy E_{γ} and $\varepsilon(E_{\gamma})$ is the absolute detection efficiency for that γ .

To enable this minimization routine, modifications were made to the version of FIER that was published in Ref. [176]. These modifications are as follows:

- The ability to track γ -ray emissions during and in between irradiation cycles was added. This is important because counting occurs in between irradiation cycles in FLUFFY experiments.
- A module was developed to implement temporal constraints on the FIER output that match the temporal constraints of the experimental data.
- A minimization program was written that calls the aforementioned module to determine optimal fission yields. This program reads in the provided experimental data for a given mass chain, sets a user-specified list of nuclear data properties (such as fission yields and decay γ intensities) as free parameters, and truncates decay chains at user-specified points where necessary.

Figure 5.14: The decay network of fission products connected to the A = 89 mass chain. The fission yields for the nuclei to the immediate left of the dashed line were set as cumulative in the benchmarking example presented in Sec. 5.3.4.3. The purple arrows represent $\beta^- n$ decay and the branching ratio of that decay mode is written below each arrow. Each nucleus is labelled with its independent fission yield in units of percent from the ²³⁸U fast fission ENDF/B-VIII.0 evaluation. Beneath that yield is a percentage, which represents that total independent yield remaining in the mass chain up to that nucleus.

• The internal operations of the FIER code needed significant optimization to make the minimizer run in a tractable amount of time. FIER now runs approximately $50-80 \times$ faster than the version in Ref. [176].

5.3.4.2 Benefits of the Method

This method of fission yield determination is computationally expensive; however, it has a number of novel and specific benefits that can advance the state of experimental fission yield nuclear data:

Complete Decay Corrections - Because FIER does an analytical treatment of the Bateman equations for complete decay chains, decay corrections to the fission yields are determined automatically via the minimization process.

Experimental Fission Yield Covariances - Covariances between fission yields in a given measurement are rarely, if ever, reported (see Sec. 3.2.2.2). Generally, fission yields are calculated from the measured fission product γ -ray spectrum independently and thus covari-

ances are not determined. Because this minimization technique determines the fission yields together and in a correlated fashion, covariances can be assessed either by deterministic error estimation or by Monte-Carlo covariance estimation.

Corrections to Discrepant Nuclear Decay Data - The minimizer used in FIER allows for any input nuclear data property to be set as a free parameter. This means that not only fission yields can be determined, but so can half-lives, decay γ intensities, and branching ratios. This is particularly useful in the case of decay γ intensities as these are subject to Beta Pandemonium errors (see Secs. 3.2.2.1 and 3.2.2.2).

5.3.4.3 Benchmarking

To test the validity of this method, a benchmarking test was developed to test the ability of the minimizer to produce expected values. FIER was run to produce expected γ -ray emission data for the 1031.92-keV γ from ⁸⁹Rb, the 3532.88-keV γ from ⁸⁹Kr, and the 3231.3-keV γ from ⁹⁰Br. These three nuclei are connected to the A = 89 mass chain, which is shown in Fig. 5.14. In the FIER calculation, the decay chains were truncated for ⁸⁹Kr and ⁹⁰Br in order to effectively make their yields cumulative. The default values in the FIER input libraries were used to generate these data and those values are summarized in Table 5.3.

This FIER-produced output was used as a test dataset and was input to the minimizer. The minimizer was run with the nuclear data properties in Table 5.3 set as free parameters. The optimal values that the minimizer determined for these free parameters are also shown in Table 5.3. The minimizer successfully reproduced the default value of all seven free parameters to within their evaluated uncertainties. Further still, the minimizer was able to reproduce the γ -ray emissions test data set accurately, as shown in Appendix Figs. A.1, A.2, and A.3.

Free Parameter	Default Value	Minimizer Result
⁹⁰ Br FY	1.34%	1.34%
90 Br $t_{1/2}$	1.92 s	1.92 s
$^{89}\mathrm{Br}~\mathrm{FY}$	1.62%	1.60%
89 Br $t_{1/2}$	4.40 s	4.36 s
89 Kr FY	0.646%	0.650%
89 Kr $t_{1/2}$	189 s	186 s
89 Rb FY	0.0886%	0.0852%

Table 5.3: Free parameters used in the minimizer benchmarking test and their default and fitted values.

5.3.4.4 Uncertainty Estimation

As will be discussed in Sec. 5.3.6, Monte-Carlo uncertainty and covariance estimation is not yet possible with this method. Additional computational optimizations and software will need to be made to enable this. Instead, the uncertainties on the results presented in Sec. 5.3.5 are estimated with the generalized uncertainty propagation formula given in Eq. 5.14:

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_0}\right)^2 \sigma_{x_0}^2 + \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \dots$$
(5.14)

where f is the objective function that has variables $\{x_0, x_1, x_2, ...\}$ with uncertainties $\{\sigma_{x_0}, \sigma_{x_1}, \sigma_{x_2}, ...\}$.

The objective function in Eq. 5.14 is the solutions to the Bateman equations (given in Eqs. 3 and 4 of Ref. [176]) solved for the nuclear data parameter in question. The variables of the objective function are the nuclear data properties of the mass chain and the number of γ emissions. The partial differentials in Eq. 5.14 were solved numerically using a difference quotient.

5.3.5 Results and Discussion by Mass Number

The following are initial results from the analysis of the July 2020 238 U(n,f) fission yield measurement experiment with FLUFFY. These results are presented to demonstrate the type of fission yield measurements that can be performed with FLUFFY and to demonstrate the potential of the analysis method discussed above in Sec. 5.3.4.

The analysis focused on high-energy γ signatures when available. There were two primary reasons for this focus: there is a lower density of γ rays at high energies in fission product γ -ray spectra and high-energy γ rays are more penetrating and thus are of particular interest to nuclear forensics and safeguards applications.

A discussion of the results from each mass chain is offered. The results are compared to the ENDF/B-VIII.0 and JEFF-3.3 fission yield evaluations and previous measurements where available. For the comparison to experimental data, EXFOR-compiled measurements were used. Only fission yield measurements with incident neutron energies of "fast" (~ 0.5 MeV) or above were used in the comparison. This is because the mean of the incident neutron energy spectrum measured in this experiment is 4.1 MeV, which is between the fast and 14-MeV energies of the two evaluations. It is known that fission yields change considerably between thermal and fast energies and therefore a comparison to thermal energies would not be appropriate. The comparison of the fission yields measured in this experiment with other

measurements is not necessarily one-to-one because no other measurement that is discussed features an incident neutron energy spectrum similar to this experiment.

5.3.5.1 A = 86

Results:

The A = 86 mass chain was analyzed using the FIER minimization method. The decay network for the fission products connected to the A = 86 mass chain is shown in Fig. 5.15. Three photopeaks from products attached to this mass chain were identified and fit to extract their net areas: the 1564.60-keV photopeak from ⁸⁶Br, the 2660.0-keV photopeak from ⁸⁶Se, and the 4180.54-keV photopeak from ⁸⁷Br. Because of the half-lives of these three nuclei, the fission product γ -ray spectrum from the 5 s–125 s irradiation scheme was used for this analysis. Because the half-life of ⁸⁶Se is much shorter than the 125 s decay interval of the irradiation scheme, the ⁸⁶Se photopeak was fit as a function of time since capsule arrival; t_0 from Eq. 5.12 was set to 0 s and t_1 was variable. The half-lives of ⁸⁶Br and ⁸⁷Br are on the same order of the 125 s decay interval of the irradiation scheme, thus their photopeaks were fit as a function of cycle number with t_0 and t_1 constant at 0 s and 125 s, respectively. Appendix Figs. A.4, A.5, and A.6 show examples of these photopeak fits.

The 2660.0-keV photopeak from ⁸⁶Se was found to have significant contamination from an unknown γ ray. This was discovered because the half-life curve of the 2660.0-keV photopeak deviated significantly from the 14.3 s half-life of ⁸⁶Se. To separate the contribution for ⁸⁶Se from the unknown contaminant, the data were fit to the form given in Eq. 5.15, which is the sum of two decay curves (one for ⁸⁶Se and one for the contaminant):

$$N_{\gamma}(t) = A(1 - e^{-\lambda_{86Se}t}) + B(1 - e^{-\lambda_{cont}t})$$
(5.15)

where A and B are the relative intensities of the decay curves, λ_{86Se} is the decay constant of ⁸⁶Se, and λ_{cont} is the decay constant on the contaminant. A, B, and λ_{cont} are free parameters, while λ_{86Se} is fixed at 14.3 s. The results of this fitting process are shown in Appendix Fig. A.7.

The photopeak data were input to the minimizer. Because the preceding nuclei are shortlived and did not have γ -ray emissions observable in the fission product γ -ray spectrum, the decay network in Fig. 5.15 was truncated at ⁸⁶Se and ⁸⁷Br. This effectively makes the fission yields determined for ⁸⁶Se and ⁸⁷Br cumulative. The nuclear data properties and free parameters related to this analysis are given in Table 5.4. Appendix Figs. A.8, A.9, and A.10 show fits of the experimentally measured γ -ray emission data to FIER.

Figure 5.15: The decay network of fission products connected to the A = 86 mass chain. Nuclei to the right of the dashed line did not have detectable γ -ray signatures. The purple arrows represent $\beta^{-}n$ decay and the branching ratio of that decay mode is written below each arrow. Each nucleus is labeled with its independent fission yield in units of percent from the ²³⁸U fast fission ENDF/B-VIII.0 evaluation. Beneath that yield is a percentage, which represents the total independent yield remaining in the mass chain up to that nucleus.

Discussion:

Table 5.5 compares the fission yields measured for the A = 86 mass chain to the ENDF/B-VIII.0 and JEFF-3.3 evaluations and Table 5.6 compares them to EXFOR-compiled measurements. The measured fission yields for the A = 86 mass chain have generally good agreement with both evaluation and measurements.

The quoted 69% relative uncertainty in the measured independent fission yield for ⁸⁶Br is relatively large as it inherits the uncertainty from the cumulative yield of its parent ⁸⁶Se. This large uncertainty results in 1σ agreement with all evaluated yields except for the JEFF-3.3 fast evaluation. The 0.45(31)% measured yield is in best agreement with the JEFF-3.3 14-MeV evaluation value of 0.31(11)%. No EXFOR-compiled measurements of this yield were found, likely owing to the low independent yield and short half-life of this nucleus. It should be noted that the ENDF/B-VIII.0 evaluation lists an isomer for ⁸⁶Br and splits the total yield to ⁸⁶Br evenly. However, neither ENSDF nor the JEFF-3.3 show an extant isomeric state for ⁸⁶Br. Indeed, the experimental data in this study did not yield evidence of an isomeric state for ⁸⁶Br either. Therefore, it is concluded that no such state exists.

Table 5.4: Free parameters and nuclear data properties used in the analysis of the A = 86 mass chain. Fission yield free parameters that are marked with an asterisk are cumulative rather than independent. Default values are taken from ENDF/B-VIII.0 File-8 and the ENDF/B-VIII.0 ²³⁸U fast fission yield evaluation.

Property	Default Value	Minimizer Result
Free Parameters:		
⁸⁶ Br FY	$0.18 \pm 0.08\%$	$0.45 \pm 0.31\%$
86 Se FY*	$1.07 \pm 0.24\%$	$1.05 \pm 0.17\%$
87 Br FY*	$1.54 \pm 0.09\%$	$1.83 \pm 0.29\%$
⁸⁶ Se $I_{\gamma}(2660.0 \text{ keV})$	$22.6\pm2.3\%$	$24.9 \pm 4.0\%$
Fixed Values:		
${}^{86}\text{Br} t_{1/2}$	$55.1\pm0.4~\mathrm{s}$	
86 Se $t_{1/2}$	$14.3\pm0.3~\mathrm{s}$	
${}^{87}\mathrm{Br}\ t_{1/2}$	$55.65\pm0.13~\mathrm{s}$	
⁸⁶ Br $I_{\gamma}(1564.60 \text{ keV})$	$62 \pm 5\%$	
${}^{87}\mathrm{Br}\ I_{\gamma}(4180.54\ \mathrm{keV})$	$4.0\pm0.3\%$	
$^{87}\mathrm{Br}\ \beta^{-}n\ \mathrm{BR}$	$2.60 \pm 0.04\%$	

The 1.05(17)% measured cumulative yield for ⁸⁶Se is in excellent agreement with both the ENDF/B-VIII.0 and JEFF-3.3 evaluations; there is 1σ agreement between the measured yield and all four evaluated yields. The measured yield falls between the yields listed at fast and 14 MeV for both evaluations, suggesting a gradual energy dependence for this yield as a function of compound nucleus energy (though the ENDF/B-VIII.0 and JEFF-3.3 evaluations disagree on the direction of this trend). However, this measurement disagrees with the only other EXFOR-compiled measurement of this yield, which reported a value of 0.56(8)%, by nearly a factor of two.

Finally, the 1.83(29)% measured cumulative yield for ⁸⁷Br is in good agreement with both the ENDF/B-VIII.0 and JEFF-3.3 evaluations. In particular, there is excellent agreement between the JEFF-3.3 14-MeV evaluation value of 1.78(8)%. The comparison to the EXFORcompiled measurements is also good with the measured yield falling within the range of the measurements: 0.7% to 1.94%. The measurement by Roshchenko et al. [193] reported a yield of 1.77(13)%, which has excellent agreement with this study. This is perhaps explained due to the similarity in the mean incident neutron energies of the two measurements: 4.1MeV and 4.20 MeV.

In addition to the fission yields that were determined in this mass chain, the decay γ intensity of the 2660.0-keV γ from ⁸⁶Se was determined. While the measured value is within 1σ

Table 5.5: Comparison of the fission yields measured for the A = 86 mass chain in this work and the ENDF/B-VIII.0 [28] and JEFF-3.3 [29] evaluations. All values in this table are in units of %. Note: the yields for ⁸⁶Br are taken as the sum of the yield to the ground state and isomeric state in the ENDF/B-VIII.0 evaluation.

 Druger getter	This West	ENDF	ENDF	JEFF	JEFF
Property	I IIIS WORK	Fast	$14 { m MeV}$	Fast	$14 { m MeV}$
⁸⁶ Br IFY	0.45(31)	0.18(8)	4.8(22)	0.187(61)	0.31(11)
86 Se CFY	1.05(17)	1.07(25)	1.02(46)	0.927(56)	1.46(15)
$^{87}\mathrm{Br}~\mathrm{CFY}$	1.83(29)	1.54(9)	1.55(9)	1.57(7)	1.78(8)

Table 5.6: Comparison of the fission yields measured for the A = 86 mass chain in this work and EXFOR-compiled measurements by Pierson et al. [105], Roshchenko et al. [193], Gudkov et al. [194], and Filatenkov et al. [195]. The errorbars on the average incident neutron energy represent the full width at half maximum of the neutron energy spectrum where given. All property values are in units of %.

Study	This Work	Pierson	Roshchenko	Gudkov	Filatenkov
Neutron Source	Deuteron Breakup	DT Fusion	$^{3}\mathrm{H}(\mathrm{p,n})$	DT Fusion	Unknown
$\bar{E}_n (MeV)$ Property	$4.1 \ ^{+2.9}_{-2.2}$	$14.7 \stackrel{+0.2}{_{-0.2}}$	$4.20 \ ^{+0.17}_{-0.17}$	14.7	3.0
⁸⁶ Br IFY	0.45(31)	_	_	_	_
86 Se CFY	1.05(17)	0.56(8)	_	_	_
⁸⁷ Br CFY	1.83(29)	1.17(9)	1.77(13)	1.94(31)	0.7(3)

of the evaluated value, the change is a 10% increase. This example is illustrative of how the FIER minimization method presented in Sec. 5.3.4 is useful in correcting discrepant nuclear decay data. In a standard analysis of fission yields, γ emission data are used to determine the yield of a fission product independently of other γ emission data. However, using this new method, the information on the γ emission from ⁸⁶Br was used to constrain the total fission yield that is passed from ⁸⁶Se to ⁸⁶Br. Analyzing the fission product γ emission data using this correlated method offers sensitivity to nuclear data decay.

5.3.5.2 A = 98

Results:

The decay network for the fission products connected to the A = 98 mass chain is shown in Fig. 5.16. Three photopeaks from products associated with this mass chain were identified: the 1024.4-keV photopeak from ⁹⁸Nb, the 1222.9-keV photopeak from ⁹⁸Y, and the 724.4-keV photopeak from ⁹⁹Y. Because of the short half-lives of these three nuclei, the fission product γ -ray spectrum from the 1 s–25 s irradiation scheme was used for this analysis. Because the half-lives of all three nuclei are much shorter than the 25 s decay interval of the irradiation scheme, their photopeaks were fit as a function of time since capsule arrival; t_0 from Eq. 5.12 was set to 0 s and t_1 was variable. Appendix Figs. A.11, A.12, and A.13 show examples of these photopeak fits.

Figure 5.16: The decay network of fission products connected to the A = 98 mass chain. Nuclei to the right of the dashed line did not have sufficiently detectable γ -ray signatures. The purple arrows represent $\beta^- n$ decay and the branching ratio of that decay mode is written below each arrow. Each nucleus is labeled with its independent fission yield in units of percent from the ²³⁸U fast fission ENDF/B-VIII.0 evaluation. Beneath that yield is a percentage, which represents that total independent yield remaining in the mass chain up to that nucleus.

The 1024.4-keV photopeak from ⁹⁸Nb was very weak; its location in the fission product γ -ray spectrum is very crowded with photopeaks from other fission products. An attempt to fit the photopeak was made, as is shown in Appendix Fig. A.11. Because the photopeak is one of the weakest in the energy region, it could not be fit with reasonable accuracy/uncer-

tainty; large fluctuations in the photopeak area as a function of t_1 occurred. This indicates there was poor sensitivity to the photopeak shape because it sits on the shoulder of a larger photopeak. Thus it is not included in the analysis of the A = 98 mass chain.

The 724.4-keV photopeak from ⁹⁹Y (shown in Appendix Fig. A.13) was found to have significant contamination from another photopeak. This was discovered because the half-life curve of the 724.4-keV photopeak deviated significantly from the 1.47 s half-life of ⁹⁹Y. It is suspected that this contaminant is the 724.33-keV γ ray from ¹⁴⁵Ce, which is another fission product with a significant cumulative yield. This contamination issue is similar to that which was discovered for the 2660.0-keV γ from ⁸⁶Se in Sec. 5.3.5.1. To separate the contribution for ⁹⁹Y from the contaminant, the data were fit to the form given in Eq. 5.15. The results of this fitting process are shown in Appendix Fig. A.14.

Zirconium-98 does not emit a strong γ -ray signature and a γ -ray signature from ⁹⁸Nb could not be reasonably ascertained. Because of this, there is no information on the nuclei that follow ⁹⁸Y in the A = 98 mass chain, and thus the information from the γ -ray signature from ⁹⁹Y is not needed. Because the only useable γ -ray signature is from ⁹⁸Y, the FIER minimization method is not needed to determine the fission yield to ⁹⁸Y. Instead, the fission yield was determined by fitting the 1222.9-keV γ -ray emission day to the form in Eq. 5.16:

$$N_{\gamma} = \frac{I_{\gamma}A_0}{\lambda} (1 - e^{-\lambda t_1}) \tag{5.16}$$

where I_{γ} is the decay γ intensity for the γ -ray signature, λ is the decay constant of the γ emitter, t_1 is the time since capsule arrival, and A_0 is the initial activity of the γ emitter and is given by Eq. 5.17:

$$A_0 = N_c R_f Y (1 - e^{-\lambda t_{irrad}}) e^{-\lambda \bar{t}_{trans}}$$

$$(5.17)$$

where N_c is the number of irradiation cycles conducted, R_f is the fission rate in the target, Y is the fission yield to the γ emitter, t_{irrad} is the irradiation time, and \bar{t}_{trans} is the average transport time of the capsule between the neutron source and detector array.

The fitting process determined a fission yield for 98 Y of 5.13 \pm 0.39%. The half-life in Eq. 5.16 was set as a free parameter because the apparent half-life of 98 Y is a combination of its own half-life and the half-life of its parent 98 Sr which has a half-life of 0.653 s. The fitted half-life was determined to be 1.028 \pm 0.071 s, which is comparable to the combined half-life of the 98 Y/ 98 Sr system. The fit that was obtained is shown in Appendix Fig. A.15.

The fission yield determined for 98 Y is ascribed entirely to the ground state. This is because the apparent half-life from the γ -ray emission is significantly shorter than the 2.32 s half-life of 98m Y. Furthermore, no γ -ray signatures that are unique to 98m Y (namely the 1801.6-keV γ) were detected elsewhere in the spectrum. Finally, in an attempt to verify the

absence of a contribution from 98m Y, the 1222.9-keV emissions were fit to the form given in Eq. 5.18:

$$N_{\gamma}^{tot} = N_{\gamma}^g + N_{\gamma}^m \tag{5.18}$$

where N_{γ}^{g} is the γ emissions calculated using Eq. 5.16 with the I_{γ} and λ relevant to the ground state of ⁹⁸Y and N_{γ}^{m} is the γ emissions calculated with the I_{γ} and λ relevant to the metastable state. This fit produced a yield for ^{98m}Y that was zero.

Discussion:

Table 5.7 compares the fission yield measured for 98 Y to the ENDF/B-VIII.0 and JEFF-3.3 evaluations. There are no measurements of this fission yield compiled in EXFOR for 238 U(n,f). EXFOR-compiled measurements for this yield exist for 235 U(n,f) and 239 Pu(n,f). However, only one of these measurements obtained the 98m Y yield [196] and none measured both the 98g Y and 98m Y yields together.

The measurement of this fission yield offers a particularly interesting result: there was no detectable yield to the isomeric state of ⁹⁸Y. While the 5.13(39)% measured yield to ⁹⁸gY agrees within 1σ of the sum of ⁹⁸gY and ^{98m}Y yields in the ENDF/B-VIII.0 and JEFF-3.3 fast evaluations, the isomer-to-ground state ratios disagree. The fitted half-life for the ingrowth of this γ ray (shown in Appendix Fig. A.15) matches exceptionally well with the joint half-life of the ⁹⁸Y/⁹⁸Sr system. This also allows significant contamination from the 1222.9-keV γ from ^{96m}Y to be ruled out.

This result is not surprising; without a measurement to guide the evaluation, there will be great uncertainty in the isomer-to-ground state ratio. A possible explanation for the lack of direct population of 98m Y from fission could be the strong deformation of this isomer [197]. While deformation in fission fragments/products is common, the population of 98g Y may be favored due to its enhanced stability having Z = 39 near Z = 40. Z = 40 is described as "semi-magic" in the region of N = 50-64 due to a large shell gap between the $1p_{1/2}$ and $0g_{9/2}$ states [198]. Thus, the enhanced stability of the ground state may be favored in fission, similar to the enhanced population of fission products near the doubly-magic A = 132.

5.3.5.3 A = 136

Results:

The A = 136 mass chain was analyzed using the FIER minimization method. The decay network for the fission products connected to the A = 136 mass chain is shown in Fig. 5.17. Three photopeaks from products attached to this mass chain were identified and successfully fit to extract their net areas: the 2077.9-keV photopeak from ¹³⁶Te, the 1321.08-keV

Table 5.7: Comparison of the fission yields measured for the A = 98 mass chain in this work and the ENDF/B-VIII.0 [28] and JEFF-3.3 [29] evaluations. All values in this table are in units of %. The yield listed for ⁹⁸Y is the sum of the ^{98g}Y and ^{98m}Y yields in each evaluation.

Property	This Work	ENDF Fast	ENDF 14 MeV	JEFF Fast	JEFF 14 MeV
⁹⁸ gY IFY ⁹⁸ Y IFY	$5.13(39) \\ 5.13(39)$	$\begin{array}{c} 3.85(62) \\ 5.37(71) \end{array}$	$2.78(45) \\ 4.38(58)$	$2.62(32) \\ 5.24(43)$	$\frac{1.60(48)}{4.09(85)}$

photopeak from ^{136g}I, and the 1313.02-keV photopeak from ^{136g}I and ^{136m}I. Given the halflives of these three nuclei, the fission product γ -ray spectrum from the 5 s–125 s irradiation scheme was used for this analysis. Because the half-life of ¹³⁶Te is much shorter than the 125 s decay interval of the irradiation scheme, the ¹³⁶Te photopeak was fit as a function of time since capsule arrival; t_0 from Eq. 5.12 was set to 0 s and t_1 was variable. Though not as short as the half-life of ¹³⁶Te, the half-lives of ¹³⁶gI and ^{136m}I are still shorter than the 125 s decay interval of the irradiation scheme. In order to separate the time signature of their 1313.02-keV photopeak, they too were fit as a function of time since capsule arrival. Appendix Figs. A.16 and A.17 show examples of these photopeak fits.

Figure 5.17: The decay network of fission products connected to the A = 136 mass chain. Nuclei to the right of the dashed line did not have sufficiently detectable γ -ray signatures. The purple arrows represent $\beta^- n$ decay and the branching ratio of that decay mode is written below each arrow. Each nucleus is labeled with its independent fission yield in units of percent from the ²³⁸U fast fission ENDF/B-VIII.0 evaluation. Beneath that yield is a percentage, which represents that total independent yield remaining in the mass chain up to that nucleus.

The photopeak data were input to the minimizer. Because the preceding nuclei are short-

lived and did not have γ -ray emissions observable in the fission product γ -ray spectrum, the decay network in Fig. 5.17 was truncated at ¹³⁶Te. This effectively makes the fission yield determined for ¹³⁶Te cumulative. Similarly, because a γ -ray signature for ¹³⁷Te was not detected, the 2.99% β^- n branching ratio of ¹³⁷Te to ¹³⁶I was set to zero. As this branching ratio is small, the resulting bias is also small. The nuclear data properties and free parameters related to this analysis are given in Table 5.8. Appendix Figs. A.18, A.19, and A.20 show fits of the experimentally measured γ -ray emission data to FIER.

Table 5.8: Free parameters and nuclear data properties used in the analysis of the A = 136 mass chain. Fission yield free parameters that are marked with an asterisk are cumulative rather than independent. Default values are taken from ENDF/B-VIII.0 File-8 and the ENDF/B-VIII.0 ²³⁸U fast fission yield evaluation. Values with a \dagger are set differently than their evaluation.

Property	Default Value	Minimizer Result
Free Parameters:		
136m I FY	$1.34 \pm 0.43\%$	$0.59 \pm 0.18\%$
136g I FY	$1.33 \pm 0.43\%$	$0.78\pm0.34\%$
136 Te FY*	$3.70 \pm 0.85\%$	$0.67\pm0.20\%$
Fixed Values:		
136 Te $t_{1/2}$	$17.63 \pm 0.08 \text{ s}$	
136g I $t_{1/2}$	$83.4 \pm 1.0 \ \mathrm{s}$	
136m I $t_{1/2}$	$46.9\pm1.0~\mathrm{s}$	
¹³⁶ Te $I_{\gamma}(2077.9 \text{ keV})$	22.1%	
¹³⁶ $_{g}$ I I_{γ} (1321.08 keV)	$24.8\pm1.8\%$	
¹³⁶ $_{g}$ I $I_{\gamma}(1313.02 \text{ keV})$	66.7%	
^{136m} I $I_{\gamma}(1313.02 \text{ keV})$	100%	
137 Te $\beta^- n$ BR	$0\%^\dagger$	

Discussion:

The A = 136 mass chain offers a particularly compelling measurement of the isomer-toground fission yield ratio for ¹³⁶I. This is because ^{136g}I emits two γ rays that are very close in energy: 1313.02 keV and 1321.08 keV. Because they are so close in energy, concerns about detection efficiency bias are alleviated. Iodine-136m also emits the 1313.02-keV γ but does not emit the 1321.08-keV γ . This makes it possible to use 1321.08-keV γ to subtract the contribution of the ground state to the 1313.02-keV photopeak. The measured isomer-to-ground fission yield ratio is 0.76 \pm 0.40. This ratio falls between the values of the ENDF/B-VIII.0 evaluation (0.5 for both fast and 14 MeV) and the JEFF-3.3 evaluation (2.73 for fast and

4.5 for 14 MeV).

Table 5.9 compares the fission yields measured for the A = 136 mass chain to the ENDF/B-VIII.0 and JEFF-3.3 evaluations and Table 5.10 compares them to EXFOR-compiled measurements. The 0.78(34)% measured independent fission yield to ^{136g}I is lower than the fast and 14-MeV ENDF/B-VIII.0 evaluations by more than a factor of two. However, it has excellent agreement with both the fast and 14-MeV JEFF-3.3 evaluations. There is significant scatter between the measurements of the ^{136g}I yield, spanning the range from 0.10% to as high as 2.5%.

The 0.59(18)% measured independent fission yield of 136m I is lower than both the ENDF/B-VIII.0 and JEFF-3.3 evaluations. The measurement is in better agreement with the ENDF/B-VIII.0 evaluation with 1.2-1.4 σ differences. As was the case with the 136g I yield, the measurement falls within the wide range of yields reported in other measurements which span 0.141% to 1.90%.

Finally, the 0.67(20)% measured cumulative yield for ¹³⁶Te is in disagreement with both measurements and evaluations by a factor of about two. A specific explanation for this discrepancy is not immediately apparent, however, it should again be noted that the incident neutron energy spectrum is not identical to the evaluations or other measurements.

Table 5.9: Comparison of the fission yields measured for the A = 136 mass chain in this work and the ENDF/B-VIII.0 [28] and JEFF-3.3 [29] evaluations. All values in this table are in units of %.

Decementary		ENDF	ENDF	JEFF	JEFF
Property	1 ms work	Fast	$14 { m MeV}$	Fast	$14 { m MeV}$
136g I IFY	0.78(34)	1.33(43)	1.58(51)	0.70(14)	0.630(90)
136m I IFY	0.59(18)	1.34(43)	1.58(51)	1.91(39)	2.84(41)
136 Te CFY	0.67(20)	3.70(85)	1.39(45)	4.13(46)	1.83(32)

5.3.6 Future Work

The results present both new measurements of short-lived fission yields and a demonstration of how FIER can be employed in the analysis of fission yield measurements. Below is a list of possible future work that could improve and/or expand the present results:

Detector Efficiency Calibrations - The detector efficiency calibrations presented in Sec. 5.3.2 need to be improved. The energy-dependent efficiency model given by Eq. 5.3 only

Table 5.10: Comparison of the fission yields measured for the A = 136 mass chain in this work and EXFOR-compiled measurements by Pierson et al. [105], Wilson et al. [165], Campbell et al. [199], and Lhersonneau et al. [200]. The errorbars on the average incident neutron energy represent the full width at half maximum of the neutron energy spectrum where given. All values in this table are in units of %.

Study	This Work	Pierson	Wilson	Campbell	Lhersonneau
Neutron Source	Deuteron	DT Eucien	p(7I;n)	Reactor	Deuteron
Neutron Source	Breakup	DI Fusion	p('LI,II)	Core Port	Breakup
$\bar{E}_n (MeV)$ Property	$4.1 \stackrel{+2.9}{_{-2.2}}$	$14.7 \stackrel{+0.2}{_{-0.2}}$	$1.72 \ ^{+0.5}_{-0.5}$	"Fast"	$20 {}^{+9}_{-12}$
136gI IFY	0.78(34)	0.28(15)	_	0.10(17)	25(6)
136m I IFY	0.59(18)	1.90(16)	_	0.141(13)	2.3(0)
136 Te CFY	0.67(20)	1.29(15)	3.91(9)	2.56(19)	2.0(6)

features three model parameters and is thus too rigid to fully describe the energy-dependent efficiency of the detection system. While the centroid fit of the efficiency curve is reasonable, the Monte-Carlo estimated covariance matrix for the model parameters results in calculated uncertainties for the efficiency curve that are larger than the uncertainties in the measured efficiency data. This is particularly true at high energies. Using a more descriptive model for the efficiency calibration should resolve this problem. Additional work should be performed to assess the ability of the efficiency curve to be extrapolated beyond the energy domain of the measured efficiency data. While extrapolation should always be avoided when possible, the ability to extrapolate would allow the use of photopeaks from very high-energy γ rays in limited circumstances.

Neutron Energy Spectrum Characterization - Additional work on the characterization of the incident neutron energy spectrum would enable FLUFFY and its neutron source to be used for fission yield measurements on fissile targets. The spectrum presented in Sec. 5.3.3 serves as a reasonable initial result. However, a more thorough characterization of the spectrum at thermal and epithermal energies will be necessary to accurately interpret data collected on fissile actinide targets.

A forward model fit is being developed that propagates a trial neutron flux through a modeled detector response function in a χ^2 minimization. This would provide an improved statistical estimate of the neutron flux at the target location.

As mentioned in the analysis of the nTOF measurement presented in Sec. 5.3.3, the nTOF measurement does not give information about the spectrum below 1.75 MeV. In order to

estimate the shape of the incident neutron energy spectrum below the limits of the nTOF measurement, a model of deuteron breakup is being developed by Dr. Jonathan Morrell of Los Alamos National Laboratory (formerly of the University of California, Berkeley). The parameters of this model will be fit to the nTOF spectrum above 1.75 MeV and the model will then be used to estimate the neutron energy spectrum below 1.75 MeV by extrapolation. Having a careful characterization of the low-energy portion of the neutron energy spectrum is critical to enable future measurements on fissile targets. However, it should be noted that it has little to no effect on the presented ²³⁸U(n,f) measurement as less than $2 \times 10^{-5}\%$ of the spectrum-averaged fission cross section is due to neutrons below 0.1 MeV.

Further study of the spectral adjustment performed by STAYSL is required. In particular, STAYSL is very sensitive to the initial guess of the neutron energy spectrum that it is provided, especially in the epithermal region where there are few suitable monitor reactions to provide sensitivity. This can be seen in Fig. 5.11 where the initial guess of the neutron energy spectrum in the epithermal region remains relatively unchanged by STAYSL. This is because STAYSL uses a least-squares minimization approach that is prone to settling on local minima in the χ^2 space. Improving the initial guess (such as in the plans described above) will improve the results produced by STAYSL. Other methods of spectral adjustment that may be less prone to settling on local minima or do not require an initial guess should be investigated. One such method may be maximum likelihood and maximum entropy methods [201, 202, 203]. Finally, reducing the number of energy bins in the epithermal region may enhance the sensitivity of STAYSL to those bins and allow for more realistic results in that energy region. Fortunately, because ²³⁸U(n,f) cross section thresholds at approximately 1 MeV the presented results are not affected.

Data Analysis Using FIER - The method of determining fission yields using χ^2 minimization against FIER presented in Sec. 5.3.4 is a novel advancement in fission yield measurements. The benchmarking example presented in Sec. 5.3.4.3 and the examples of its use in the analysis of the A = 86 and A = 136 mass chains demonstrate the efficacy of this method.

Further benchmarking of the method should be conducted. Investigation of the sensitivity of the method to settle on local minima in the χ^2 minimization should be performed. Finally, further optimization of the FIER code is required to enable fully Monte Carlo estimation of uncertainties and covariances.

Finally, in addition to the above-listed improvements in the analysis of the experimental data, expansion of the results to more mass chains would be valuable to the nuclear data community. Quantification of the maximum sensitivity and minimum observable fission yield of the FLUFFY pneumatic system would help establish its value for fission yield measurements.

5.4 Conclusions

Short-lived fission product yields have been measured for neutron-induced fission of ²³⁸U. At present, eight fission yields, two isomer-to-ground state ratios, and one decay γ intensity have been measured in the A = 86, 98, and 136 mass chains. Of these eight reported fission yields, three have not been previously measured. In particular, this work offers a measurement of the ⁹⁸Y fission yield and its isomer-to-ground state ratio, for which there exist no EXFOR-compiled measurements. The fission yields of ^{98g}Y and ^{98m}Y have been identified as contributors to the reactor antineutrino anomaly [204] and this new information may contribute to a better understanding of that problem.

The presented results were compared to the ENDF/B-VIII.0 and JEFF-3.3 evaluations and EXFOR-compiled measurements where available. The analysis of these data showcases a new method of fission yield determination. The FIER code is used as a model of timedependent fission product γ -ray emission and a χ^2 minimization is performed to determine fission yield and nuclear decay data values simultaneously. This novel method automatically implements complete decay corrections, allows the investigation and correction of discrepant decay data (namely decay γ intensities), and has the potential to provide fission yield covariance information.

An important value of this work is that a detailed characterization of the incident neutron energy spectrum is provided. As was mentioned in Sec. 3.2.2 of the fission yields template, a majority of legacy fission yield measurements have not reported detailed information on the incident neutron energy spectrum. This has resulted in limiting the energy dependence of past fission yield evaluations to three loosely defined energy groupings. For future fission yield evaluations to properly assess energy dependence, scientists must provide detailed information on the incident neutron energy spectra used in measurements. This work provides that information.

This experiment provides an energy-integral measurement of fission yields. Other efforts are being made to measure energy-differential fission yields using quasi-monoenergetic neutron sources [106]. The results of those measurements can be compared with the energy-integral measurements reported in this work as a validation step in fission yield evaluation.

While this measurement does not provide energy-differential fission yield information, the use of a high-flux neutron source allows sufficient statistics to be generated with short burst irradiation periods (1 s and 5 s) and long counting/decay periods (25 s and 125 s). This allows high sensitivity to very short-lived fission product yields. The value of the FLUFFY pneumatic system has been validated by the ability to measure very short-lived fission yields. The yields for fission products with half-lives as low as 0.5 s were measured.

This dataset contains a rich array of information available for further analysis. Possible
CHAPTER 5. SHORT-LIVED FISSION PRODUCT YIELD MEASUREMENTS USING THE FAST LOADING USER FACILITY FOR FISSION YIELDS 128

future work to enable the use of FLUFFY and its neutron source for fissile actinide measurements and to expand the number of mass chains analyzed was discussed in Sec. 5.3.6. The results presented offer new measurements of fission product yields and validate the efficacy of a novel fission yield analysis method.

Chapter 6 Conclusions

Despite being discovered less than a century ago, the fission process is already used in a number of applications with important societal benefits. However, there remains significant uncertainty in the nuclear data related to fission. This is particularly true of the nuclear data of fission yields, as was discussed in Sec. 1.2. This work has improved the state of fission yield nuclear data through three original research projects: a template of expected measurement uncertainties in fission yields, a method for the estimation of fission yield covariances, and a measurement of short-lived fission product yields.

First, the template of expected measurement uncertainties in fission yields provides an extensive review of the current state-of-the-art in fission yield measurement. Using this review, a series of templates of expected measurement uncertainties was assembled. These templates offer an extensive listing of the sources of uncertainty that are expected to be present in commonly used techniques for fission yield measurement. Peer-reviewed literature, the EXFOR database, and expert consultation were used to compile a set of expected minimum values for these uncertainty sources.

Together, the templates and their expected values offer both experimentalists and evaluators a manual to guide their research. For experimentalists, the templates can be used in planning experiments and the subsequent analysis of the data. Experimentalists can further use the templates to configure their experiments to enable accurate estimation of all sources of uncertainty. For evaluators, the templates can be used to aid the understanding of the sources of uncertainty that are expected from different measurement types. It can also help in assessing the quality of different measurements and, as a last resort, can be used to fill in missing uncertainty information in legacy measurements. Though it should be used as a final recourse, the ability to assign reasonable values in the case of missing measurement uncertainty for legacy data is particularly important in the case of fission yields, as many legacy measurements only reported statistical uncertainties. Journal editors are being engaged to establish procedures for using the templates in their peer-review processes. As the templates come into use, they will improve the quality of both experiments and evaluations and thus will improve the state of fission yield nuclear data as a whole.

Second, a pressing fission yield nuclear data need has been met: estimated covariance information for evaluated fission yields. Neither the most recent ENDF/B-VIII.0 nor JEFF-3.3 fission yield evaluations contain covariance information. This nuclear data need has been identified as crucial for reactor decay heat and reactor antineutrino emission rate calculations. To address this need, a method for fission-model-independent estimation of fission yield covariances was developed. This method uses a Monte-Carlo resampling structure that produces fission yields varied from their evaluated values.

While other fission yield covariance estimation methods have been proposed (as discussed in Sec. 4.1), these methods are based on different models of fission and thus are only applicable where model parameters are available. Because the method presented in this dissertation does not have an underlying model of fission, it was successfully applied to all of the nuclei in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. Moreover, none of these previous publications provided open access to their covariance matrices. The presented covariance matrices have been made publicly available for use by the nuclear science community.

Finally, a new measurement of fission product yields using cyclical neutron activation analysis with the recently constructed FLUFFY was performed. Eight fission yields, including two isomer-to-ground state ratios, were reported. Three of these fission yields do not have EXFOR-compiled previous measurements.

In addition to the reported fission yields, a new method for fission yield determination was presented. This method used the FIER code as a model for fission product γ -ray emission and a χ^2 minimization is performed to determine optimal fission yields and nuclear decay data. A number of benefits are offered by this novel method: complete decay corrections, correction of discrepant decay data, and fission covariance estimation within the same experiment.

Continuous improvement of fission yield nuclear data is vital to enabling applications such as reactor design, nuclear forensics and safeguards, nuclear medicine, and stockpile stewardship. The three research projects presented in this dissertation all make contributions toward the current understanding of fission yields. Taken together, these results advance the current state of fission yield nuclear data.

Bibliography

- L. A. Bernstein et al. Nuclear Data Needs for Capabilities and Applications. Tech. rep. LLNL-CONF-676585. Berkeley, CA: Lawrence Livermore National Laboratory, 2015. DOI: 10.2172/1234359. arXiv: 1511.07772.
- C. E. Romano et al. Proceedings of the Workshop for Applied Nuclear Data: WANDA 2020. Tech. rep. ORNL/TM-2020/1617. Oakridge National Laboratory, Aug. 2020. DOI: 10.2172/1649010.
- [3] L. A. Bernstein et al. "Our Future Nuclear Data Needs". In: Annual Review of Nuclear and Particle Science 69.1 (2019), pp. 109–136. DOI: 10.1146/annurev-nucl-101918-023708.
- The TRIGRESS Array at TRIUMF. 2010. URL: http://www.sfu.ca/~caa12/ NuclearScienceSFU/tigress.html (visited on 04/03/2021).
- [5] How Complex Is the Nuclear Fission Barrier? A Challenge for Nuclear Fission Theory. 2016. URL: https://ec.europa.eu/jrc/en/science-update/how-complexnuclear-fission-barrier-challenge-nuclear-fission-theory (visited on 04/03/2021).
- [6] V. V. Zerkin. Evaluated Nuclear Data File (ENDF). 2018. URL: https://www.nndc. bnl.gov/exfor/endf00.jsp (visited on 04/03/2021).
- [7] R. Mosteller and J. M. Goda. "Analysis of Godiva-IV Delayed-Critical and Static Super-prompt-critical Conditions". In: 2009. URL: https://www.semanticscholar. org/paper/Analysis-of-Godiva-IV-delayed-critical-and-static-Mosteller-Goda/019e6c49ee78a3e3f5e93ce72ecc7b947c4a5ec6.
- J. Sanborn. Sanborn Critical Assembly Installation. 2007. URL: https://commons. wikimedia.org/wiki/File:Sanborn_Critical_Assembly_Installation.jpg (visited on 04/03/2021).
- [9] P. Romojaro et al. "Nuclear Data Sensitivity and Uncertainty Analysis of Effective Neutron Multiplication Factor in Various MYRRHA Core Configurations". In: Annals of Nuclear Energy 101 (2017), pp. 330–338. ISSN: 0306-4549. DOI: 10.1016/j. anucene.2016.11.027.

- [10] R. ul Khaliq. South Korea: Nuclear Reactor Shut After "Malfunction". 2019. URL: https://www.aa.com.tr/en/asia-pacific/south-korea-nuclear-reactorshut-after-malfunction-/1419440 (visited on 04/03/2021).
- [11] K. S. Krane and D. Halliday. *Introductory Nuclear Physics*. 3rd ed. Wiley, 1988.
- B. Pritychenko et al. "The Nuclear Science References (NSR) Database and Web Retrieval System". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 640.1 (2011), pp. 213–218. ISSN: 0168-9002. DOI: 10.1016/j.nima.2011.03.018.
- [13] V. V. Zerkin and B. Pritychenko. "The Experimental Nuclear Reaction Data (EX-FOR): Extended Computer Database and Web Retrieval System". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 888 (2018), pp. 31–43. DOI: 10.1016/j.nima. 2018.01.045.
- [14] D. F. Winchell. "New Web-Based Access to Nuclear Structure Datasets". In: AIP Conference Proceedings. Vol. 769. 1. American Institute of Physics. 2005, pp. 578– 581. DOI: 10.1063/1.1945076.
- [15] A. J. Koning and D. Rochman. "Modern Nuclear Data Evaluation with the TALYS Code System". In: *Nuclear Data Sheets* 113.12 (2012). Special Issue on Nuclear Reaction Data, pp. 2841–2934. ISSN: 0090-3752. DOI: 10.1016/j.nds.2012.11.002.
- [16] T. Kawano. Unified Coupled-Channels and Hauser-Feshbach Model Calculation for Nuclear Data Evaluation. 2019. URL: https://arxiv.org/abs/1901.05641.
- M. Herman et al. "EMPIRE: Nuclear Reaction Model Code System for Data Evaluation". In: Nuclear Data Sheets 108.12 (2007). Special Issue on Evaluations of Neutron Cross Sections, pp. 2655–2715. ISSN: 0090-3752. DOI: 10.1016/j.nds.2007.11.003.
- [18] R. Capote et al. "Inter-comparison of Hauser-Feshbach Model Codes Toward Better Actinide Evaluations". In: *EPJ Web Conf.* 146 (2017), p. 12034. DOI: 10.1051/ epjconf/201714612034.
- [19] L. P. Kabina, A. A. Rodionov, and Yu L. Khazov. "Improvement of the Algorithm for the Analysis of Level Schemes in the GTOL Code". In: Bulletin of the Russian Academy of Sciences: Physics 73.11 (2009), pp. 1469–1471. DOI: 10.3103/ S1062873809110094.
- [20] T. W. Burrows. Program RULER. Tech. rep. Brookhaven National Laboratory, 1984. URL: https://www-nds.iaea.org/public/ensdf_pgm/analysis/ruler/ruler. pdf.
- [21] T. Kibèdi, F. G. Kondev, and B. Tee. GABS v12. Tech. rep. Australian National University, 2019. URL: https://www-nds.iaea.org/public/ensdf_pgm/analysis/ gabs_test/2019_NSDD_GABS_Kibedi.pdf.

- T. Kibédi et al. "Evaluation of Theoretical Conversion Coefficients Using BrIcc". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 589.2 (2008), pp. 202–229. ISSN: 0168-9002. DOI: 10.1016/j.nima.2008.02.051.
- [23] N. B. Gove and M. J. Martin. "Log-f Tables for Beta Decay". In: Atomic Data and Nuclear Data Tables 10.3 (1971), pp. 205–219. ISSN: 0092-640X. DOI: 10.1016/S0092-640X(71)80026-8.
- [24] S. Singh et al. "Nuclear Radius Parameters (r₀) for Even-Even Nuclei from Alpha Decay". In: Nuclear Data Sheets 167 (2020), pp. 1–35. ISSN: 0090-3752. DOI: 10.1016/j.nds.2020.07.001.
- [25] V. McLane. ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6. Tech. rep. Brookhaven National Laboratory, 2001. DOI: 10.2172/ 781830.
- [26] J. K. Tuli. "Evaluated Nuclear Structure Data File". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 369.2 (1996), pp. 506–510. ISSN: 0168-9002. DOI: 10.1016/ S0168-9002(96)80040-4.
- [27] D. A. Brown et al. Specifications for the Generalised Nuclear Database Structure (GNDS)-Version 1.9. Tech. rep. NEA-7519. Nuclear Energy Agency - Organization for Economic Co-Operation and Development, 2020. URL: https://inis.iaea.org/ search/search.aspx?orig_q=RN:51092137.
- [28] D. A. Brown et al. "ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data". In: *Nuclear Data Sheets* 148 (2018). Special Issue on Nuclear Reaction Data, pp. 1–142. ISSN: 0090-3752. DOI: 10.1016/j.nds.2018.02.001.
- [29] A. J. M. Plompen et al. "The Joint Evaluated Fission and Fusion Nuclear Data Library, JEFF-3.3". In: *The European Physical Journal A* 56.7 (2020), pp. 1–108.
 DOI: 10.1140/epja/s10050-020-00141-9.
- [30] K. Shibata et al. "JENDL-4.0: A New Library for Nuclear Science and Engineering". In: Journal of Nuclear Science and Technology 48.1 (2011), pp. 1–30. DOI: 10.1080/ 18811248.2011.9711675.
- [31] Z. G. Ge et al. "The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1)". In: J. Korean Phys. Soc 59.2 (2011), pp. 1052–1056. DOI: 10.3938/ jkps.59.1052.
- [32] Z. G. Ge et al. "CENDL-3.2: The New Version of Chinese General Purpose Evaluated Nuclear Data Library". In: *EPJ Web of Conferences*. Vol. 239. EDP Sciences. 2020, p. 09001. DOI: 10.1051/epjconf/202023909001.

- [33] A. I. Blokhin et al. "New Version of Neutron Evaluated Data Library BROND-3.1". In: Yad. Reak. Konst 2.2 (2016), p. 62. URL: https://vant.ippe.ru/images/pdf/ 2016/2-5.pdf.
- [34] A. J. Koning et al. "TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology". In: *Nuclear Data Sheets* 155 (2019). Special Issue on Nuclear Reaction Data, pp. 1–55. ISSN: 0090-3752. DOI: 10.1016/j.nds.2019.01.002.
- [35] R. Capote et al. "RIPL Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations". In: Nuclear Data Sheets 110.12 (2009). Special Issue on Nuclear Reaction Data, pp. 3107–3214. ISSN: 0090-3752. DOI: 10.1016/j.nds.2009.10.004.
- [36] R. B. Firestone et al. "The Evaluated Gamma-ray Activation File (EGAF)". In: AIP Conference Proceedings. Vol. 769. 1. American Institute of Physics. 2005, pp. 219–224.
 DOI: 10.1063/1.1944994.
- [37] T. Goorley et al. "Initial MCNP6 Release Overview". In: Nuclear Technology 180.3 (2012), pp. 298–315. DOI: 10.13182/NT11-135.
- [38] S. M. Bowman. "SCALE 6: Comprehensive Nuclear Safety Analysis Code System". In: Nuclear Technology 174.2 (2011), pp. 126–148. DOI: 10.13182/NT10-163.
- [39] J. J. Duderstadt. Nuclear Reactor Analysis. Wiley, 1976.
- [40] J. B. Briggs, J. D. Bess, and J. Gulliford. "Integral Benchmark Data for Nuclear Data Testing Through the ICSBEP and IRPhEP". In: *Nuclear Data Sheets* 118 (2014), pp. 396–400. ISSN: 0090-3752. DOI: 10.1016/j.nds.2014.04.090.
- [41] O. Schwerer. EXFOR Formats Description for Users (EXFOR Basics). Tech. rep. IAEA-NDS-206. International Atomic Energy Agency, 2008. URL: https://wwwnds.iaea.org/nrdc/nrdc_doc/iaea-nds-0206-200806.pdf.
- [42] R. W. Mills. WPEC Subgroup Proposal. Tech. rep. Nuclear Energy Agency Organization for Economic Co-operation and Development, 2012. URL: https://www.oecdnea.org/science/wpec/sg37/SG37.pdf.
- [43] G. Fabricante et al. "Cumulative Fission Yield Correlations". In: US National Nuclear Data Week. 2019. URL: https://indico.bnl.gov/event/6642/contributions/ 32356/.
- [44] A. A. Sonzogni and E. A. McCutchan. "Uncertainty Quantification in the Summation Method for Nuclear Reactor Antineutrinos". In: American Physical Society April Meeting. Denver, Colorado: American Physical Society, 2019. URL: http: //meetings.aps.org/Meeting/APR19/Session/H12.5.
- [45] F. P. An et al. "Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay". In: *Physical Review Letters* (2016). ISSN: 10797114. DOI: 10.1103/ PhysRevLett.116.061801.

- [46] F. P. An et al. "Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay". In: *Physical Review Letters* (2017). ISSN: 10797114. DOI: 10.1103/PhysRevLett. 118.251801.
- [47] L. Fiorito et al. "Generation of Fission Yield Covariances to Correct Discrepancies in the Nuclear Data Libraries". In: Annals of Nuclear Energy (2016). ISSN: 18732100.
 DOI: 10.1016/j.anucene.2015.10.027.
- [48] T. San-Tsiang et al. "Ternary and Quaternary Fission of Uranium Nuclei". In: Nature 159.4049 (1947), pp. 773–774. DOI: 10.1038/159773a0.
- [49] F. Gönnenwein. "Ternary and Quaternary Fission". In: Nuclear Physics A 734 (2004), pp. 213–216. DOI: 10.1016/j.nuclphysa.2004.01.037.
- [50] S. Pomp. Fission (A Brief Introduction). 2018. URL: https://indico.cern.ch/ event/677259/contributions/2786820/attachments/1585962/2507547/n_TOF_ 2018_-_Fission_Intro.pdf.
- [51] Nucleus Drawing. URL: https://commons.wikimedia.org/wiki/File:Nucleus_ drawing.svg#metadata (visited on 06/04/2021).
- [52] F. Videbæk et al. "Elastic Scattering, Transfer Reactions, and Fission Induced by ¹⁶O ions on ¹⁸¹Ta and ²⁰⁸Pb". In: *Phys. Rev. C* 15 (3 Mar. 1977), pp. 954–971. DOI: 10.1103/PhysRevC.15.954.
- [53] B. Singh, R. Zywina, and R. B. Firestone. "Table of Superdeformed Nuclear Bands and Fission Isomers: Third Edition (October 2002)". In: *Nuclear Data Sheets* 97.2 (2002), pp. 241–592. ISSN: 0090-3752. DOI: 10.1006/ndsh.2002.0018.
- [54] I. Noddack. "Über das Element 93". In: Angew. Chem 47.37 (1934), pp. 653–656.
- [55] I. Curie and P. Savitch. "Sur les radioéléments formés dans l'uranium irradié par les neutrons". In: *Journal de Physique et le Radium* 8.10 (1937), pp. 385–387. DOI: 10.1051/jphysrad:01937008010038500.
- [56] I. Curie and P. Savitch. "Sur le radioélément de période 3, 5 heures formé dans l'uranium irradié par les neutrons". In: *CR Acad. Sci* 206 (1938), p. 906.
- [57] I. Curie and P. Savitch. "Sur les radioéléments formés dans l'uranium irradié par les neutrons. II". In: Journal de Physique et le Radium 9.9 (1938), pp. 355–359. DOI: 10.1051/jphysrad:0193800909035500.
- [58] O. Hahn and F. Strassmann. "Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle". In: Naturwissenschaften 27.1 (1939), pp. 11–15. DOI: 10.1007/BF01488241.
- [59] L. Meitner and O. R. Frisch. "Disintegration of Uranium by Neutrons: A New Type of Nuclear Reaction". In: *Nature* 143.3615 (1939), pp. 239–240. DOI: 10.1038/143239a0.
- [60] H. L. Anderson et al. "The Fission of Uranium". In: *Phys. Rev.* 55 (5 Mar. 1939), pp. 511-512. DOI: 10.1103/PhysRev.55.511.2.

- [61] H. Von Halban, F. Joliot, and L. Kowarski. "Number of Neutrons Liberated in the Nuclear Fission of Uranium". In: *Nature* 143.3625 (1939), pp. 680–680. DOI: 10.1038/ 143680a0.
- [62] L. Szilárd and A. Einstein. Einstein-Szilárd Letter. Private Communication. Franklin D. Roosevelt Presidential Library and Museum. URL: https://commons.wikimedia. org/wiki/File:Einstein-Roosevelt-letter.png.
- [63] C. Allardice and E. R. Trapnell. *The First Pile*. Vol. 292. US Atomic Energy Commission. Technical Information Division, 1949.
- [64] K. T. Bainbridge. Trinity. Tech. rep. Los Alamos Scientific Lab., NM (USA), 1976. DOI: 10.2172/5306263.
- [65] R. Michal. "Fifty Years Ago in December: Atomic Reactor EBR-I Produced First Electricity". In: Nuclear News 44.12 (2001), pp. 28-29. URL: https://www.ne.anl. gov/About/reactors/ebr1/2001-11-2.pdf.
- [66] S. Krikorian. Preliminary Nuclear Power Facts and Figures for 2019. 2020. URL: https://www.iaea.org/newscenter/news/preliminary-nuclear-power-factsand-figures-for-2019 (visited on 06/16/2021).
- [67] G. Gamow. "Mass Defect Curve and Nuclear Constitution". In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 126.803 (1930), pp. 632–644. DOI: 10.1098/rspa.1930.0032.
- [68] C. F. von Weizsäcker. "Zur theorie der kernmassen". In: Zeitschrift für Physik 96.7-8 (1935), pp. 431–458. DOI: 10.1007/BF01337700.
- [69] M. G. Mayer. "On Closed Shells in Nuclei. II". In: *Phys. Rev.* 75 (12 June 1949), pp. 1969–1970. DOI: 10.1103/PhysRev.75.1969.
- [70] M. G. Mayer. "On Closed Shells in Nuclei". In: *Phys. Rev.* 74 (3 Aug. 1948), pp. 235–239. DOI: 10.1103/PhysRev.74.235.
- [71] R. D. Woods and D. S. Saxon. "Diffuse Surface Optical Model for Nucleon-Nuclei Scattering". In: *Phys. Rev.* 95 (2 July 1954), pp. 577–578. DOI: 10.1103/PhysRev. 95.577.
- [72] J. Rainwater. "Nuclear Energy Level Argument for a Spheroidal Nuclear Model". In: *Phys. Rev.* 79 (3 Aug. 1950), pp. 432–434. DOI: 10.1103/PhysRev.79.432.
- [73] A. Bohr and B. R. Mottelson. "Rotational States in Even-Even Nuclei". In: *Phys. Rev.* 90 (4 May 1953), pp. 717–719. DOI: 10.1103/PhysRev.90.717.2.
- [74] A. Bohr and B. R. Mottelson. "Interpretation of Isomeric Transitions of Electric Quadrupole Type". In: *Phys. Rev.* 89 (1 Jan. 1953), pp. 316–317. DOI: 10.1103/PhysRev.89.316.
- [75] T. Huus and C. Zupančić. Excitation of Nuclear Rotational States by the Electric Field of Impinging Particles. Munksgaard, 1953.

- S. G. Nilsson. Binding States of Individual Nucleons in Strongly Deformed Nuclei. Tech. rep. CERN-55-30. The European Organization for Nuclear Research, 1955, pp. 1–69. URL: https://cds.cern.ch/record/212345?ln=en.
- [77] C. Gustafson et al. "Nuclear Deformabilities in the Rare-Earth and Actinide Regions with Excursions Off the Stability Line and into the Super-heavy Region". In: Ark. Fys. 63 (1967).
- S. A. E. Johansson. "Nuclear Octupole Deformation and the Mechanism of Fission". In: Nuclear Physics 22.4 (1961), pp. 529–552. ISSN: 0029-5582. DOI: 10.1016/0029-5582(61)90467-9.
- [79] V. M. Strutinsky. "Shell Effects in Nuclear Masses and Deformation Energies". In: Nuclear Physics A 95.2 (1967), pp. 420–442. ISSN: 0375-9474. DOI: 10.1016/0375-9474(67)90510-6.
- [80] S. Frankel and N. Metropolis. "Calculations in the Liquid-Drop Model of Fission". In: *Phys. Rev.* 72 (10 Nov. 1947), pp. 914–925. DOI: 10.1103/PhysRev.72.914.
- [81] A. G. Magner et al. "Shell Structure and Orbit Bifurcations in Finite Fermion Systems". In: *Physics of Atomic Nuclei* 74.10 (2011), pp. 1445–1477. DOI: 10.1134/ S1063778811100061.
- [82] N. Schunck and L. M. Robledo. "Microscopic Theory of Nuclear Fission: A Review". In: *Reports on Progress in Physics* 79.11 (Oct. 2016), p. 116301. DOI: 10.1088/0034-4885/79/11/116301.
- [83] K.-H. Schmidt and B. Jurado. "Review on the Progress in Nuclear Fission Experimental Methods and Theoretical Descriptions". In: *Reports on Progress in Physics* 81.10 (Sept. 2018), p. 106301. DOI: 10.1088/1361-6633/aacfa7.
- [84] A. C. Wahl. Nuclear-charge Distribution and Delayed-neutron Yields for Thermalneutron-induced Fission of 235U, 233U, and 239Pu and for Spontaneous Fission of 252Cf. 1988. DOI: 10.1016/0092-640X(88)90016-2.
- [85] A. C. Wahl and A. D. Carlson. "Nuclear-charge and Mass Distributions from Fission". In: Fifty Years with Nuclear Fission. American Nuclear Society, 1989. URL: https:// inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord& RN=23024110.
- [86] T. R. England and B. F. Rider. Evaluation and Compilation of Fission Product Yields. Tech. rep. LA-UR-94-3106. Los Alamos National Laboratory, 1994. URL: https: //t2.lanl.gov/nis/publications/endf349.pdf.
- [87] D. G. Madland and T. R. England. Distribution of Independent Fission-Product Yields to Isomeric States. Tech. rep. LA-6595-MS. Los Alamos National Laboratory, 1976. DOI: 10.2172/7222873.

- [88] D. G. Madland and T. R. England. "Influence of Isomeric States on Independent Fission Product Yields". In: Nuclear Science and Engineering 64 (1977), pp. 859– 865. ISSN: 00295639. DOI: 10.13182/NSE77-A14501.
- [89] K.-H. Schmidt et al. "General Description of Fission Observables: GEF Model Code". In: Nuclear Data Sheets 131 (2016). Special Issue on Nuclear Reaction Data, pp. 107–221. ISSN: 0090-3752. DOI: 10.1016/j.nds.2015.12.009.
- [90] S. Okumura et al. "235U(n, f) Independent Fission Product Yield and Isomeric Ratio Calculated with the Statistical Hauser–Feshbach Theory". In: *Journal of Nuclear Science and Technology* 55.9 (2018), pp. 1009–1023. DOI: 10.1080/00223131.2018. 1467288.
- [91] A. E. Lovell et al. "Extension of the Hauser-Feshbach Fission Fragment Decay Model to Multichance Fission". In: *Phys. Rev. C* 103 (1 Jan. 2021), p. 014615. DOI: 10. 1103/PhysRevC.103.014615.
- [92] A. E. Lovell. Towards a Consistent Evaluation of Fission Observables. Tech. rep. LA-UR-21-21339. Los Alamos National Laboratory, 2020. URL: https://ncsp.llnl. gov/TPRAgendas/2021/50_NSCPTRP_FY20_Lovell.pdf.
- [93] P. Talou, T. Kawano, and I. Stetcu. CGMF User Manual. Tech. rep. LA-UR-14-24031. Los Alamos National Laboratory, 2014. URL: https://readthedocs.org/projects/ cgmf-documentation/downloads/pdf/latest/.
- [94] P. Jaffke. "Identifying Inconsistencies in Fission Product Yield Evaluations with Prompt Neutron Emission". In: *Nuclear Science and Engineering* 190.3 (2018), p. 258. ISSN: 00295639. DOI: 10.1080/00295639.2018.1429173.
- [95] J. M. Verbeke, J. Randrup, and R. Vogt. "Fission Reaction Event Yield Algorithm, FREYA — For Event-by-Event Simulation of Fission". In: Computer Physics Communications 191 (2015), pp. 178–202. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2015. 02.002.
- [96] J. M. Verbeke, J. Randrup, and R. Vogt. "Fission Reaction Event Yield Algorithm FREYA 2.0.2". In: Computer Physics Communications 222 (2018), pp. 263–266. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2017.09.006.
- [97] S. Agostinelli et al. "GEANT4—A Simulation Toolkit". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3 (2003), pp. 250–303. ISSN: 0168-9002. DOI: 10.1016/ S0168-9002(03)01368-8.
- [98] D. Neudecker et al. "Templates of Expected Measurement Uncertainties". Submitted.
- [99] D. Neudecker et al. "The Need for Precise and Well-documented Experimental Data on Prompt Fission Neutron Spectra from Neutron-induced Fission of 239Pu". In: *Nuclear Data Sheets* 131 (2016). Special Issue on Nuclear Reaction Data, pp. 289– 318. ISSN: 0090-3752. DOI: 10.1016/j.nds.2015.12.005.

- [100] D. Neudecker et al. "Applying a Template of Expected Uncertainties to Updating 239Pu(n,f) Cross-section Covariances in the Neutron Data Standards Database". In: Nuclear Data Sheets 163 (2020), pp. 228–248. ISSN: 0090-3752. DOI: 10.1016/j.nds. 2019.12.005.
- [101] A. N. Andreyev, K. Nishio, and K. H. Schmidt. "Nuclear Fission: A Review of Experimental Advances and Phenomenology". In: *Reports on Progress in Physics* 81 (2018), p. 106301. ISSN: 00344885. DOI: 10.1088/1361-6633/aa82eb.
- [102] K.-H. Schmidt and B. Jurado. "Review on the Progress in Nuclear Fission Experimental Methods and Theoretical Descriptions". In: *Reports on Progress in Physics* 81 (2018), p. 106301. ISSN: 00344885. DOI: 10.1088/1361-6633/aacfa7.
- [103] W. Younes, J. J. Ressler, and J. A. Becker. Survey of Fission-yield Studies Based on Non-destructive Gamma-ray Spectrometry. Tech. rep. LLNL-TR-648488. Lawrence Livermore National Laboratory, 2014.
- [104] S. Stave et al. "Reducing Uncertainties for Short Lived Cumulative Fission Product Yields". In: Journal of Radioanalytical and Nuclear Chemistry 307.3 (2016), pp. 2221– 2225. ISSN: 1588-2780. DOI: 10.1007/s10967-015-4436-3.
- B. D. Pierson et al. "Fission Product Yields from 232Th, 238U, and 235U Using 14 MeV Neutrons". In: *Nuclear Data Sheets* 139 (2017), pp. 171–189. ISSN: 00903752. DOI: 10.1016/j.nds.2017.01.004.
- [106] M. A. Stoyer et al. "Fission Product Yield Measurements from Neutron-Induced Fission of 235,238 U and 239 Pu". In: *EPJ Web of Conferences* 232 (2020), p. 03006.
 DOI: 10.1051/epjconf/202023203006.
- [107] M. A. Cognet and V. Gressier. "Development of a Measurement Reference Standard for Neutron Energies between 1 MeV and 20 MeV Using Time of Flight Method at the AMANDE Facility". In: *Metrologia* 47.4 (2010), pp. 377–386. ISSN: 00261394. DOI: 10.1088/0026-1394/47/4/004.
- [108] L. R. Greenwood and C. D. Johnson. User Guide for the STAYSL PNNL Suite of Software Tools. Tech. rep. PNNL-22253. 2013. URL: https://www.pnnl.gov/main/ publications/external/technical_reports/pnnl-22253.pdf.
- [109] A. Trkov et al. "IRDFF-II: A New Neutron Metrology Library". In: Nuclear Data Sheets 163 (2020), pp. 1–108. ISSN: 00903752. DOI: 10.1016/j.nds.2019.12.001. arXiv: 1909.03336.
- [110] A. Bail et al. "Isotopic Yield Measurement in the Heavy Mass Region for 239Pu Thermal Neutron Induced Fission". In: *Physical Review C Nuclear Physics* 84 (2011), p. 034605. ISSN: 1089490X. DOI: 10.1103/PhysRevC.84.034605.
- [111] S. Prakash and S. B. Manohar. "Radiochemical Methods of Measurements of Fission Products Yields". In: *Journal of Radioanalytical and Nuclear Chemistry Articles* 142.1 (1990), pp. 119–133. ISSN: 02365731. DOI: 10.1007/BF02039457.

- [112] C. Bhatia et al. "Dual-fission Chamber and Neutron Beam Characterization for Fission Product Yield Measurements Using Monoenergetic Neutrons". In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 757 (2014), pp. 7–19. ISSN: 01689002. DOI: 10.1016/j.nima.2014.03.022.
- C. Bhatia et al. "Exploratory Study of Fission Product Yields of Neutron-induced Fission of 235U, 238U, and 239Pu at 8.9 MeV". In: *Physical Review C* 91 (2015), p. 064604. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.91.064604.
- [114] D. Chaillou and A. Chambaudet. "Statistics of Uranium Fission-track Counting". In: *Nuclear Tracks* 5 (1981), pp. 93–98. ISSN: 0191278X. DOI: 10.1016/0191-278X(81) 90031-7.
- [115] J. Lippold et al. "Automatic Counting of Fission Tracks Using Object-based Image Analysis for Dating Applications". In: International Geoscience and Remote Sensing Symposium (IGARSS). 2007, pp. 440–443. ISBN: 1424412129. DOI: 10.1109/IGARSS. 2007.4422825.
- [116] J. Kučera, P. Bode, and Stepanek V. "The 1993 ISO Guide to the Expression of Uncertainty in Measurement Applied to NAA". In: *Journal of Radioanalytical and Nuclear Chemistry* 245.1 (2000), pp. 115–122. DOI: 10.1023/A:1006760726572.
- [117] ISO 21748:2017 Guidance for the Use of Repeatability, Reproducibility and Trueness Estimates in Measurement Uncertainty Evaluation. Tech. rep. ISO 21748:2017. International Organization for Standardization, 2017. URL: https://www.iso.org/ standard/71615.html.
- [118] T. Saffaj et al. "An Overall Uncertainty Approach for the Validation of Analytical Separation Methods". In: Analyst 138.16 (2013), pp. 4677–4691. ISSN: 13645528. DOI: 10.1039/c3an00519d.
- [119] J. A. Petruska, H. G. Thode, and R. H. Tomlinson. "The Absolute Fission Yields of Twenty-eight Mass Chains in the Thermal Neutron Fission of U235". In: *Canadian Journal of Physics* 33 (1955), pp. 693–706. ISSN: 0008-4204. DOI: 10.1139/p55-085.
- [120] K. Knie et al. "Search for A = 60 Fragments from Neutron-induced Fission with Accelerator Mass Spectrometry". In: *Nuclear Physics A* 723 (2003), pp. 343–353. ISSN: 03759474. DOI: 10.1016/S0375-9474(03)01435-0.
- [121] S. Ayet San Andrés et al. "High-resolution, Accurate Multiple-reflection Time-offlight Mass Spectrometry for Short-lived, Exotic Nuclei of a Few Events in Their Ground and Low-lying Isomeric States". In: *Physical Review C* 99 (2019), p. 064313. ISSN: 24699993. DOI: 10.1103/PhysRevC.99.064313.
- [122] F. L. Lisman et al. "Fission Yields of Over 40 Stable and Long-Lived Fission Products for Thermal Neutron Fissioned 233U, 235U, 239Pu, and 241Pu and Fast Reactor Fissioned 235U and 239Pu". In: Nuclear Science and Engineering 42 (1970), pp. 191– 214. ISSN: 0029-5639. DOI: 10.13182/nse70-a19500.

- [123] W. J. Maeck et al. The Measurement of Ruthenium in Uranium Ores and 238U Spontaneous Fission Yields. International Atomic Energy Agency (IAEA): International Atomic Energy Agency, 1978. ISBN: 92-0-051078-7. URL: http://inis.iaea.org/ search/search.aspx?orig_q=RN:10479619.
- [124] I. Glagolenko et al. "Fission Yield Measurements by Inductively Coupled Plasma Mass-spectrometry". In: Journal of Radioanalytical and Nuclear Chemistry 282.2 (2009), p. 651. ISSN: 1588-2780. DOI: 10.1007/s10967-009-0209-1.
- [125] C. Schmitt et al. "Fission Yields at Different Fission-product Kinetic Energies for Thermal-neutron-induced Fission of 239Pu". In: Nuclear Physics, Section A 430 (1984), pp. 21–60. ISSN: 03759474. DOI: 10.1016/0375-9474(84)90191-X.
- [126] R. M. Essex and S. A. Goldberg. "Calculating Measurement Uncertainties for Mass Spectrometry Data". In: AGU Fall Meeting Abstracts. Vol. 2006. Dec. 2006, V11E-07. URL: https://ui.adsabs.harvard.edu/abs/2006AGUFM.V11E..07E.
- [127] R. B. Thomas, R. M. Essex, and S. A. Goldberg. "Alternative Approaches to Uncertainty Calculations for TIMS Isotopic Measurements". In: AGU Fall Meeting Abstracts. Vol. 2006. Dec. 2006, V21A-0554. URL: https://ui.adsabs.harvard.edu/ abs/2006AGUFM.V21A0554T.
- Jochen Vogl. "Measurement Uncertainty in Single, Double and Triple Isotope Dilution Mass Spectrometry". In: *Rapid Communications in Mass Spectrometry* 26.3 (Feb. 2012), pp. 275–281. ISSN: 0951-4198. DOI: 10.1002/rcm.5306.
- [129] T. Williams et al. Evaluation of Measurement Data An Introduction to the "Guide to the Expression of Uncertainty in Measurement" and Related Documents. Tech. rep. JCGM 100:2008. International Organization for Standardization Geneva, 2008. URL: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf.
- [130] S. Bürger et al. "Implementation of Guide to the expression of Uncertainty in Measurement (GUM) to multi-collector TIMS uranium isotope ratio metrology". In: *International Journal of Mass Spectrometry* 294 (2010), pp. 65–76. ISSN: 13873806. DOI: 10.1016/j.ijms.2010.05.003.
- [131] K. Meierbachtol et al. "The SPIDER Fission Fragment Spectrometer for Fission Product Yield Measurements". In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 788 (2015), pp. 59–66. ISSN: 01689002. DOI: 10.1016/j.nima.2015.02.032.
- K. Jansson et al. "The Impact of Neutron Emission on Correlated Fission Data from the 2E-2v Method". In: *European Physical Journal A* 54.6 (2018). ISSN: 1434601X.
 DOI: 10.1140/epja/i2018-12544-0.
- [133] A. Al-Adili et al. "Impact of Prompt-neutron Corrections on Final Fission-fragment Distributions". In: *Physical Review C - Nuclear Physics* 86 (2012), p. 054601. ISSN: 1089490X. DOI: 10.1103/PhysRevC.86.054601.

- [134] A. Al-Adili et al. "Studying Fission Neutrons with 2E-2v and 2E". In: EPJ Web of Conferences. Vol. 169. 2018, pp. 1–6. ISBN: 9782759890316. DOI: 10.1051/epjconf/ 201816900002.
- [135] M. O. Frégeau and S. Oberstedt. "The Fission-fragment Spectrometer VERDI". In: *Physics Procedia*. Vol. 64. 2015, pp. 197–203. DOI: 10.1016/j.phpro.2015.04.027.
- [136] A. Oed et al. "A Mass Spectrometer for Fission Fragments Based on Time-of-flight and Energy Measurements". In: Nuclear Instruments and Methods In Physics Research 219 (1984), pp. 569–574. ISSN: 01675087. DOI: 10.1016/0167-5087(84)90232-1.
- M. O. Frégeau et al. "First Results from the New Double Velocity-Double Energy Spectrometer VERDI". In: Nuclear Instruments and Methods in Physics Research Section A 817 (2016), pp. 35–41. ISSN: 0168-9002. DOI: 10.1016/j.nima.2016.02. 011.
- [138] A. Al-Adili et al. "Prompt Fission Neutron Yields in Thermal Fission of ²³⁵U and Spontaneous Fission of ²⁵²Cf". In: *Phys. Rev. C* 102 (6 Dec. 2020), p. 064610. DOI: 10.1103/PhysRevC.102.064610.
- [139] M. B. Chadwick et al. "Fission Product Yields from Fission Spectrum n+239Pu for ENDF/B-VII.1". In: *Nuclear Data Sheets* 111.12 (2010), pp. 2923–2964. ISSN: 00903752. DOI: 10.1016/j.nds.2010.11.003.
- [140] R. W. Mills. "Fission Product Yield Evaluation". PhD thesis. University of Birmingham, 1995. URL: http://etheses.bham.ac.uk/id/eprint/4353/.
- [141] R. W. Mills. Status of the UKFY3 Fission Yield Evaluation. Tech. rep. The Nuclear Energy Agency, 2004. URL: https://www.oecd-nea.org/dbdata/nds_jefdoc/ jefdoc-1031.pdf.
- [142] J. Katakura et al. JENDL FP Decay Data File 2000. Tech. rep. 1343. Japan Atomic Energy Research Institute, 2001. URL: https://inis.iaea.org/collection/ NCLCollectionStore/_Public/37/001/37001609.pdf.
- [143] J. Katakura. JENDL FP Decay Data File 2011 and Fission Yields Data File 2011. Tech. rep. 2011-025. Japan Atomic Energy Agency, 2011. URL: https://jopss. jaea.go.jp/pdfdata/JAEA-Data-Code-2011-025.pdf.
- J. Katakura, F. Minato, and K. Ohgama. "Revision of the JENDL FP Fission Yield Data". In: *EPJ Web of Conferences* 111 (2016), pp. 2–7. ISSN: 2100014X. DOI: 10. 1051/epjconf/201611108004.
- [145] D. G. Madland and L. Stewart. Light Ternary Fission Products: Probabilities and Charge Distributions. Tech. rep. LA-6783-MS. Los Alamos National Laboratory, 1977. URL: https://inis.iaea.org/search/search.aspx?orig_q=RN:8342460.
- [146] A. R. Musgrove, J. L. Cook, and G. D. Trimble. In: Panel on Fission Product Nuclear Data. 1973.

- [147] M. R. Bhat. "Evaluated Nuclear Structure Data File (ENSDF)". In: Nuclear Data for Science and Technology: Proceedings of an International Conference, held at the Forschungszentrum Jülich, Fed. Rep. of Germany, 13–17 May 1991. Springer Berlin Heidelberg, 1992, pp. 817–821. ISBN: 978-3-642-58113-7. DOI: 10.1007/978-3-642-58113-7_227.
- [148] J. C. Hardy et al. "The Essential Decay of Pandemonium: A Demonstration of Errors in Complex Beta-decay Schemes". In: *Physics Letters B* 71 (1977), pp. 307–310. ISSN: 03702693. DOI: 10.1016/0370-2693(77)90223-4.
- [149] K. Takahashi, M. Yamada, and T. Kondoh. "Beta-decay Half-lives Calculated on the Gross Theory". In: 12 (1973), pp. 101–142. ISSN: 10902090. DOI: 10.1016/0092-640X(73)90015-6.
- [150] D. M. Brink. PhD thesis. Oxford University, 1955.
- P. Axel. "Electric Dipole Ground-state Transition Width Strength Function and 7-MeV Photon Interactions". In: *Physical Review* 126 (1962), p. 671. ISSN: 0031899X. DOI: 10.1103/PhysRev.126.671.
- [152] A. Gilbert and A. G. W. Cameron. "A Composite Nuclear-level Density Formula with Shell Corrections". In: *Canadian Journal of Physics* 43 (1965), pp. 1446–1496. ISSN: 0008-4204. DOI: 10.1139/p65-139.
- T. Yoshida, Y. Wakasugi, and N. Hagura. "Pandemonium Problem in Fission-product Decay Heat Calculations Revisited". In: *Journal of Nuclear Science and Technology* 45 (2008), pp. 713–717. ISSN: 00223131. DOI: 10.1080/18811248.2008.9711471.
- [154] A. Algora et al. "Reactor Decay Heat in Pu239: Solving the Gamma Discrepancy in the 4-3000-s Cooling Period". In: *Physical Review Letters* 105 (2010), p. 202501. ISSN: 00319007. DOI: 10.1103/PhysRevLett.105.202501.
- [155] O. Leray et al. "Fission Yield Covariances for JEFF: A Bayesian Monte Carlo Method". In: EPJ Web of Conferences. 2017. ISBN: 9782759890200. DOI: 10.1051/epjconf/ 201714609023.
- [156] M. T. Pigni et al. "Applications of Decay Data and Fission Product Yield Covariance Matrices in Uncertainty Quantification on Decay Heat". In: WPEC - Subgroup 37. Nuclear Energy Agency - Organisation for Economic Co-operation and Development, 2013. URL: %7Bhttps://www.oecd-nea.org/science/wpec/sg37/Meetings/2013_ May/32_Pigni_Cov.pdf%7D.
- [157] T. Kawano and M. B. Chadwick. "Estimation of 239Pu Independent and Cumulative Fission Product Yields from the Chain Yield Data Using a Bayesian Technique". In: *Journal of Nuclear Science and Technology* 50 (2013), pp. 1034–1042. ISSN: 00223131. DOI: 10.1080/00223131.2013.830580.

- [158] E. F. Matthews. Reproducible Workflow for "Stochastically Estimated Covariance Matrices for Independent and Cumulative Fission Yields in the ENDF/B-VIII.0 and JEFF 3.1 Evaluations". 2020. DOI: 10.5281/zenodo.4580536. URL: https:// github.com/efmatthews/FYCoM.
- [159] W. Land. Laser Interferometer Feedback Machine Positioning Uncertainty. Tech. rep. Aerotech, 2016, pp. 1–8.
- [160] A. Brusegan, G. Noguere, and F. Gunsing. "A Noise Analysis Approach for Measuring the Decay Constants and the Relative Abundance of Delayed Neutrons in a Zero Power Critical Facility". In: *Journal of Nuclear Science and Technology* 39 (2002), pp. 685–688. ISSN: 00223131. DOI: 10.1080/00223131.2002.10875192.
- S. Katcoff and W. Rubinson. "Yield of Xe133 in the Thermal Neutron Fission of U235". In: *Physical Review* 91 (1953), p. 1458. ISSN: 0031899X. DOI: 10.1103/ PhysRev.91.1458.
- [162] J. S. Coursey et al. Atomic Weights and Isotopic Compositions (version 4.1). 2015. URL: https://www.nist.gov/pml/atomic-weights-and-isotopic-compositionsrelative-atomic-masses.
- [163] J. Meija et al. Isotopic Compositions of the Elements 2013 (IUPAC Technical Report).
 2016. DOI: 10.1515/pac-2015-0503.
- [164] J. G. Cuninghame, J. A. B. Goodall, and H. H. Willis. "Absolute Yields in the Fission of 235U by Mono-energetic Neutrons of Energy 130-1700 keV". In: *Journal* of *Inorganic and Nuclear Chemistry* 36 (1974), pp. 1453–1457. ISSN: 00221902. DOI: 10.1016/0022-1902(74)80604-4.
- J. N. Wilson et al. "Anomalies in the Charge Yields of Fission Fragments from the 238U(n,f) Reaction". In: *Physical Review Letters* 118.22 (2017), p. 222501. ISSN: 10797114. DOI: 10.1103/PhysRevLett.118.222501.
- [166] R. W. Peelle and F. C. Maienschein. "Spectrum of Photons Emitted in Coincidence with Fission of U235 by Thermal Neutrons". In: *Physical Review C* 3 (1971), p. 373. ISSN: 05562813. DOI: 10.1103/PhysRevC.3.373.
- [167] S. Pommé, R. Fitzgerald, and J. Keightley. "Uncertainty of Nuclear Counting". In: *Metrologia* 52.3 (2015), S3–S17. ISSN: 16817575. DOI: 10.1088/0026-1394/52/3/S3.
- J. Feng et al. "Absolute Measurement of 99Mo Fission Yields of 235U Induced by 0.57, 1.0 and 1.5 MeV Neutrons". In: Yuanzineng Kexue Jishu/Atomic Energy Science and Technology 47 (2013), pp. 1473–1478. ISSN: 10006931. DOI: 10.7538/yzk.2013.47.09.1473.
- [169] E. F. Matthews, L. A. Bernstein, and W. Younes. "Stochastically Estimated Covariance Matrices for Independent and Cumulative Fission Yields in the ENDF/B-VIII.0 and JEFF-3.3 Evaluations". In: Atomic Data and Nuclear Data Tables (2021), p. 101441. ISSN: 0092-640X. DOI: 10.1016/j.adt.2021.101441.

- M. A. Kellett, O. Bersillon, and R. W. Mills. The JEFF-3.1/-3.1.1 Radioactive Decay Data and Fission Yields Sub-libraries - JEFF Report 20. The Nuclear Energy Agency
 - Organization for Economic Cooperation and Development, 2009. ISBN: 978-92-64-99087-6. URL: https://www.oecd-nea.org/jcms/pl_14322.
- [171] D. Rochman et al. "A Bayesian Monte Carlo Method for Fission Yield Covariance Information". In: Annals of Nuclear Energy (2016). ISSN: 18732100. DOI: 10.1016/ j.anucene.2016.05.005.
- [172] N. Terranova et al. "Fission Yield Covariance Matrices for the Main Neutron-induced Fissioning Systems Contained in the JEFF-3.1.1 Library". In: Annals of Nuclear Energy (2017). ISSN: 18732100. DOI: 10.1016/j.anucene.2017.05.052.
- K.-H. Schmidt, B. Jurado, and C. Amouroux. General Description of Fission Observables - GEF Model. Tech. rep. NEA/DB/DOC(2014)1. The Nuclear Energy Agency
 - Organization for Economic Cooperation and Development, 2014. URL: https:// www.oecd-nea.org/jcms/pl_19520.
- [174] K.-H. Schmidt and B. Jurado. GEFY : GEF-based Fission-fragment Yield Library in ENDF-format. 2020. URL: https://www.cenbg.in2p3.fr/GEFY-GEF-basedfission-fragment (visited on 03/17/2021).
- [175] B. Voirin et al. "From Fission Yield Measurements to Evaluation: Status on Statistical Methodology for the Covariance Question". In: *EPJ Nuclear Sciences and Technologies* 4 (2018), p. 26. ISSN: 2491-9292. DOI: 10.1051/epjn/2018030.
- [176] E. F. Matthews et al. "FIER: Software for Analytical Modeling of Delayed Gamma-ray Spectra". In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 891 (2018), pp. 111– 117. ISSN: 01689002. DOI: 10.1016/j.nima.2018.02.072.
- [177] J. P. Lestone. Energy and Isotope Dependence of Neutron Multiplicity Distributions.
 2014. URL: https://arxiv.org/abs/1409.5346.
- M. Kireeff Covo et al. "The 88-Inch Cyclotron: A One-stop Facility for Electronics Radiation and Detector Testing". In: *Measurement* 127 (2018), pp. 580–587. ISSN: 0263-2241. DOI: 10.1016/j.measurement.2017.10.018.
- [179] A. Ruben et al. "A New, Versatile, High-performance Digital Pulse Processor with Application to Neutron/Gamma-ray Pulse-shape Discrimination in Scintillator Detectors". In: Proc. Nima_Sorma XVII. 2018. URL: http://mesytec.de/products/ appnotes/MDPP16_SORMA_2018.pdf.
- [180] A. Enqvist et al. "Neutron Light Output Response and Resolution Functions in EJ-309 Liquid Scintillation Detectors". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 715 (2013), pp. 79–86. ISSN: 0168-9002. DOI: 10.1016/j.nima.2013.03.032.

- [181] R. Brun and F. Rademakers. "ROOT—An Object Oriented Data Analysis Framework". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389.1-2 (1997), pp. 81–86. DOI: 10.1016/S0168-9002(97)00048-X.
- W. J. Gallagher and S. J. Cipolla. "A Model-based Efficiency Calibration of a Si(Li) Detector in the Energy Region from 3 to 140 keV". In: Nuclear Instruments and Methods 122 (1974), pp. 405–414. ISSN: 0029-554X. DOI: 10.1016/0029-554X(74) 90508-4.
- [183] R. Storn and K. Price. "Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces". In: Journal of Global Optimization (1997). ISSN: 09255001. DOI: 10.1023/A:1008202821328.
- [184] P. Virtanen et al. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.
- [185] G. F. Knoll. Radiation Detection and Measurement. 4th ed. John Wiley and Sons, 2010.
- [186] K. P. Harrig et al. "Neutron Spectroscopy for Pulsed Beams with Frame Overlap Using a Double Time-of-flight Technique". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 877 (2018), pp. 359–366. ISSN: 0168-9002. DOI: 10.1016/j.nima.2017.09.051.
- [187] L. J. Heistek and L. van der Zwan. "Pulse Shape Discrimination with a Comparator Circuit". In: Nuclear Instruments and Methods 80.2 (1970), pp. 213–216. ISSN: 0029-554X. DOI: 10.1016/0029-554X(70)90764-0.
- [188] J. A. Brown. Private Communication. University of California Berkeley. Dec. 2020.
- [189] J. A. Brown et al. "Proton Light Yield in Organic Scintillators Using a Double Timeof-flight Technique". In: *Journal of Applied Physics* 124.4 (2018), p. 045101. DOI: 10.1063/1.5039632.
- [190] T. A. Laplace et al. "Comparative Scintillation Performance of EJ-309, EJ-276, and a Novel Organic Glass". In: *Journal of Instrumentation* 15.11 (Nov. 2020), P11020– P11020. DOI: 10.1088/1748-0221/15/11/p11020.
- [191] M. Herman and A. Trkov. ENDF-6 Formats Manual. Tech. rep. BNL-90365-2009. Brookhaven National Laboratory, 2010. URL: https://www.bnl.gov/isd/documents/ 70393.pdf.
- [192] F. Biscani and D. Izzo. "A Parallel Global Multiobjective Framework for Optimization: pagmo". In: Journal of Open Source Software 5.53 (2020), p. 2338. DOI: 10. 21105/joss.02338.

- [193] V. A. Roshchenko, V. M. Piksaykin, G. G. Korolev, et al. "Cumulative Yields of Delayed Neutrons Precursors in Neutron Induced Fission of 237-Np and 238-U in the Energy Range from 0.5 up to 5.0 MeV". In: Yad. Konst 1.2 (2006), p. 43.
- [194] A. N. Gudkov et al. "Yields of Delayed Neutron Precursors in the Fission of Actinides". In: *Radiochimica Acta* 57.2-3 (1992), pp. 69–76. DOI: doi:10.1524/ract. 1992.57.23.69.
- [195] A. A. Filatenkov. "Energies and Yields of Prompt Gamma-Rays from Fission Fragments in 235U and 238U Fission by 3 MeV Neutrons". PhD thesis. 1988, p. 127.
- [196] H. D. Schuessler and G. Herrmann. "Main Components of the Delayed-neutron Precursors in the Fission of 235U by Thermal Neutrons". In: *Radiochimica Acta* 18.3 (1972), pp. 123–133. DOI: 10.1524/ract.1972.18.3.123.
- B. Cheal et al. "The Shape Transition in the Neutron-rich Yttrium Isotopes and Isomers". In: *Physics Letters B* 645.2 (2007), pp. 133–137. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2006.12.053.
- [198] H. Grawe et al. "Nuclear Structure Far Off Stability-Implications for Nuclear Astrophysics". In: The European Physical Journal A-Hadrons and Nuclei 27.1 (2006), pp. 257–267. DOI: 10.1140/epja/i2006-08-040-7.
- [199] J. M. Campbell. "Yields of Short-lived Fission Products Following Fast Fission of U-238". PhD thesis. University of Massachusetts Lowell, 1997.
- [200] G. Lhersonneau et al. "Production of Neutron-rich Isotopes in Fission of Uranium Induced by Neutrons of 20 MeV Average Energy". In: *The European Physical Journal A-Hadrons and Nuclei* 9.3 (2000), pp. 385–396. DOI: 10.1007/s100500070023.
- [201] J. Cvachovec and F. Cvachovec. "Maximum Likelihood Estimation of a Neutron Spectrum and Associated Uncertainties". In: Advances in Military Technology 1.2 (2008), pp. 67–79.
- [202] S. Maeda et al. "Fundamental Study on Neutron Spectrum Unfolding Using Maximum Entropy and Maximum Likelihood Method". In: Progress in Nuclear Science and Technology 1 (2011), pp. 233-236. URL: https://www.aesj.net/document/pnst001/ 233.pdf.
- [203] S. Maeda and T. Iguchi. "A New Unfolding Code Combining Maximum Entropy and Maximum Likelihood for Neutron Spectrum Measurement". In: *Journal of Nuclear Science and Technology* 50.4 (2013), pp. 381–386. DOI: 10.1080/00223131.2013. 773162.
- [204] A. A. Sonzogni, T. D. Johnson, and E. A. McCutchan. "Nuclear Structure Insights into Reactor Antineutrino Spectra". In: *Phys. Rev. C* 91 (1 Jan. 2015), p. 011301. DOI: 10.1103/PhysRevC.91.011301.

Appendix A

Appendix of Figures for Short-lived Fission Product Yield Measurements Using the Fast Loading User Facility for Fission Yields

Figure A.1: Minimizer Benchmarking: The number of 1031.92-keV γ emissions from ^{89}Rb as a function of cycle number.

Figure A.2: Minimizer Benchmarking: The number of 3532.88-keV γ emissions from ⁸⁹Kr as a function of time since capsule arrival, t_1 .

Figure A.3: Minimizer Benchmarking: The number of 3231.3-keV γ emissions from ⁹⁰Br as a function of time since capsule arrival, t_1 .

Figure A.4: An example of the fitted photopeak for 1564.60-keV γ from ⁸⁶Br in the fission product γ -ray spectrum from the 5 s–125 s irradiation scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 125$ s.

Figure A.5: An example of the fitted photopeak for 2660.0-keV γ from ⁸⁶Se in the fission product γ -ray spectrum from the 5 s–125 s irradiation scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 100$ s.

Figure A.6: An example of the fitted photopeak for 4180.54-keV γ from ⁸⁷Br in the fission product γ -ray spectrum from the 5 s–125 s irradiation scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 125$ s.

Figure A.7: Time separation of the 2660.0-keV photopeak into components from ⁸⁶Se and an unknown contaminant. The black line is the total fit, the green line is the component from ⁸⁶Se, and the blue line is the component from the contaminant.

Figure A.8: Fit of the 1564.60-keV γ -ray emissions from ⁸⁶Br to FIER. It was determined the independent fission yield of ⁸⁶Br was 0.45%.

Figure A.9: Fit of the 2660.0-keV γ -ray emissions from ⁸⁶Se to FIER. It was determined the cumulative fission yield of ⁸⁶Se was 1.05% and the decay γ intensity of its 2660.0-keV emission was 24.9%.

Figure A.10: Fit of the 4180.54-keV γ -ray emissions from ⁸⁷Br to FIER. It was determined the independent fission yield of ⁸⁷Br was 1.83%.

Figure A.11: An example of the fitted photopeak for 1024.4-keV γ from ⁹⁸Nb (shown in curve 1, the blue line) in the fission product γ -ray spectrum from the 1 s–25 s irradiation scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 12$ s. This photopeak is small relative to the photopeaks near it, requiring a complex photopeak fit. As a result, there is large uncertainty in this photopeak area.

Figure A.12: An example of the fitted photopeak for 1222.9-keV γ from ⁹⁸Y (shown in curve 1, the blue line) in the fission product γ -ray spectrum from the 1 s–25 s irradiation scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 3.5$ s.

Figure A.13: An example of the fitted photopeak for 724.4-keV γ from ⁹⁹Y (shown in curve 1, the blue line) in the fission product γ -ray spectrum from the 1 s–25 s irradiation scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 6$ s.

Figure A.14: Time separation of the 724.4-keV photopeak into components from 99 Y and an unknown contaminant. The black line is the total fit, the green line is the component from 99 Y, and the blue line is the component from the contaminant.

Figure A.15: Fit of the 1222.9-keV γ -ray emissions from ⁹⁸Y to Eq. 5.16. It was determined the cumulative fission yield of ⁹⁸Y was 5.13 \pm 0.39%.

Figure A.16: An example of the fitted photopeak for the 2077.9-keV γ from ¹³⁶Te (shown in curve 1, the blue line) in the fission product γ -ray spectrum from the 5 s–125 s irradiation scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 40$ s.

Figure A.17: An example of the fitted photopeaks for the 1313.02-keV γ from ¹³⁶gI and ¹³⁶mI (shown in curve 1, the blue line) and the 1321.08-keV γ from ¹³⁶gI (shown in curve 2, the orange line) in the fission product γ -ray spectrum from the 5 s–125 s irradiation scheme. The spectrum shown in this figure includes all cycles and spans $t_0 = 0$ s to $t_1 = 104.2$ s. The photopeak to the left (shown in curve 2, the green line) is the 1324.0-keV photopeak from ⁹⁵Y.
APPENDIX A. APPENDIX OF FIGURES FOR SHORT-LIVED FISSION PRODUCT YIELD MEASUREMENTS USING THE FAST LOADING USER FACILITY FOR FISSION YIELDS 164

Figure A.18: Fit of the 2077.9-keV γ -ray emissions from ¹³⁶Te to FIER. It was determined the cumulative fission yield of ¹³⁶Te was 0.67%.

APPENDIX A. APPENDIX OF FIGURES FOR SHORT-LIVED FISSION PRODUCT YIELD MEASUREMENTS USING THE FAST LOADING USER FACILITY FOR FISSION YIELDS 165

Figure A.19: Fit of the 1321.08-keV γ -ray emissions from ^{136g}I to FIER. It was determined the independent fission yield of ^{136g}I was 0.78%.

APPENDIX A. APPENDIX OF FIGURES FOR SHORT-LIVED FISSION PRODUCT YIELD MEASUREMENTS USING THE FAST LOADING USER FACILITY FOR FISSION YIELDS 166

Figure A.20: Fit of the 1313.02-keV γ -ray emissions from ^{136g}I and ^{136m}I to FIER. It was determined the independent fission yield of ^{136g}I was 0.78% and the independent fission yield of ^{136m}I was 0.59%.

Appendix B

Appendix of Detailed Irradiation Scheme for ²³⁸U Target

Listing B.1: Formatted FIER input deck for the irradiation scheme of the 238 U target. The number displayed in the even-numbered columns is the end time of the current stage of the irradiation scheme (in units of seconds). The number displayed in odd-numbered columns is the relative intensity of the neutron source during the current stage of the irradiation scheme. All "//" symbols should be replaced with a carriage return for use as input to FIER.

MODE:SINGLE ON DECAY PREDICTION isotopes.csv ISOTOPES FILE decays.csv DECAYS FILE gammas.csv GAMMAS FILE YIELDS:ER U,238, fission YIELDS FILE NONE CHAINS OUTPUT NONE STEMS OUTPUT NONE POPS OUTPUT output/U238_FIER_gamma_output.csv GAMMAS OUTPUT NONE ERROR LOG INITIALIZE IRRADIATION 1.000, 1.189 // 2.215, 0.000 // 28.896, 0.000 // 29.896, 1.230 // 31.095, 0.000 57.771, 0.000 // 58.771, 1.208 // 60.010, 0.000 // 86.684, 0.000 // 87.684, 1.226 88.872, 0.000 // 115.479, 0.000 // 116.479, 1.236 // 117.615, 0.000 // 144.155, 0.000 145.155, 1.231 // 146.364, 0.000 // 172.975, 0.000 // 173.975, 1.231 // 175.190, 0.000 201.945, 0.000 // 202.945, 1.195 // 204.167, 0.000 // 230.863, 0.000 // 231.863, 1.184 233.066, 0.000 // 259.965, 0.000 // 260.965, 1.215 // 262.205, 0.000 // 288.980, 0.000 289.980, 1.171 // 291.200, 0.000 // 317.937, 0.000 // 318.937, 1.177 // 320.139, 0.000 346.770, 0.000 // 347.770, 1.189 // 348.944, 0.000 // 375.650, 0.000 // 376.650, 1.208 377.858, 0.000 // 404.612, 0.000 // 405.612, 1.200 // 406.827, 0.000 // 433.538, 0.000 434.538, 1.209 // 435.740, 0.000 // 462.346, 0.000 // 463.346, 1.228 // 464.571, 0.000 491.147, 0.000 // 492.147, 1.202 // 493.322, 0.000 // 520.017, 0.000 // 521.017, 1.188 522.211, 0.000 // 549.002, 0.000 // 550.002, 1.186 // 551.225, 0.000 // 577.986, 0.000 578.986, 1.202 // 580.167, 0.000 // 606.794, 0.000 // 607.794, 1.191 // 609.023, 0.000 635.696, 0.000 // 636.696, 1.201 // 637.885, 0.000 // 664.558, 0.000 // 665.558, 1.187 666.759, 0.000 // 693.526, 0.000 // 694.526, 1.199 // 695.746, 0.000 // 722.464, 0.000 723.464, 1.186 // 724.804, 0.000 // 751.576, 0.000 // 752.576, 1.206 // 753.828, 0.000 780.645, 0.000 // 781.645, 1.206 // 782.963, 0.000 // 809.627, 0.000 // 810.627, 1.197 811.860, 0.000 // 838.619, 0.000 // 839.619, 1.185 // 840.860, 0.000 // 867.500, 0.000

868.500, 1.171 // 869.757, 0.000 // 896.517, 0.000 // 897.517, 1.190 // 898.824, 0.000 925.599, 0.000 // 926.599, 1.169 // 927.936, 0.000 // 954.506, 0.000 // 955.506, 1.169 956.676, 0.000 // 983.441, 0.000 // 984.441, 1.192 // 985.751, 0.000 // 1012.381, 0.000 1013.381, 1.178 // 1014.600, 0.000 // 1041.261, 0.000 // 1042.261, 1.185 // 1043.470, 0.000 1070.178, 0.000 // 1071.178, 1.192 // 1072.347, 0.000 // 1099.034, 0.000 // 1100.034, 1.196 1101.235, 0.000 // 1128.031, 0.000 // 1129.031, 1.189 // 1130.302, 0.000 // 1157.062, 0.000 1158.062, 1.216 // 1159.289, 0.000 // 1185.954, 0.000 // 1186.954, 1.196 // 1188.161, 0.000 1214.883, 0.000 // 1215.883, 1.189 // 1217.098, 0.000 // 1243.815, 0.000 // 1244.815, 1.184 1246.065, 0.000 // 1272.810, 0.000 // 1273.810, 1.171 // 1274.990, 0.000 // 1301.695, 0.000 1302.695, 1.174 // 1303.897, 0.000 // 1330.621, 0.000 // 1331.621, 1.179 // 1332.794, 0.000 1359.518, 0.000 // 1360.518, 1.183 // 1361.691, 0.000 // 1388.428, 0.000 // 1389.428, 1.194 1390.606, 0.000 // 1417.310, 0.000 // 1418.310, 1.206 // 1419.530, 0.000 // 1446.241, 0.000 1447.241, 1.192 // 1448.401, 0.000 // 1475.017, 0.000 // 1476.017, 1.164 // 1477.255, 0.000 1503.860, 0.000 // 1504.860, 1.176 // 1506.062, 0.000 // 1532.767, 0.000 // 1533.767, 1.210 1534.937, 0.000 // 1561.686, 0.000 // 1562.686, 1.180 // 1563.894, 0.000 // 1590.682, 0.000 1591.682, 1.160 // 1592.952, 0.000 // 1619.824, 0.000 // 1620.824, 1.170 // 1622.037, 0.000 1648.560, 0.000 // 1649.560, 1.183 // 1650.774, 0.000 // 1677.497, 0.000 // 1678.497, 1.183 1679.698, 0.000 // 1706.483, 0.000 // 1707.483, 1.183 // 1708.686, 0.000 // 1735.436, 0.000 1736.436, 1.173 // 1737.667, 0.000 // 1764.455, 0.000 // 1765.455, 1.173 // 1766.771, 0.000 1793.450, 0.000 // 1794.450, 1.182 // 1795.642, 0.000 // 1822.300, 0.000 // 1823.300, 1.181 1824.488, 0.000 // 1851.201, 0.000 // 1852.201, 1.203 // 1853.412, 0.000 // 1880.156, 0.000 1881.156, 1.172 // 1882.372, 0.000 // 1909.037, 0.000 // 1910.037, 1.197 // 1911.233, 0.000 1937.864, 0.000 // 1938.864, 1.171 // 1940.032, 0.000 // 1966.753, 0.000 // 1967.753, 1.161 1968.919, 0.000 // 1995.695, 0.000 // 1996.695, 1.195 // 1997.870, 0.000 // 2024.524, 0.000 2025.524, 1.178 // 2026.727, 0.000 // 2053.334, 0.000 // 2054.334, 1.169 // 2055.542, 0.000 2082.142, 0.000 // 2083.142, 1.211 // 2084.320, 0.000 // 2111.096, 0.000 // 2112.096, 1.194 2113.271, 0.000 // 2140.043, 0.000 // 2141.043, 1.178 // 2142.249, 0.000 // 2168.989, 0.000 2169.989, 1.189 // 2171.293, 0.000 // 2198.005, 0.000 // 2199.005, 1.181 // 2200.174, 0.000 2226.926, 0.000 // 2227.926, 1.165 // 2229.089, 0.000 // 2255.739, 0.000 // 2256.739, 1.192 2257.990, 0.000 // 2284.677, 0.000 // 2285.677, 1.185 // 2286.896, 0.000 // 2313.638, 0.000 2314.638, 0.910 // 2316.276, 0.000 // 2342.890, 0.000 // 2343.890, 1.187 // 2345.303, 0.000 2371.898, 0.000 // 2372.898, 1.202 // 2374.164, 0.000 // 2400.983, 0.000 // 2401.983, 1.218 2403.195, 0.000 // 2429.849, 0.000 // 2430.849, 1.191 // 2432.123, 0.000 // 2458.993, 0.000 2459.993, 1.201 // 2461.297, 0.000 // 2487.956, 0.000 // 2488.956, 1.202 // 2490.185, 0.000 2516.908, 0.000 // 2517.908, 1.195 // 2519.095, 0.000 // 2545.707, 0.000 // 2546.707, 1.195 2547.902, 0.000 // 2574.664, 0.000 // 2575.664, 1.182 // 2576.835, 0.000 // 2603.549, 0.000 2604.549, 1.208 // 2605.947, 0.000 // 2632.667, 0.000 // 2633.667, 1.179 // 2634.964, 0.000 2661.710, 0.000 // 2662.710, 1.166 // 2663.933, 0.000 // 2690.803, 0.000 // 2691.803, 1.170 2693.071, 0.000 // 2719.678, 0.000 // 2720.678, 1.176 // 2721.959, 0.000 // 2748.744, 0.000 2749.744, 1.168 // 2751.097, 0.000 // 2777.776, 0.000 // 2778.776, 1.168 // 2779.958, 0.000 2806.703, 0.000 // 2807.703, 1.157 // 2808.867, 0.000 // 2835.635, 0.000 // 2836.635, 1.199 2837.811, 0.000 // 2864.336, 0.000 // 2865.336, 1.177 // 2866.586, 0.000 // 2893.305, 0.000 2894.305, 1.174 // 2895.500, 0.000 // 2922.188, 0.000 // 2923.188, 1.180 // 2924.337, 0.000 2951.062, 0.000 // 2952.062, 1.186 // 2953.262, 0.000 // 2979.971, 0.000 // 2980.971, 1.166 2982.195, 0.000 // 3008.918, 0.000 // 3009.918, 1.170 // 3011.099, 0.000 // 3037.782, 0.000 3038.782, 1.127 // 3039.987, 0.000 // 3066.620, 0.000 // 3067.620, 1.184 // 3068.848, 0.000 3095.535, 0.000 // 3096.535, 1.177 // 3097.724, 0.000 // 3124.277, 0.000 // 3125.277, 1.198 3126.505, 0.000 // 3153.131, 0.000 // 3154.131, 1.219 // 3155.312, 0.000 // 3181.989, 0.000 3182.989, 1.195 // 3184.182, 0.000 // 3210.832, 0.000 // 3211.832, 1.174 // 3213.025, 0.000 3239.694, 0.000 // 3240.694, 1.191 // 3241.875, 0.000 // 3268.624, 0.000 // 3269.624, 1.185 3270.853, 0.000 // 3297.568, 0.000 // 3298.568, 1.183 // 3299.737, 0.000 // 3326.494, 0.000 3327.494, 1.198 // 3328.750, 0.000 // 3355.547, 0.000 // 3356.547, 1.169 // 3357.754, 0.000 3384.393, 0.000 // 3385.393, 1.181 // 3386.553, 0.000 // 3413.323, 0.000 // 3414.323, 1.180 3415.522, 0.000 // 3442.230, 0.000 // 3443.230, 1.200 // 3444.424, 0.000 // 3471.221, 0.000 3472.221, 1.194 // 3473.406, 0.000 // 3500.101, 0.000 // 3501.101, 1.180 // 3502.296, 0.000 3528.927, 0.000 // 3529.927, 1.185 // 3531.090, 0.000 // 3557.801, 0.000 // 3558.801, 1.202 3559.994, 0.000 // 3586.609, 0.000 // 3587.609, 1.177 // 3588.830, 0.000 // 3615.477, 0.000 3616.477, 1.200 // 3617.669, 0.000 // 3644.446, 0.000 // 3645.446, 1.165 // 3646.664, 0.000 3673.360, 0.000 // 3674.360, 1.178 // 3675.562, 0.000 // 3702.236, 0.000 // 3703.236, 1.181 3704.381, 0.000 // 3731.039, 0.000 // 3732.039, 1.160 // 3733.211, 0.000 // 3759.882, 0.000 3760.882, 1.179 // 3762.101, 0.000 // 3788.796, 0.000 // 3789.796, 1.176 // 3791.008, 0.000 3817.816, 0.000 // 3818.816, 1.172 // 3820.057, 0.000 // 3846.781, 0.000 // 3847.781, 1.174 3848.989, 0.000 // 3875.612, 0.000 // 3876.612, 1.197 // 3877.768, 0.000 // 3904.438, 0.000

3905.438,	1.182	//	3906.620,	0.000 //	3933.325,	0.000 //	3934.325,	1.207	//	3935.541,	0.000
3962.104,	0.000	//	3963.104,	1.200 //	3964.354,	0.000 //	3991.034,	0.000	//	3992.034,	1.200
3993.277,	0.000	11	4020.029,	0.000 //	4021.029,	1.170 //	4022.317,	0.000	11	4049.023,	0.000
4050.023.	1.227	11	4051.224.	0.000 //	4077.753.	0.000 //	4078.753.	1.197	11	4079.942.	0.000
4106 619	0 000	11	4107 619	1 194 //	4108 786	0 000 //	4135 457	0 000	11	4136 457	1 189
A137 615	0.000	11	A16A 340	0.000 //	A165 340	1 207 //	A166 501	0.000	11	1103 243	0.000
4137.013,	1 107	<i>'</i> ,	4104.342,	0.000 //	4105.542,	1.207 //	4100.521,	1 000	<i>'</i> ,,	4193.243,	0.000
4194.243,	1.197	<i></i>	4195.427,	0.000 //	4222.064,	0.000 //	4223.064,	1.203	<i></i>	4224.254,	0.000
4251.013,	0.000	//	4252.013,	1.196 //	4253.222,	0.000 //	4279.886,	0.000	//	4280.886,	1.180
4282.117,	0.000	//	4308.705,	0.000 //	4309.705,	1.193 //	4310.934,	0.000	//	4337.612,	0.000
4338.612,	1.181	11	4339.813,	0.000 //	4366.538,	0.000 //	4367.538,	1.178	11	4368.829,	0.000
4395.536,	0.000	11	4396.536,	1.174 //	4397.779,	0.000 //	4424.542,	0.000	11	4425.542,	1.190
4426.729	0.000	11	4453.416.	0.000 //	4454.416.	1.178 //	4455.582.	0.000	11	4482.335.	0.000
11201120,	1 177	11	1100.110,	0 000 //	4511 079	0.000 //	4510 078	1 172	11	4513 508	0 000
4403.335,	1.1//	<i>''</i> ,	4404.000,	1 100 //	4511.270,	0.000 //	4512.270,	1.175	<i>''</i> ,	4515.508,	1 100
4540.159,	0.000	<i>'</i> .	4541.159,	1.100 //	4542.430,	0.000 //	4569.173,	0.000	<i>'</i> .	45/0.1/3,	1.196
4571.390,	0.000	//	4598.028,	0.000 //	4599.028,	1.182 //	4600.183,	0.000	11	4626.759,	0.000
4627.759,	1.182	//	4628.982,	0.000 //	4655.715,	0.000 //	4656.715,	1.201	//	4657.897,	0.000
4684.479,	0.000	//	4685.479,	1.192 //	4686.693,	0.000 //	4713.361,	0.000	//	4714.361,	1.196
4715.554,	0.000	11	4742.281,	0.000 //	4743.281,	1.195 //	4744.523,	0.000	11	4771.307,	0.000
4772.307.	1.180	11	4773.572.	0.000 //	4800.166.	0.000 //	4801.166.	1.176	11	4802.371.	0.000
4828.939	0.000	11	4829.939	1.190 //	4831.114.	0.000 //	4857.864.	0.000	11	4858.864.	1,190
1860 020	0 000	11	1996 606	0.000 //	1997 606	1 199 //	1999 765	0.000	11	4015 420	0 000
4000.029,	1 107	<i>'</i> ,	4000.000,	0.000 //	4007.000,	1.100 //	4000.700,	1 100	<i>'</i> ,,	4915.420,	0.000
4916.420,	1.197	<i></i>	4917.599,	0.000 //	4944.353,	0.000 //	4945.353,	1.196	<i></i>	4946.604,	0.000
4973.324,	0.000	//	4974.324,	1.170 //	4975.549,	0.000 //	5002.344,	0.000	//	5003.344,	1.201
5004.536,	0.000	//	5031.234,	0.000 //	5032.234,	1.186 //	5033.414,	0.000	//	5060.045,	0.000
5061.045,	1.183	11	5062.233,	0.000 //	5088.969,	0.000 //	5089.969,	1.193	11	5091.122,	0.000
5117.750,	0.000	11	5118.750,	1.190 //	5119.926,	0.000 //	5146.496,	0.000	11	5147.496,	1.203
5148.671.	0.000	11	5175.312.	0.000 //	5176.312.	1.189 //	5177.487.	0.000	11	5204.187.	0.000
5205 187	1 161	11	5206 395	0 000 //	5233 248	0 000 //	5234 248	1 195	11	5235 492	0 000
5260.107,	0.000	<i>'</i> ,,	5062.040	1 100 //	5260.240,	0.000 //	5001 171	0.000	<i>'</i> ,,	5200.472,	1 100
5202.240,	0.000	<i>'</i> ,	5205.240,	1.100 //	5204.400,	0.000 //	5291.171,	0.000	<i>'</i> ,	5292.171,	1.199
5293.407,	0.000	11	5319.994,	0.000 //	5320.994,	1.186 //	5322.319,	0.000	11	5349.079,	0.000
5350.079,	1.210	//	5351.292,	0.000 //	5377.989,	0.000 //	5378.989,	1.178	//	5380.206,	0.000
5406.874,	0.000	//	5407.874,	1.188 //	5409.059,	0.000 //	5435.797,	0.000	//	5436.797,	1.193
5438.019,	0.000	11	5464.748,	0.000 //	5465.748,	1.182 //	5466.925,	0.000	11	5493.706,	0.000
5494.706,	1.182	11	5495.823,	0.000 //	5522.593,	0.000 //	5523.593,	1.192	11	5524.892,	0.000
5551.554.	0.000	11	5552.554.	1.196 //	5553.803.	0.000 //	5580.654.	0.000	11	5581.654.	1,194
5582 913	0 000	11	5609 593	0 000 //	5610 593	1 186 //	5611 780	0 000	11	5638 383	0 000
5630 393	1 102	<i>''</i>	5640 578	0.000 //	5667 216	0.000 //	5669 016	1 190	<i>''</i>	5660 370	0.000
5059.505,	1.105	<i>'</i> ,	5040.578,	0.000 //	5007.210,	0.000 //	5000.210,	1.100	<i>'</i> ,,	5009.579,	0.000
5695.907,	0.000	11	5696.907,	1.197 //	5698.106,	0.000 //	5724.674,	0.000	11	5/25.6/4,	1.193
5726.855,	0.000	//	5753.477,	0.000 //	5754.477,	0.813 //	5756.262,	0.000	//	5783.063,	0.000
5784.063,	1.209	//	5785.263,	0.000 //	5811.959,	0.000 //	5812.959,	1.207	//	5814.207,	0.000
5840.756,	0.000	//	5841.756,	1.194 //	5842.945,	0.000 //	5869.568,	0.000	//	5870.568,	1.211
5871.757,	0.000	11	5898.543,	0.000 //	5899.543,	1.175 //	5900.761,	0.000	11	5927.564,	0.000
5928.564.	1.171	11	5929.805.	0.000 //	5956.509.	0.000 //	5957.509.	1.191	11	5958.809.	0.000
5985 568	0 000	11	5986 568	1 168 //	5987 788	0 000 //	6014 395	0 000	11	6015 395	1 168
6016 568	0 000	11	60/3 2/8	0.000 //	6044 248	1 170 //	60/5 /89	0 000	11	6072 229	0 000
6072.000,	1 1 4 0	<i>'</i> ,,	6074 466	0.000 //	6101 157	0.000 //	6100 157	1 177	<i>'</i> ,,	6102.220,	0.000
6073.229,	1.149		6074.466,	0.000 //	6101.157,	0.000 //	6102.157,	1.1//		6103.340,	0.000
6130.052,	0.000	11	6131.052,	1.173 //	6132.206,	0.000 //	6158.988,	0.000	11	6159.988,	1.181
6161.229,	0.000	//	6187.890,	0.000 //	6188.890,	1.162 //	6190.085,	0.000	//	6216.855,	0.000
6217.855,	1.140	//	6219.093,	0.000 //	6245.772,	0.000 //	6246.772,	1.174	//	6247.950,	0.000
6274.759,	0.000	11	6275.759,	1.171 //	6276.939,	0.000 //	6303.580,	0.000	11	6304.580,	1.174
6305.788,	0.000	11	6332.276,	0.000 //	6333.276,	1.154 //	6334.450,	0.000	11	6361.111,	0.000
6362.111.	1.174	11	6363.291	0.000 //	6389.884	0.000 //	6390.884	1.190	11	6392.055.	0.000
6418 666	0 000	11	6419 666	1 186 //	6420 882	0 000 //	6447 459	0 000	11	6448 459	1 202
6//0 700	0.000	11	6/76 /11	0 000 //	6/77 /11	1 102 //	6/78 520	0.000	11	6505 206	0 000
0443.192,	1 4 6 6	"	6507 504	0.000 //	0411.411,	1.133 //	GEDE 00/	1 474	'''	CEDC 455	0.000
0500.296,	1.168	11	0507.504,	0.000 //	0534.224,	0.000 //	0535.224,	1.1/4	11	0030.455,	0.000
6563.156,	0.000	11	6564.156,	1.172 //	6565.319,	0.000 //	6591.985,	0.000	11	6592.985,	1.194
6594.145,	0.000	//	6620.760,	0.000 //	6621.760,	1.173 //	6622.937,	0.000	//	6649.571,	0.000
6650.571,	1.172	//	6651.809,	0.000 //	6678.612,	0.000 //	6679.612,	1.180	//	6680.849,	0.000
6707.486,	0.000	11	6708.486,	1.170 //	6709.639,	0.000 //	6736.297,	0.000	//	6737.297,	1.163
6738.651	0.000	11	6765.289	0.000 //	6766.289.	1.199 //	6767.476	0.000	11	6794.245	0.000
6795.245	1,172	11	6796.454	0.000 //	6823.198	0.000 //	6824 198	1,175	11	6825.417	0.000
6852 070	0.000	11	6853 070	1.211 //	6854 316	0.000 //	6880 949	0.000	11	6881 949	1.179
6993 133	0.000	',	6000 052	0 000 //	6010 052	1 161 //	6010 004	0.000	11	6039 642	0.000
0000.100,	0.000	11	0303.003,	0.000 //	0910.003,	T. TOT //	0312.024,	0.000	11	0300.043,	0.000

6393.643, 1.222 / 9940.651, 0.000 / 6967.468, 0.000 // 6968.468, 1.180 // 6969.469, 0.000 /6968.460, 0.000 // 7025.181, 0.000 // 7026.191, 1.155 // 7064.073, 1.160 // 711.487, 0.000 // 7064.132, 0.000 // 7064.073, 1.160 // 711.487, 0.000 // 7141.740, 0.000 // 7141.740, 1.181 // 7149.627, 1.160 // 7141.740, 0.000 // 7141.740, 1.181 // 7149.627, 1.160 // 7140.77, 0.000 // 727.634, 0.000 // 728.535, 0.000 // 7141.740, 1.181 // 7149.627, 1.160 // 7140.77, 0.000 // 727.634, 0.000 // 728.535, 0.000 // 728.535, 0.000 // 728.535, 0.000 // 728.535, 0.000 // 7343.285, 0.000 // 7343.285, 0.000 // 7343.285, 0.000 // 7344.285, 1.173 // 7345.504, 0.000 // 732.207, 0.000 7373.207, 1.181 // 7403.232, 0.000 // 7420.305, 0.000 // 7433.300, 0.000 // 7442.085, 0.000 // 7450.323, 0.000 // 7442.087, 0.000 // 7451.211, 1.186 // 7664.524, 0.000 // 7514.242, 1.170 // 7518.647, 0.000 // 7516.536, 0.000 // 7645.273, 1.167 // 7647.643, 0.000 // 7514.242, 0.000 // 7518.647, 0.000 // 7563.330, 0.187 // 768.937, 0.000 // 7645.273, 0.1167 // 7647.643, 0.000 // 7642.245, 0.000 // 7642.245, 0.000 // 7632.330, 0.000 // 7643.350, 1.167 // 7647.643, 0.000 // 7719.774, 0.191 // 7407.544, 0.000 // 7719.774, 1.191 // 7720.971, 0.000 // 7843.046, 0.000 // 7645.235, 0.000 // 7642.246, 0.000 // 763.330, 0.186 // 763.452, 0.000 // 7645.254, 0.000 // 7645.254, 0.000 // 7645.254, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.656, 0.000 // 7645.256, 0.000 // 7645.756, 0.000										
eege.abc, 0.000 // 6997.360, 1.175 // 6998.550, 0.000 // 7025.191, 0.000 // 7025.197, 1.155 // 7068.057, 0.000 // 7041.212, 0.000 // 7111.2877, 1.160 // 7108.057, 0.000 // 7140.740, 0.000 // 7149.740, 0.000 // 7149.737, 0.000 // 7127.54, 0.000 // 7127.54, 0.000 // 7226.543, 0.000 // 7226.543, 0.000 // 7226.543, 0.000 // 7226.543, 0.000 // 7226.543, 0.000 // 7315, 0.117 // 7225.643, 0.000 // 7314.211, 1180 // 7225.643, 0.000 // 7314.214, 0.000 // 7315, 0.727, 0.000 // 7314.227, 1.171 // 7225.543, 0.000 // 7314.214, 0.000 // 7315, 0.000 // 7315, 0.000 // 7315, 0.000 // 7315, 0.000 // 7315, 0.000 // 7315, 0.000 // 7316, 0.000 // 7315, 0.000 // 7316, 0.000 // 7315, 0.000 // 7342, 0.000 // 7342, 0.000 // 7430, 0.000 // 7430, 0.000 // 7435, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7450, 0.000 // 7451, 0.000 // 7451, 0.000 // 7451, 0.000 // 7451, 0.000 // 7451, 0.000 // 7451, 0.000 // 7451, 0.000 // 7451, 0.000 // 7451, 0.000 // 7451, 0.000 // 7452, 0.000 // 7451, 0.000 // 74	6939.643,	1.225 //	6940.851,	0.000 //	6967.468,	0.000 //	6968.468,	1.180	// 6969.649,	0.000
<pre>7227.397, 0.000 // 7054.132, 0.000 // 7055.132, 1.185 // 7055.471, 0.000 // 718.077, 0.000 7140, 7084.057, 1.180 // 7084.057, 1.180 // 7144.055, 0.000 // 7114.087, 0.000 // 7115, 737, 0.000 // 7114.087, 0.000 // 7125, 734, 0.000 // 7125, 734, 0.000 // 7125, 734, 0.000 // 7125, 734, 0.000 // 7125, 734, 0.000 // 7125, 734, 0.000 // 7125, 734, 0.000 // 735, 711, 110 // 722, 634, 1.171 // 722, 634, 1.171 // 722, 634, 1.175 // 734, 734, 0.000 // 7314, 214, 0.000 // 7312, 207, 0.000 7373, 207, 1.179 // 7374, 335, 0.000 // 7444, 286, 1.173 // 7445, 646, 0.000 // 7312, 207, 0.000 7373, 207, 1.179 // 7374, 335, 0.000 // 7430, 633, 0.000 // 7450, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7459, 683, 0.000 // 7454, 644, 0.000 // 7474, 644, 0.000 // 7474, 7459, 0.000 // 7461, 733, 0.000 // 7461, 733, 0.000 // 7461, 7461, 0</pre>	6996.360.	0.000 //	6997.360.	1.175 //	6998.550.	0.000 //	7025.191.	0.000	// 7026.191.	1.155
 No. 1997, 10.000 // 1035.122, 0.000 // 1035.122, 1.189 // 1035.173, 0.000 // 1035.137, 0.000 N. 1997, 114.087, 1.180 // 1035.125, 0.000 // 1141.887, 0.000 // 1140.0737, 0.000 // 1141.087, 0.000 N. 1997, 114.087, 0.000 // 1245.05, 0.000 // 1149.602, 1.180 // 7205.024, 0.000 // 7227.634, 0.000 N. 2000 // 7285.322, 0.000 // 7285.432, 0.000 // 7214.14, 0.000 // 7215.214, 0.160 N. 2000 // 7285.325, 0.000 // 7245.285, 1.175 // 7245.644, 0.000 // 7315.214, 0.160 N. 2000 // 7245.285, 1.175 // 741.037, 0.000 // 7445.633, 0.000 // 741.228, 0.000 Y. 2000 // 7430.955, 1.199 // 7432.118, 0.000 // 7458.633, 0.000 // 7459.235, 1.210 Y. 2000 // 7430.955, 1.199 // 7432.131, 0.000 // 7458.633, 0.000 // 7661.328, 1.210 Y. 2000 // 751.321, 1.188 // 7561.356, 0.000 // 7634.339, 0.000 // 7664.389, 1.107 Y. 2000 // 7751.321, 1.188 // 7689.373, 0.000 // 7634.339, 0.100 // 7661.338, 0.000 Y. 674.312, 0.000 // 7745.436, 0.000 // 7748.937, 0.000 // 7435.438, 0.000 // 7681.323, 0.000 Y. 2000 // 7753.306, 0.000 // 7773.300, 0.000 // 7637, 1.197 // 7682.145, 0.000 Y. 2000 // 7783.430, 0.000 // 7784.454, 0.000 // 7634.745, 0.000 Y. 2000 // 7780.430, 0.000 // 7773.454, 0.000 // 7835.016, 1.178 // 7862.26, 0.000 Y. 2000 // 7863.905, 1.186 // 7863.086, 0.000 // 7835.016, 1.178 // 7863.286, 0.000 Y. 2000 // 7805.422, 0.000 // 7821.822, 1.190 // 7822.033, 0.000 // 8934.140, 0.000 Z007.401, 0.000 // 7805.422, 0.000 // 7821.822, 1.190 // 7823.030, 0.000 // 7842.738, 0.000 Z007.401, 0.000 // 2054.664, 0.000 // 2054.664, 1.177 // 2067.389, 0.000 // 8037.235, 1.194 Z038.292, 0.000 // 2054.205, 0.1000 // 2074.242, 0.000 // 2033, 0.000 // 2034.253, 0.000 Z007.435, 0.000 // 2054.255, 0.1000 // 2074.242, 0.000 // 2034.242, 0.000 Z007.435, 0.000 // 2054.254, 0.000 // 2074.242, 0.000 // 20	7007 207	0 000 //	705/ 120	0.000 //	7055 120	1 105 //	7056 471	0 000	// 7002 057	0.000
<pre>7064.077, 1.180 // 7085.255, 0.000 // 7111.877, 0.100 // 7110.0737, 0.000 7140.740, 0.000 // 741740, 1.181 // 7142.973, 0.000 // 720.524, 0.000 // 7227.334, 0.000 7285.352, 0.000 // 7285.021, 0.1735.431, 0.000 // 7314.214, 0.000 // 7315.214, 1.180 7316.402, 0.000 // 7343.285, 0.100 // 7344.285, 1.173 // 7345.643, 0.000 // 7315.274, 1.181 7316.402, 0.000 // 7343.285, 0.000 // 7341.2173 // 7345.643, 0.000 // 7352.070, 0.000 7372.900, 0.000 // 7343.935, 0.000 // 7441.237, 0.000 // 7456.633, 0.000 // 7455.633, 0.000 7372.900, 0.000 // 7437.433, 0.000 // 7443.2185, 0.000 // 7468.633, 0.000 // 7456.633, 0.000 71517.429, 0.000 // 7457.633, 0.100 // 7456.633, 0.100 // 7456.633, 0.000 // 7456.633, 0.000 7517.431, 0.000 // 753.312, 1.198 // 7576.536, 0.000 // 7646.273, 1.176 // 7647.463, 0.000 7156.233, 1.168 // 7663.2420, 0.000 // 7683.933, 0.100 // 7634.273, 1.176 // 7647.463, 0.000 7746.522, 0.000 // 7763.226, 0.000 // 7683.973, 0.000 // 7693.73, 1.197 // 7682.445, 0.000 7746.522, 0.000 // 7763.92, 0.000 // 7768.973, 0.000 // 7693.73, 1.197 // 7682.415, 0.000 7746.545, 0.000 // 7745.940, 0.000 // 7745.427, 0.000 // 7461.252, 0.000 7746.545, 0.000 // 7745.92, 0.000 // 7921.922, 0.100 // 7423.0151, 0.1178 // 7365.025, 0.000 7765.125, 1.174 // 707.354, 0.000 // 7271.542, 0.000 // 7421.358, 0.000 // 7492.352, 0.000 7056.235, 0.000 // 7820.822, 0.000 // 7281.822, 1.194 // 7725.364, 0.000 // 7492.351, 0.400 7057.35, 1.172 // 7951.254, 0.000 // 7281.262, 0.000 // 7423.358, 0.000 // 7482.758, 0.000 8057.340, 0.000 // 8003.401, 1.184 // 8009.602, 0.000 // 7813.6151, 0.000 // 7482.758, 0.000 8051.402, 1.187 // 8096.332, 0.000 // 8214.2110, 0.000 // 8320.424, 1.000 8151.856, 0.000 // 8032.320, 0.000 // 8214.223, 0.000 // 8241.420, 0.000 // 8323.850, 0.000 8243.937, 0.000 // 8034.322, 0.000 // 8242.42, 0.000 // 8236.530, 0.000 8243.937, 0.000 // 8254.556, 0.105 // 8274.422, 0.000 // 8264.224, 0.1000 // 8236.553, 0.000 8245.957, 0.000 // 8254.556, 0.106 // 8274.422, 0.000 // 8264.242, 0.000 8267.343, 0.000 // 8254.556, 0.100</pre>	1021.391,	0.000 //	7054.152,	0.000 //	1055.152,	1.105 //	1050.411,	0.000	// 1065.057,	0.000
<pre>7140.740, 0.000 // 7141.740, 1.181 // 7142.973, 0.000 // 7169.737, 0.000 // 7170.737, 1.180 7171.932, 0.000 // 7286.02, 0.000 // 7386.481, 0.000 // 7357.481, 1.180 // 728.684, 0.000 7285.532, 0.000 // 7285.532, 1.175 // 7287.543, 0.000 // 7341, 0.000 // 7315.214, 1.160 7316.402, 0.000 // 7343.285, 0.000 // 7344.285, 1.173 // 7345.564, 0.000 // 7315.214, 1.160 7316.2037, 1.171 // 7343.393, 0.000 // 7440.137, 0.000 // 7456.683, 0.000 // 7463.283, 1.210 7460.964, 0.000 // 7450.933, 0.000 // 7485.633, 1.107 // 7485.643, 1.000 // 7463.283, 1.210 7460.964, 0.000 // 7473.933, 0.000 // 7485.633, 1.107 // 763.894, 0.000 // 7616.233, 0.000 7517.421, 0.000 // 7515.312, 1.198 // 7535.363, 0.100 // 7603.389, 0.000 // 7661.233, 0.000 7662.233, 1.168 // 7663.422, 0.000 // 7633.330, 0.100 // 7603.894, 0.000 // 7745.464, 0.000 7718.774, 0.000 // 7787.333, 0.000 // 7773.544, 0.000 // 7745.464, 0.000 7766.233, 1.168 // 7663.429, 0.000 // 7773.545, 1.194 // 7534.546, 0.000 // 7745.464, 1.100 7786.718.774, 0.000 // 7787.345, 0.000 // 7773.000 // 7781.451, 0.118 // 7834.050, 0.000 7862.905, 0.000 // 7782.322, 0.000 // 7783.016, 0.000 // 7851.61, 1.178 // 783.026, 0.000 7865.905, 0.000 // 7863.905, 1.186 // 7684.056, 0.000 // 7875.061, 1.178 // 783.206, 0.000 7865.735, 1.172 // 7861.922, 0.000 // 7874.645, 0.000 // 7875.645, 1.205 // 7880.687, 0.000 7805.735, 1.172 // 7861.922, 0.000 // 7874.545, 0.000 // 7875.545, 1.000 // 7835.206, 0.000 7805.935, 0.000 // 8025.1466, 0.000 // 8064.66, 1.177 // 8067.335, 0.000 // 8037.235, 1.194 8038.922, 0.000 // 8054.166, 0.000 // 8026.1203 // 8211.41, 0.100 // 8235.553, 0.000 7805.735, 1.172 // 7861.922, 0.000 // 8267.428, 0.000 // 8363.924, 0.000 // 835.428, 0.000 7855.735, 1.179 // 8240.732, 0.000 // 8267.428, 0.000 // 8267.428, 0.000 // 8267.428, 0.000 // 8267.428, 0.000 7856.335, 0.000 // 8274.428, 0.000 // 8267.428, 0.000 // 8264.242, 0.000 // 8267.535, 0.100 7836.329, 0.000 // 8364.447, 0.000 // 8267.428, 0.000 // 8261.428, 0.000 // 8363.424, 0.000 8286.429, 1.180 // 8240.732, 0.000 //</pre>	7084.057,	1.180 //	7085.255,	0.000 //	7111.887,	0.000 //	7112.887,	1.160	// 7114.087,	0.000
<pre>T171 932, 0.000 // T198 e02, 0.000 // T196 e02, 1.160 // T20. 624, 0.000 // T27 548, 0.000 T286 352, 0.000 // T286 352, 1.175 // T286 481, 0.000 // T286 341, 1.180 // T286 564, 0.000 T285 352, 0.000 // T386 352, 1.175 // T287 543, 0.000 // T314 214, 0.000 // T315 214, 1.160 T316 402, 0.000 // T343 285, 0.000 // T401.037, 0.000 // T314 214, 0.000 // T312 237, 0.000 T329 353, 0.000 // T330, 0.000 // T481 285, 1.173 // T386 564, 0.000 // T430 285, 0.000 T429 305, 0.000 // T430 305, 1.199 // T432.118, 0.000 // T458 683, 0.000 // T451 642, 0.000 T517 424, 1.170 // T518 647, 0.000 // T645 273, 1.176 // T516 424, 0.000 T517 424, 1.170 // T518 647, 0.000 // T645 273, 0.000 // T641 238, 0.000 T764 233, 0.000 T7657 1, 0.000 // T632 330, 0.000 // T633 330, 1.184 // T634 564, 0.000 // T661 338, 0.000 T7662 233, 1.188 // T663 242, 0.000 // T663 973, 0.000 // T692 373, 1.157 // T692 145, 0.000 T718 774, 0.000 // T719 774, 1.191 // T720 571, 0.000 // T435 747, 0.000 // T485 145, 0.000 T766 233, 1.184 // T637 364, 0.000 // T661 233, 0.000 T766 2.33, 0.000 // T632 300, 0.000 // T785 497, 0.000 // T485 145, 0.000 T766 2.33, 1.184 // T67.354, 0.000 // T785 456, 0.000 // T633 516, 1.178 // T385, 60, 0.000 T766 205, 0.000 // T620 322, 0.000 // T626 235, 0.000 // T691 736, 0.000 T620 505, 0.000 // T620 322, 0.000 // T621 522, 0.100 // T692 454, 1.205 // T386, 563, 0.000 T636 332, 0.000 // 803 431, 1.184 // 800 802, 0.000 // 812, 646, 1.205 // T896, 687, 0.000 B507 401, 1.187 // B506, 516, 0.000 // 821 422, 1.110 // T282 535, 0.000 B507 401, 1.187 // B506, 516, 0.000 // 821 422, 1.110 // B12 2.853, 0.000 B51 406, 1.187 // B506, 516, 0.000 // 821 422, 1.121 // B36, 422, 0.000 // 832 452, 0.000 B52 430, 1.187 // B506, 416, 0.000 // 821 422, 1.121 // B26, 686, 0.000 B523 431, 1.187 // B506, 432, 0.000 // 826 422, 0.000 // 8324 553, 0.000 B524 432, 0.000 // 824 477, 0.000 // 824 422, 0.000 // 8234 553, 0.000 B524 432, 0.000 // 824 477, 0.000 // 824 422, 0.000 // 8232 422, 0.000 B524 432, 0.000 // 824 437, 0.000 // 826 422, 0.000 //</pre>	7140.740.	0.000 //	7141.740.	1.181 //	7142.973.	0.000 //	7169.737.	0.000	// 7170.737.	1.180
<pre>//11.322, 0.000 // 129.602, 0.000 // 199.602, 1.180 // 120.524, 81, 0.100 // 122.634, 1.180 // 128.644, 0.000 // 728.522, 0.000 // 728.525, 0.177 // 728.648, 0.000 // 7314.214, 0.000 // 7315.214, 1.180 // 732.207, 0.000 // 7316.402, 0.000 // 7345.268, 0.000 // 743.028, 0.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 743.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 745.683, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 764.383, 0.000 // 774.565.571, 0.000 // 7747.308, 0.000 // 7783.330, 0.1184 // 763.464, 0.000 // 764.383, 0.000 // 7785.680, 0.000 // 784.744, 0.000 // 7785.125, 0.000 // 784.549, 0.000 // 7785.125, 0.000 // 784.549, 0.000 // 786.123, 0.000 // 784.549, 0.000 // 786.123, 0.000 // 786.521, 0.000 // 786.521, 0.000 // 786.541, 0.000 // 807.541, 0.000 // 807.541, 0.000 // 807.541, 0.000 // 787.546, 0.000 // 781.541, 0.000 // 789.541, 0.000 // 807.531, 0.194 // 806.542, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0.000 // 807.538, 0</pre>	7171 020	0.000 //	7100 600	0 000 //	7100 600	1 100 //	7000 004	0 000	// 7007 604	0.000
7228.34, 1.171 // 7229.818, 0.000 // 726.481, 0.000 // 727.461, 1.180 // 728.644, 0.000 // 731.207, 1.191 // 734.322, 0.000 // 734.207, 0.000 // 744.214, 0.000 // 731.207, 1.191 // 734.328, 0.000 // 744.285, 1.173 // 734.504, 0.000 // 745.207, 0.000 // 740.037, 0.000 // 740.02.037, 1.181 // 740.3228, 0.000 // 745.000 // 745.000 // 745.000 // 745.000 // 745.000 // 745.000 // 745.000 // 745.000 // 745.000 // 745.000 // 745.423, 0.000 // 745.424, 0.000 // 7515.312, 1.198 // 7576.536, 0.000 // 764.829, 0.000 // 766.233, 1.176 // 754.463, 0.000 // 7603.233, 0.000 // 755.312, 1.198 // 7576.536, 0.000 // 763.454, 0.000 // 764.463, 0.000 // 7663.233, 0.000 // 7652.233, 0.000 // 7774.1191 // 720.571, 0.000 // 7747.454, 0.000 // 7453.030, 0.000 // 7745.454, 0.000 // 7454.545, 0.000 // 806.755, 0.000 // 806.756, 0.000 // 806.756, 0.000 // 806.755, 0.000 // 806.756, 0.000 // 806.756, 0.000 // 806.756, 0.000 // 806.755, 0.000 // 806.756, 0.000 // 816.766, 0.1107 // 806.735, 0.000 // 816.766, 0.000 // 816.766, 0.1161 // 816.855, 0.000 // 816.766, 0.000 // 816.766, 0.000 // 816.766, 0.000 // 816.766, 0.118 // 816.853, 0.000 // 816.756, 0.000 // 81	/1/1.932,	0.000 //	/198.602,	0.000 //	/199.002,	1.160 //	7200.824,	0.000	// /22/.034,	0.000
<pre>7285.352, 0.000 // 7286.352, 1.175 // 7287.543, 0.000 // 7314.214, 0.000 // 7312.207, 0.000 7315.402, 0.000 // 7343.285, 0.000 // 7342.281, 1.173 // 7345.564, 0.000 // 7352.207, 0.000 7429.905, 0.000 // 7430.305, 1.199 // 7432.113, 0.000 // 7458.683, 0.000 // 7459.683, 1.210 7460.864, 0.000 // 7451.647, 0.000 // 7482.603, 1.170 // 7489.863, 0.000 // 761.424, 0.000 7574.312, 0.000 // 751.312, 1.198 // 7575.536, 0.000 // 7463.389, 0.000 // 7643.389, 1.170 7662.233, 1.186 // 7663.242, 0.000 // 7632.330, 0.000 // 7643.389, 0.000 // 7643.389, 0.000 // 7652.333, 0.000 7718.774, 0.000 // 775.342, 0.000 // 7633.330, 1.184 // 7634.548, 0.000 // 7644.389, 1.170 7749.650, 0.000 // 7743.684, 0.000 // 7743.000 // 7649.973, 1.197 // 7592.145, 0.000 7749.655, 0.000 // 7763.384, 0.000 // 7783.330, 1.194 // 7775.547, 0.000 // 7654.525, 0.000 7862.235, 1.174 // 7807.384, 0.000 // 7785.016, 1.176 // 7825.066, 0.000 7862.965, 0.000 // 783.905, 1.186 // 7685.085, 0.000 // 7893.013, 0.000 // 7894.037, 0.000 // 7892.812, 1.191 7785.735, 1.172 // 781.928, 0.000 // 7921.822, 1.190 // 7923.003, 0.000 // 7894.73, 0.000 7805.735, 1.172 // 781.928, 0.000 // 7824.842, 0.000 // 7893.035, 0.000 // 8065.85, 0.000 7805.735, 1.172 // 785.166, 0.000 // 8122.111, 0.000 // 8141.11, 1.190 // 8122.525, 0.000 8151.565, 0.000 // 806.166, 0.000 // 8064.66, 1.177 // 8067.328, 0.000 // 8037.235, 1.194 8038.392, 0.000 // 8065.166, 0.000 // 8216.161, 1.103 // 821.1874, 0.000 // 8122.535, 0.000 8236.315, 0.000 // 8364.247, 0.000 // 8254.242, 0.000 // 8354.242, 0.000 // 8354.241, 0.000 8236.315, 0.000 // 8354.247, 0.000 // 8355.342, 0.000 // 8356.442, 0.000 // 8354.191, 0.000 8237.543, 0.000 // 8354.247, 0.000 // 8355.341, 1.197 // 8367.442, 0.000 // 8354.191, 0.000 8237.543, 0.000 // 8434.571, 0.000 // 8355.342, 0.000 // 8354.942, 0.000 8237.543, 0.000 // 8354.247, 0.000 // 8355.341, 1.197 // 8364.422, 0.000 // 8354.241, 1.206 8237.541, 0.000 // 8434.571, 0.000 // 8454.592, 0.000 // 8354.594, 0.000 8237.541, 0.000 // 8474.53, 0.000 // 8454.592, 0.000 //</pre>	7228.634,	1.171 //	7229.818,	0.000 //	7256.481,	0.000 //	7257.481,	1.180	// 7258.664,	0.000
7316. 402, 0.000 // 734. 285, 0.000 // 744. 285, 1.173 // 7345. 504, 0.000 // 7450. 207, 0.000 7373. 207, 1.179 // 7374. 333, 0.000 // 7401. 337, 0.000 // 7450. 237, 1.181 // 7403. 228, 0.000 7429.065, 0.000 // 743.051, 1.199 // 7432.118, 0.000 // 7458. 683, 0.000 // 7456. 683, 1.210 7460.864, 0.000 // 7457.603, 0.000 // 7482.273, 0.000 // 7464.273, 1.177 // 7547.463, 0.000 7571.321, 1.107 // 7518.647, 0.000 // 7633.380, 0.000 // 7645.273, 0.000 // 7645.233, 0.000 // 7645.233, 0.000 // 7643.389, 0.000 // 7645.233, 0.000 // 7645.233, 0.000 // 7645.233, 0.000 // 7645.233, 0.000 // 7745.454, 0.000 7718.774, 0.000 // 7767.333, 0.000 // 7783.305, 0.000 // 7765.454, 0.000 // 7845.254, 0.000 7718.774, 0.000 // 7717.4, 1.191 // 720.971, 0.000 // 7747.549, 0.000 // 7745.254, 0.000 7784.037, 0.000 // 7783.400, 0.000 // 7834.016, 0.000 // 7835.016, 1.177 // 7863.206, 0.000 7840.37, 0.000 // 7803.222, 0.000 // 7814.016, 0.000 // 7893.03, 0.000 // 7894.735, 0.000 7840.37, 0.000 // 8008.401, 1.184 // 8008.602, 0.000 // 7891.812, 0.000 // 8049.140, 0.000 8038.392, 0.000 // 8008.401, 1.184 // 8008.602, 0.000 // 8036.236, 0.000 // 8049.140, 0.000 8038.392, 0.000 // 8008.401, 1.184 // 8008.602, 0.000 // 8108.769, 0.000 // 8181.769, 1.189 811.866, 0.000 // 8207.315, 1.194 812.854, 0.000 // 8207.315, 1.194 812.854, 0.000 // 8207.315, 1.194 812.854, 0.000 // 8208.324, 0.000 // 8267.428, 0.000 // 8268.248, 0.181 813.899, 0.000 // 8208.324, 0.000 // 8267.428, 0.000 // 8	7285.352.	0.000 //	7286.352.	1.175 //	7287.543.	0.000 //	7314.214.	0.000	// 7315.214.	1.160
<pre>/116.302, 0.000 // 7343.285, 0.000 // 744.269, 1.173 // 748.504, 0.000 // 742.037, 1.181 // 743.228, 0.000 7429.905, 0.000 // 745.033, 0.000 // 748.623, 1.010 // 748.683, 0.000 // 745.623, 1.210 7460.664, 0.000 // 751.6424, 0.000 751.422, 0.000 // 751.312, 1.198 // 757.535, 0.000 // 7648.623, 1.176 // 754.743, 0.000 7762.233, 1.176 // 754.743, 0.000 // 755.233, 0.000 // 7663.389, 0.000 // 7664.389, 1.170 7662.233, 1.186 // 763.246, 0.000 // 763.000 // 763.000 // 763.454, 0.000 // 765.233, 0.000 7718.774, 0.000 // 777.346, 0.000 // 777.308, 1.194 // 773.547, 0.000 // 764.359, 0.000 7786.226, 1.174 // 7807.354, 0.000 // 777.308, 1.194 // 773.547, 0.000 // 7865.125, 0.000 7862.263, 1.174 // 7807.354, 0.000 // 7774.306, 1.194 // 773.547, 0.000 // 784.512, 1.191 7749.695, 0.000 // 782.22, 0.000 // 7934.016, 0.000 // 783.016, 1.177 // 785.125, 0.000 7862.263, 1.172 // 781.928, 0.000 // 7934.616, 0.000 // 783.003, 0.000 // 7894.735, 0.000 7862.263, 0.000 // 7803.222, 0.000 // 7834.016, 0.000 // 783.003, 0.000 // 7834.212, 1.191 9784.037, 0.000 // 806.166, 0.000 // 806.466, 1.177 // 8067.328, 0.000 // 807.235, 0.000 7805.735, 1.172 // 781.928, 0.000 // 781.821, 1.100 // 781.812, 0.000 // 806.740, 0.000 // 806.740, 0.000 // 806.740, 0.000 // 806.740, 0.000 // 806.740, 0.000 // 806.740, 0.000 // 806.740, 0.000 // 806.740, 0.000 // 807.411, 1.1197 // 8067.329, 0.000 // 812.111, 0.000 // 812.111, 1.197 // 824.722, 0.000 // 826.422, 0.000 // 812.841, 0.000 // 812.841, 0.000 // 812.841, 0.000 // 812.842, 0.0</pre>	7216 400	0 000 //	7242 005	0.000 //	7244 005	1 170 //	7245 504	0 000	// 7070 007	0.000
7373.207, 1.179 // 7374.393, 0.000 // 740.037, 0.000 // 7402.037, 1.181 // 7432.282, 0.000 7429.056, 0.000 // 7487.603, 0.000 // 7488.603, 1.100 // 7488.683, 0.000 // 7454.624, 0.000 7574.241, 1.170 // 7518.647, 0.000 // 7545.273, 0.000 // 7646.273, 1.176 // 7547.463, 0.000 7574.312, 0.000 // 7675.312, 1.198 // 756.336, 0.000 // 7643.283, 0.000 // 7643.283, 0.000 7766.233, 1.168 // 7663.426, 0.000 // 7639.373, 0.000 // 7645.4543, 0.000 // 7645.233, 0.000 7718.774, 0.000 // 7713.744, 1.191 // 772.971, 0.000 // 774.547, 0.000 // 7764.249, 1.195 7749.655, 0.000 // 7713.64, 0.000 // 7773.344, 0.000 // 7773.547, 0.000 // 785.472, 0.000 7806.125, 1.174 // 7807.384, 0.000 // 7863.476, 0.000 // 7875.464, 0.000 // 7892.812, 1.191 784.037, 0.000 // 7920.822, 0.000 // 7865.465, 0.000 // 7897.546, 1.202 // 785.068, 0.000 8007.401, 0.000 // 8008.401, 1.184 // 8009.602, 0.000 // 8037.235, 1.194 8038.392, 0.000 // 8008.401, 1.184 // 8009.602, 0.000 // 8036.235, 0.000 // 8037.235, 1.194 8038.392, 0.000 // 8065.402, 0.000 // 8124.111, 1.190 // 8125.850, 0.000 8151.856, 0.000 // 805.466, 0.000 // 8210.616, 1.107 // 8067.398, 0.000 // 8037.235, 1.000 8152.441, 0.000 // 8056.456, 0.000 // 8210.616, 1.107 // 8067.398, 0.000 // 8037.235, 1.194 8239.553, 1.179 // 8240.732, 0.000 // 8224.428, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8152.454, 0.000 // 8152.456, 1.165 // 8126.416, 1.000 // 8124.111, 1.190 // 8125.253, 0.000 8240.417, 0.000 // 8354.247, 0.000 // 8265.427, 1.187 // 8067.398, 0.000 // 8354.247, 1.000 8240.418, 0.000 // 8354.247, 0.000 // 8265.422, 0.000 // 8276.842, 0.000 8240.419, 0.000 // 8434.371, 0.000 // 8432.851, 0.100 8257.561, 0.000 // 8354.247, 0.000 // 8452.422, 0.000 // 8257.423, 0.000 8263.150, 0.000 // 8434.371, 0.000 // 8454.859, 0.000 // 8457.681, 1.199 // 855.9484, 0.000 8264.164, 1.187 // 8498.871, 0.000 // 8454.879, 0.000 // 8454.781, 0.000 8267.4	7316.402,	0.000 //	7343.205,	0.000 //	7344.205,	1.1/3 //	7345.504,	0.000	// 1312.201,	0.000
7429.905, 0.000 // 7430.905, 1.199 // 7432.118, 0.000 // 7486.863, 0.000 // 7456.863, 1.210 7460.864, 0.000 // 7516.424, 0.000 7517.424, 1.170 // 7518.647, 0.000 // 7586.273, 0.000 // 7634.828, 1.176 // 7647.463, 0.000 7574.312, 0.000 // 7555.312, 1.198 // 7576.536, 0.000 // 7634.589, 0.000 // 7661.233, 0.000 77605.571, 0.000 // 7612.330, 0.000 // 7633.330, 1.184 // 7634.548, 0.000 // 7612.233, 0.000 7718.774, 0.000 // 77174, 1.191 // 7720.971, 0.000 // 7747.549, 0.000 // 7748.549, 1.196 7718.774, 0.000 // 7717.308, 1.190 // 7733.01, 0.000 // 7747.549, 0.000 // 7745.125, 0.000 7782.905, 0.000 // 7716.308, 0.000 // 7793.180, 0.000 // 7785.016, 1.177 // 7836.205, 0.000 7862.205, 1.174 // 7807.354, 0.000 // 7921.822, 1.190 // 793.033, 0.000 // 7949.735, 0.000 807.601, 1.174 // 7807.532, 0.000 // 7921.822, 1.190 // 793.033, 0.000 // 7949.735, 0.000 807.611, 0.000 // 8008.401, 1.184 // 8009.622, 0.000 // 8073.800, 0.000 // 8094.140, 0.000 803.392, 0.000 // 8008.401, 1.184 // 8009.622, 0.000 // 8107.738, 0.000 // 8049.140, 0.000 805.1177 // 8006.332, 0.000 // 821.117 // 8067.738, 0.000 // 811.777 // 807.738, 1.194 8182.941, 0.000 // 8209.616, 0.000 // 8207.420, 0.000 // 821.814, 111, 1.190 // 812.553, 0.000 8240.377, 0.000 // 8234.561, 1.183 // 8295.512, 0.000 // 8235.242, 0.000 // 8325.242, 1.204 8327.543, 0.000 // 8234.541, 0.000 // 8267.428, 0.000 // 8325.422, 1.204 8327.544, 0.000 // 8234.541, 0.000 // 8207.325, 0.000 // 8252.422, 1.204 8329.5531, 1.197 // 8246.777, 0.000 // 8257.641, 1.197 // 8356.4428, 0.000 // 8352.422, 1.204 8329.5431, 1.000 // 8237.315, 1.183 // 8295.512, 0.000 // 8352.422, 0.000 // 8352.422, 1.204 8329.5431, 0.000 // 8334.841, 0.000 // 8352.842, 0.000 // 8352.842, 0.000 840.577, 0.000 // 8354.841, 0.000 // 8352.842, 0.000 // 8352.942, 0.000 840.577, 0.000 // 8354.841, 0.000 // 8456.842, 0.000 // 8352.842, 0.000 840.577, 0.000 // 8344.87	7373.207,	1.179 //	7374.393,	0.000 //	7401.037,	0.000 //	7402.037,	1.181	// 7403.228,	0.000
7460.864 0.000 / 7487.603 0.000 / 7545.273 0.000 / 754.312 0.000 / 754.627 0.000 / 754.424 0.000 / 754.623 0.000 / 754.623 0.000 / 754.623 0.000 / 754.623 0.000 / 7603.389 0.000 / 7604.389 1.170 7652.351 1.168 / 7632.330 0.000 / 7763.236 0.000 / 7763.629 0.000 / 7763.629 0.000 / 7763.649 0.000 / 7763.649 0.000 / 7763.649 0.000 / 7763.649 0.000 / 7763.649 0.000 / 7763.649 0.000 / 7863.615 0.000 / 7863.615 0.000 / 7863.615 0.000 / 7863.615 0.000 / 7863.6169 0.000 / 7863.6169 0.000 / 7863.6169 0.000 / 7863.6169 0.000 / 7863.6169 0.000 / 7863.6169 0.000 / 8063.7255 0.177 8663.7256 0.000 / 8063.7256 0.000 8063.7255 0.177 8663.6269 0.000 8063.7255 0.000 8063.7255	7429.905.	0.000 //	7430.905.	1.199 //	7432.118.	0.000 //	7458.683.	0.000	// 7459.683.	1.210
<pre>Test. 243, 0.000 / Test. 247, 0.000 // Test. 273, 0.000 // Test. 273, 0.000 // Test. 243, 0.000 Test. 312, 0.000 // Test. 323, 0.000 // Test. 344, 0.000 // Test. 345, 0.000 // Test.</pre>	7460 864	0 000 //	7/87 603	0 000 //	7/88 603	1 170 //	7/89 80/	0 000	// 7516 /2/	0 000
<pre>/f1.224, 1.170 // /s18.047, 0.000 // 7565.258, 0.000 // 7663.389, 0.000 // 7663.389, 0.000 // 7663.389, 0.000 // 7663.389, 0.000 // 7663.389, 0.000 // 7663.389, 0.000 // 7663.233, 0.000 // 7689.373, 1.177 // 769.2135, 0.000 // 7785.545, 0.000 // 7785.545, 0.000 // 7785.545, 0.000 // 7785.545, 0.000 // 7785.545, 0.000 // 7785.545, 0.000 // 7785.545, 0.000 // 7785.545, 0.000 // 7785.545, 0.000 // 7855, 0.000 // 7855.016, 1.178 // 786.545, 0.000 // 7855.016, 1.178 // 786.545, 0.000 // 7865.025, 0.000 // 7855.016, 1.178 // 786.545, 0.000 // 7855.016, 1.178 // 786.545, 0.000 // 7865.025, 0.000 // 7865.025, 0.000 // 7815.50, 0.000 // 7891.52, 0.000 // 7892.812, 1.191 // 780.687, 0.000 // 7892.812, 1.191 // 780.687, 0.000 // 7919.545, 0.000 // 7973.546, 1.205 // 7980.687, 0.000 // 8051.250, 0.000 // 8065.166, 0.000 // 8103.255, 0.000 // 8032.235, 0.000 // 8065.166, 0.000 // 8103.255, 0.000 // 8103.255, 0.000 // 8125.253, 0.000 // 8125.253, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8095.140, 1.187 // 8096.332, 0.000 // 8261.425, 0.000 // 8181.799, 1.188 8182.941, 0.000 // 8203.616, 0.000 // 8125.612, 0.000 // 8264.224, 1.181 // 8296.644, 0.000 8295.513, 1.172 // 8240.732, 0.000 // 8265.2000 // 8264.224, 1.181 // 8296.644, 0.000 8237.543, 0.000 // 8274.32, 0.000 // 8352.424, 1.200 // 8325.424, 0.000 834.191, 0.000 834.191, 0.000 834.191, 0.000 834.191, 0.000 834.191, 0.000 834.191, 0.000 834.191, 0.000 834.191, 0.000 // 8435.356, 0.000 // 8432.180, 0.000 // 8356.4247, 0.000 // 8356.4247, 0.000 // 8356.424, 0.000 // 8356.4247, 0.000 // 8356.4247, 0.000 // 8356.4247, 0.000 // 8356.4247, 0.000 // 8356.424, 0.000 // 8356.424, 0.000 // 8437.630, 0.000 // 8434.535, 0.000 // 8434.535, 0.000 // 8434.535, 0.000 // 8444.730, 1.228 // 6645.932, 0.000 // 8434.253, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.643, 0.000 // 8457.444, 0.000 // 8457.444, 0.000 // 8457.444,</pre>	7400.004,	0.000 //	7407.000,	0.000 //	7400.000,	1.1/0 //	7403.004,	0.000	// 1010.424,	0.000
<pre>TF74.312, 0.000 // 7575.312, 1.198 // T675.536, 0.000 // F633.398, 0.000 // F664.389, 1.170 F605.571, 0.000 // 7631.428, 0.000 // F633.973, 0.100 // F634.548, 0.000 // F661.438, 0.000 F718.774, 0.000 // T719.774, 1.191 // T720.971, 0.000 // 7745.549, 0.000 // T748.549, 1.196 F749.696, 0.000 // T771.506, 1.000 // T777.504, 1.194 // T775.547, 0.000 // T785.152, 0.000 F826.305, 0.000 // F835.306, 0.108 // F836.305, 0.000 // F781.512, 0.000 // F836.206, 0.000 F826.305, 0.000 // F820.505, 0.186 // F856.305, 0.000 // F931.812, 0.000 // F836.205, 0.000 F950.735, 1.172 // F951.928, 0.000 // F971.460, 0.000 // F931.812, 0.000 // F836.205, 0.000 S007.401, 0.000 // S005.468, 0.000 // S065.166, 1.177 // S067.389, 0.000 // S037.235, 1.194 S038.382, 0.000 // S065.166, 0.000 // S066.166, 1.177 // S067.389, 0.000 // S035.235, 0.000 S057.401, 0.000 // S065.166, 0.000 // S066.166, 1.103 // S124.111, 1.190 // S125.253, 0.000 S151.856, 0.000 // S065.166, 0.000 // S105.616, 1.203 // S124.111, 1.190 // S125.53, 0.000 S152.553, 1.178 // S096.332, 0.000 // S154.547, 0.000 // S180.769, 0.000 // S181.769, 1.89 S182.941, 0.000 // S205.161, 0.000 // S205.422, 0.000 // S265.422, 0.000 // S268.424, 0.000 S296.315, 0.000 // S207.315, 1.183 // S295.5247, 0.000 // S265.422, 0.000 // S268.424, 0.000 S296.315, 0.000 // S297.315, 1.183 // S295.5247, 0.000 // S265.422, 0.000 // S268.242, 1.204 S27.544, 0.000 // S429.540, 0.000 // S455.247, 1.187 // S56.442, 0.000 // S470.852, 0.000 SE32.786, 0.000 // S441.276, 1.202 // S430.156, 0.000 // S457.681, 1.199 // S558.944, 0.000 SE32.784, 0.000 // S484.274, 0.000 // S454.247, 0.000 // S454.547, 0.000 // S457.681, 1.199 // S557.684, 0.000 SE32.784, 0.000 // S484.370, 0.000 // S454.381, 0.000 SE32.784, 0.000 // S454.371, 0.000 // S701.474, 0.000 // S701.474, 0.000 // S670.3718, 0.000 SE32.784, 0.000 // S454.370, 0.000 // S454.341, 0.000 SE37.644, 1.190 // S252.046, 0.000 // S454.340, 0.000 // S670.3718, 0.000 SE37.644, 1.190 // S252.045, 0.000 // S454.340, 0.000 // S454.341, 0.000 SE37.644, 1.190 // S</pre>	7517.424,	1.170 //	7518.647,	0.000 //	7545.273,	0.000 //	7546.273,	1.176	// 7547.463,	0.000
7605.671, 0.000 // 7632.330, 0.000 // 7633.330, 1.184 // 7634.548, 0.000 // 7661.233, 0.000 7662.233, 1.68 // 7663.246, 0.000 // 7699.973, 0.000 // 7745.549, 0.000 // 7745.549, 1.196 7718.774, 0.000 // 7719.774, 1.191 // 7720.971, 0.000 // 7747.549, 0.000 // 7745.549, 1.196 7749.785, 0.000 // 7715.364, 0.000 // 7777.308, 1.194 // 7773.547, 0.000 // 7855.125, 0.000 7866.125, 1.174 // 7807.354, 0.000 // 7816, 0.000 // 7835.016, 1.178 // 7835.000 7840.37, 0.000 // 7820.822, 0.000 // 7916.546, 0.000 // 7919.303, 0.000 // 7949.735, 0.000 7950.735, 1.172 // 7951.928, 0.000 // 7978.546, 0.000 // 7979.303, 0.000 // 8037.235, 1.194 8038.392, 0.000 // 8062.6166, 0.000 // 8066.166, 1.177 // 8067.398, 0.000 // 8037.235, 1.194 8038.392, 0.000 // 8052.656, 1.166 // 1864.050, 0.000 // 8160.769, 0.000 // 8037.235, 1.108 8151.856, 0.000 // 8212.565, 1.166 // 1864.050, 0.000 // 8160.769, 0.000 // 828.53, 0.000 8239.515, 0.000 // 829.566, 1.167 // 8067.398, 0.000 // 828.523, 0.000 8239.515, 0.000 // 829.516, 0.000 // 812.111, 0.000 // 825.422, 0.000 // 8335.242, 0.000 8239.515, 0.1179 // 8240.732, 0.000 // 8254.422, 0.000 // 8355.242, 0.100 8249.511, 1179 // 8240.732, 0.000 // 8254.242, 0.000 // 8355.242, 0.100 8240.511, 1179 // 8240.732, 0.000 // 8454.523, 0.000 // 8450.422, 0.000 // 8364.523, 0.000 8240.511, 1179 // 8240.732, 0.000 // 8454.523, 0.000 // 8450.632, 0.000 // 8451.6769, 1.100 // 8470.862, 1.181 827.433, 0.0000 // 8441.978, 1.202 // 4431.156, 0.000 //	7574.312,	0.000 //	7575.312,	1.198 //	7576.536,	0.000 //	7603.389,	0.000	// 7604.389,	1.170
7662.233, 1 168 // 7663.426, 0.000 // 7689.973, 0.000 // 7690.973, 1.197 // 7692.145, 0.000 7718.774, 0.000 // 7716.306, 0.000 // 7772.051, 0.000 // 7778.549, 0.000 // 786.549, 1.194 7749.656, 0.000 // 7773.636, 0.000 // 7773.651, 0.000 // 7835.161, 1.178 // 786.206, 0.000 7862.905, 0.000 // 7802.805, 0.166 // 7855.086, 0.000 // 7831.812, 0.000 // 7832.026, 0.000 7862.905, 0.000 // 7802.822, 0.000 // 7921.822, 1.190 // 7931.812, 0.000 // 7892.735, 0.000 7950.735, 1.172 // 7951.928, 0.000 // 7976.546, 0.000 // 7979.546, 1.205 // 7980.687, 0.000 9950.740, 1.000 // 8008.401, 1.184 // 8009.602, 0.000 // 8063.235, 0.000 // 8037.235, 1.194 8038.392, 0.000 // 8065.166, 0.000 // 8106.162, 0.000 // 8106.124.111, 1.100 // 8125.255, 0.000 8151.456, 0.000 // 8105.166, 0.000 // 8206.162, 0.000 // 8264.225, 1.180 // 8125.451, 0.000 8152.941, 0.000 // 8207.616, 0.000 // 8206.122, 0.000 // 8264.225, 1.181 // 8269.684, 0.000 8296.315, 0.000 // 8277.315, 1.183 // 829.512, 0.000 // 8264.222, 1.000 // 8282.422, 1.204 8237.643, 0.000 // 8441.775, 1.202 // 4431.185 // 356.442, 0.000 // 8433.191, 0.000 8240.976, 0.000 // 849.871, 0.000 // 8325.247, 1.187 // 8366.422, 0.000 // 8436.241, 0.000 8240.978, 0.000 // 8449.871, 0.000 // 8459.862, 0.000 // 8657.681, 1.199 // 8559.484, 0.000 8287.981, 1910 // 829.954, 0.000 // 8464.730, 1.228 // 4645.822, 0.000 // 8657.681, 0.000 // 8654.786, 0.000 8736.131, 121 // 877.770, 0.000 // 8564.474, 0.000 // 8657.681, 1.199 // 8558.9484, 0.000	7605.571.	0.000 //	7632.330.	0.000 //	7633.330.	1.184 //	7634.548.	0.000	// 7661.233.	0.000
748.74, 0.000 / 7693.428, 0.000 / 7693.435, 0.000 / 7745.549, 0.000 / 7745.549, 0.000 / 7745.549, 0.000 / 7805.020, 0.000 / 8067.020, 0.000 / 8067	7660.011,	1 1 60 //	7662.000,	0.000 //	7600.072	0.000 //	7601.010,	1 107	// 7600 145	0.000
7718.774, 0.000 // 7719.774, 1.191 // 7720.971, 0.000 // 7747.549, 0.000 // 7745.549, 1.196 7749.695, 0.000 // 776.305, 0.000 // 773508, 1.194 // 7776.547, 0.000 // 7862.0155, 0.000 7862.905, 0.000 // 7863.905, 1.186 // 7865.085, 0.000 // 7891.812, 0.000 // 7892.812, 1.191 7894.037, 0.000 // 7820.822, 0.000 // 7978.546, 0.000 // 7891.812, 0.000 // 7892.812, 1.191 7894.037, 0.000 // 7920.822, 0.000 // 7978.546, 0.000 // 7892.803, 0.000 // 7892.812, 1.191 7807.35, 1.172 // 7951.928, 0.000 // 7978.546, 0.000 // 7823.003, 0.000 // 8064.735, 1.000 8007.401, 0.000 // 8008.401, 1.144 // 8009.602, 0.000 // 8036.235, 0.000 // 8094.140, 0.000 8095.140, 1.187 // 8096.332, 0.000 // 8123.111, 0.000 // 8124.111, 1.190 // 8238.553, 0.000 8151.856, 0.000 // 8152.856, 1.165 // 814.059, 0.000 // 8180.769, 0.000 // 8125.253, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 227428, 0.000 // 8268.428, 1.181 // 8269.644, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 227428, 0.000 // 8268.428, 1.181 // 8268.644, 0.000 8240.378, 0.000 // 834.247, 0.000 // 8355.247, 1.187 // 8356.442, 0.000 // 8363.191, 0.000 8240.978, 0.000 // 8345.356, 0.000 // 8443.159, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8240.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8463.662, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8463.730, 0.000 // 8565.681, 0.000 // 8614.789, 0.000 // 8655.789, 1.193 8617.028, 0.000 // 863.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 876.760, 1.184 // 7876.444, 0.000 // 870.347, 1.206 // 8703.718, 0.000 873.239, 0.000 // 875.449, 1.175 // 876.664, 0.000 // 870.471, 0.000 // 876.134, 0.100 874.448, 0.000 // 875.449, 1.175 // 876.664, 0.000 // 870.471, 0.000 // 876.344, 1.000 874.449, 0.000 // 875.134, 0.100 // 876.434, 0.000 // 876.434, 1.106 // 970.434, 0.000 // 876.434, 0.000 916.870, 0.000 // 987.943, 0.000 // 977.293, 1.117 // 9803.270, 0.000 //	1002.233,	1.100 //	/003.420,	0.000 //	1009.913,	0.000 //	1690.913,	1.197	// /092.145,	0.000
<pre>7749.695, 0.000 // 776.308, 0.000 // 7777.308, 1.194 // 7778.547, 0.000 // 7805.125, 0.000 7866.125, 1.174 // 7807.354, 0.000 // 7843.016, 0.000 // 7835.016, 1.178 // 7863.206, 0.000 7862.905, 0.000 // 7863.905, 1.186 // 7865.085, 0.000 // 7891.812, 0.000 // 7892.812, 1.191 7894.037, 0.000 // 7805.922, 0.000 // 7921.822, 1.190 // 7893.016, 1.205 // 7890.687, 0.000 8007.401, 0.000 // 8008.401, 1.184 // 8009.602, 0.000 // 8036.235, 0.000 // 8037.255, 1.194 8038.392, 0.000 // 8065.166, 0.000 // 8124.646, 0.000 // 8067.386, 0.000 // 8037.253, 1.194 8038.392, 0.000 // 8056.166, 0.000 // 8124.111, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8151.856, 0.000 // 8126.851, 1.165 // 8154.059, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8296.315, 0.000 // 8296.616, 0.000 // 8207.428, 0.000 // 8326.428, 1.181 // 8269.664, 0.000 8296.315, 0.000 // 8297.315, 1.183 // 8298.512, 0.000 // 8325.422, 0.000 // 8326.242, 1.204 8327.543, 0.000 // 834.247, 0.000 // 8354.247, 1.187 // 8356.442, 0.000 // 8326.242, 1.204 8327.543, 0.000 // 834.247, 0.000 // 8356.247, 1.187 // 8356.442, 0.000 // 8326.242, 1.204 8327.543, 0.000 // 8441.978, 1.202 // 444.159, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8384.191, 1.215 // 8385.356, 0.000 // 8412.106, 0.000 // 8451.610, 1.213 // 8414.253, 0.000 822.758, 1.190 // 853.984, 0.000 // 8454.730, 1.228 // 8454.932, 0.000 // 8472.613, 0.000 852.778, 0.000 // 8441.874, 1.200 // 8464.730, 1.228 // 8464.932, 0.000 // 8672.613, 0.000 8573.613, 1.137 // 816.4777, 0.000 // 8782.943, 1.164 // 879.141, 0.000 // 8672.613, 0.000 8673.613, 1.137 // 816.431, 0.000 // 8782.943, 1.164 // 879.141, 0.000 // 8617.819, 0.000 8673.643, 1.187 // 8844, 1.175 // 8872.664, 0.000 // 875.134, 0.000 // 8616.789, 1.193 8617.620, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 875.134, 0.000 // 860.134, 1.177 860.663, 1.158 // 9107.828, 0.000 // 8872.664, 0.000 // 875.134, 0.000 // 860.134, 1.177 860.663, 1.158 // 9107.828, 0.000 // 8872.664, 0.000 // 880.664, 1.177 // 8847.847, 0.000 9163.880, 0.000 // 8731.329, 1.184 // 8</pre>	7718.774,	0.000 //	7719.774,	1.191 //	7720.971,	0.000 //	7747.549,	0.000	// 7748.549,	1.196
7806.125, 1.174 // 7807.354, 0.000 // 7834.016, 0.000 // 7835.016, 1.178 // 7836.206, 0.000 7862.905, 0.000 // 7820.822, 0.000 // 7912.822, 1.190 // 7923.003, 0.000 // 7892.812, 1.191 7894.037, 0.000 // 7920.822, 0.000 // 7978.546, 0.000 // 7973.546, 1.205 // 7800.687, 0.000 7807.010, 0.000 // 808.401, 1.144 // 8009.6020, 0.000 // 8036.235, 0.000 // 8084.235, 0.000 8007.401, 0.000 // 8086.401, 1.144 // 8009.6020, 0.000 // 8036.235, 0.000 // 8034.235, 0.000 8151.856, 0.000 // 8152.856, 1.165 // 154.059, 0.000 // 8180.769, 0.000 // 8125.253, 0.000 8151.856, 0.000 // 8152.856, 1.165 // 154.059, 0.000 // 8180.769, 0.000 // 8135.759, 1.189 8129.541, 0.000 // 8152.856, 1.165 // 154.059, 0.000 // 8268.281, 0.000 // 8238.553, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 267428, 0.000 // 8268.242, 0.000 // 8326.422, 1.204 8327.543, 0.000 // 8342.477, 0.000 // 8355.247, 1.187 // 8356.442, 0.000 // 833.191, 0.000 8440.787, 0.000 // 8443.159, 0.000 // 8463.862, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 848.871, 0.000 // 8455.247, 1.187 // 8356.442, 0.000 // 8826.242, 1.204 827.543, 0.000 // 848.71, 0.000 // 8451, 1.157 // 8356.442, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 848.871, 0.000 // 8456.861, 0.000 // 8614.789, 0.000 // 8657.788, 0.000 8585.760, 0.000 // 843.730, 0.000 // 8567.848, 0.000 // 8561.479, 0.000 // 8617.789, 1.193 8517.028, 0.000 // 8563.1329, 1.184 // 8736.443, 0.000 // 875.344, 0.000 // 8614.779, 1.193 8517.631, 1.121 // 843.123, 0.000	7749.695.	0.000 //	7776.308.	0.000 //	7777.308.	1.194 //	7778.547.	0.000	// 7805.125.	0.000
Table 1, 11, 11, 11, 12, 12, 11, 11, 11, 12, 12	7806 125	1 17/ //	7907 354	0 000 //	7934 016	0 000 //	7935 016	1 170	11 7936 206	0 000
<pre>/#82.905, 0.000 // 782.822, 0.000 // 7978.822, 1.1991.812, 0.000 // 7992.812, 0.000 /7950.735, 1.172 // 7951.928, 0.000 // 7978.546, 0.000 // 7979.546, 1.205 // 7980.867, 0.000 8007.401, 0.000 // 8068.401, 1.184 // 8009.602, 0.000 // 806.235, 0.000 // 8094.140, 0.000 8095.140, 1.187 // 8096.332, 0.000 // 8123.111, 0.000 // 8124.111, 1.190 // 8125.255, 1.194 8038.382, 0.000 // 8123.853, 1.165 // 8146.4559, 0.000 // 8124.111, 1.190 // 8125.255, 0.000 80151.856, 0.000 // 8123.854, 1.155 // 8146.4559, 0.000 // 8124.111, 1.190 // 8125.255, 0.000 8151.856, 0.000 // 8123.854, 1.156 // 8146.4559, 0.000 // 8124.111, // 800 // 8238.553, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 8267.428, 0.000 // 8264.428, 1.181 // 8268.484, 0.000 8324.191, 1.215 // 8354.247, 0.000 // 8255.212, 0.000 // 8325.242, 1.004 8327.543, 0.000 // 8344.977, 0.000 // 8355.247, 1.187 // 8366.422, 0.000 // 8473.862, 1.131 8472.140, 0.000 // 8441.976, 1.202 // 8443.159, 0.000 // 8454.822, 0.000 // 8473.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8456.661, 0.000 // 8451.811, 1.199 // 8558.948, 0.000 8528.786, 0.000 // 8586.760, 1.184 // 8587.988, 0.000 // 8574.1199 // 8572.998, 0.000 8585.760, 0.000 // 8586.760, 1.184 // 857.988, 0.000 // 8574.1199 // 8558.948, 0.000 8573.613, 1.123 // 8674.777, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8672.613, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 8704.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 873.4329, 1.184 // 8732.464, 0.000 // 8705.411, 0.000 // 8702.613, 0.000 8673.613, 1.121 // 8671.943, 0.000 // 8745.4843, 1.167 // 8803.027, 0.000 // 8864.664, 1.177 // 8847.847, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 8845.664, 0.000 // 8704.713, 0.000 // 8702.613, 0.000 8673.613, 1.191 // 9863.123, 0.000 // 8845.664, 0.000 // 8744, 1.206 // 8703.718, 0.000 8674.448, 0.000 // 875.448, 1.175 // 887.6644, 0.000 // 8744, 1.206 // 8703.718, 0.000 918.870, 0.000 // 9873.483, 0.1164 // 8703.185, 0.000 // 9842.533, 0.164 9194.623, 0.000 // 9874.843, 0.000 // 9844.730, 0.000 // 983</pre>	7000.125,	1.1/4 //	7007.354,	0.000 //	7034.010,	0.000 //	7035.010,	1.170	// 1030.200,	0.000
<pre>7894.037, 0.000 // 7920.822, 0.000 // 7921.822, 1.190 // 7923.003, 0.000 // 7949.735, 0.000 7950.735, 1.172 // 7950.827, 0.000 // 8066.1666, 1.177 // 8067.386, 0.1200 // 8037.235, 1.194 8038.392, 0.000 // 8065.166, 0.000 // 8066.166, 1.177 // 8067.389, 0.000 // 8037.235, 1.194 8038.392, 0.000 // 8152.856, 1.165 // 8164.059, 0.000 // 8120.769, 0.000 // 8121.769, 1.189 8182.941, 0.000 // 820.312, 0.000 // 8210.111, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8151.856, 0.000 // 8120.856, 1.165 // 8164.059, 0.000 // 8181.769, 0.000 // 8181.769, 1.189 8182.941, 0.000 // 8207.315, 1.183 // 8298.512, 0.000 // 8264.824, 1.181 // 8268.684, 0.000 8296.315, 0.000 // 8277.315, 1.183 // 8298.512, 0.000 // 8265.422, 0.000 // 8326.242, 1.204 8327.543, 0.000 // 8345.4247, 0.000 // 8365.4247, 1.187 // 8366.442, 0.000 // 8326.242, 1.204 8340.978, 0.000 // 8498.871, 0.000 // 8412.106, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8440.978, 0.000 // 8498.871, 0.000 // 8451.169, 0.000 // 8459.862, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8454.799, 0.000 // 8457.7681, 1.199 // 8558.948, 0.000 8528.798, 1.190 // 8529.954, 0.000 // 8566.681, 0.000 // 8567.661, 1.199 // 8558.948, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 873.9843, 1.164 // 870.141, 0.000 // 870.814, 1.87 8761.333, 0.000 // 871.472, 0.000 // 8782.943, 1.164 // 870.141, 0.000 // 870.3718, 0.000 874.484, 0.000 // 877.481, 0.000 // 8782.943, 1.164 // 870.141, 0.000 // 8703.718, 0.000 874.484, 0.000 // 877.481, 0.000 // 8782.980, 1.214 // 8934.185, 0.000 // 8703.718, 0.000 874.484, 0.000 // 877.481, 7.175 // 876.664, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 874.484, 0.000 // 877.483, 0.000 // 8732.90, 0.000 // 8934.855, 1.192 // 892.136, 0.000 910.663, 1.158 // 913.860, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 896.912, 0.000 916.870, 0.000 // 9331.860, 0.000 // 937.475, 0.000 // 937.477, 0.000 // 938.477, 1.172 950.031, 0.000 // 9451.921, 0.157 //</pre>	7862.905,	0.000 //	7863.905,	1.186 //	7865.085,	0.000 //	7891.812,	0.000	// 7892.812,	1.191
7950.735, 1.172 // 7951.928, 0.000 // 7978.546, 0.000 // 7979.546, 1.205 // 7980.687, 0.000 8007.401, 0.000 // 8068.166, 0.000 // 8060.660, 1.077 // 8067.388, 0.000 // 8077.335, 1.194 8038.392, 0.000 // 8056.166, 0.000 // 8123.111, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8125.941, 0.000 // 8056.166, 0.000 // 8123.111, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8128.941, 0.000 // 8209.616, 0.000 // 8210.616, 1.203 // 8211.874, 0.000 // 8238.553, 0.000 8282.941, 0.000 // 8209.616, 0.000 // 8210.616, 1.203 // 8211.874, 0.000 // 8238.553, 0.000 8296.315, 0.000 // 8240.732, 0.000 // 8267.428, 0.000 // 8268.428, 1.181 // 8268.644, 0.000 8237.543, 0.000 // 8354.247, 0.000 // 8355.247, 1.187 // 8356.442, 0.000 // 838.191, 0.000 8340.978, 0.000 // 8341.978, 1.202 // 8443.159, 0.000 // 8458.622, 0.000 // 8383.191, 0.000 8341.91, 1.215 // 3385.356, 0.000 // 8499.871, 1.192 // 8501.070, 0.000 // 8527.798, 0.000 8528,780, 0.000 // 8498.871, 0.000 // 8549.870, 0.000 // 8557.661, 1.199 // 8588.486, 0.000 8528,780, 0.000 // 8437.30, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8672.613, 0.000 8673.623, 0.000 // 8781.943, 0.000 // 874.777, 0.000 // 8672.413, 0.000 873.239, 0.000 // 8787.943, 0.000 // 8786.644, 0.000 // 8704, 1.107 // 8670.134, 1.187 874.448, 0.000 // 8787.443, 0.000 // 8786.644, 0.000 // 8704.114, 0.000 // 860.134, 0.172 870.449, 0.000 // 8787.443, 0.000 // 8786.644, 0.000 // 8346.664, 1.177 // 8847.847, 0.000 871.118 // 8875.448, 1.175 //	7894.037,	0.000 //	7920.822,	0.000 //	7921.822,	1.190 //	7923.003,	0.000	// 7949.735,	0.000
B007.401, 0.000 // 8008.401, 1.184 // 8009.602, 0.000 // 803.035, 0.000 // 8037.235, 1.194 8038.1401, 1.187 // 8008.332, 0.000 // 8066.166, 1.177 // 8067.398, 0.000 // 8037.235, 1.194 8038.1401, 1.187 // 8008.332, 0.000 // 8121.111, 0.000 // 8126.2583, 0.000 8151.856, 0.000 // 8152.856, 1.165 // 8154.059, 0.000 // 8180.769, 0.000 // 8181.769, 1.189 8182.941, 0.000 // 2209.616, 0.000 // 8210.616, 1.203 // 8211.874, 0.000 // 238.553, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 8267.4228, 0.000 // 8264.828, 1.181 // 8269.684, 0.000 8239.554, 0.000 // 8374.728, 0.000 // 8354.247, 0.000 // 8355.422, 0.000 // 8326.242, 1.204 8327.543, 0.000 // 8354.247, 0.000 // 8354.247, 1.187 // 8366.442, 0.000 // 8326.242, 1.204 8440.978, 0.000 // 849.871, 0.000 // 8412.106, 0.000 // 8445.862, 0.000 // 8410.252, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8454.759, 0.000 // 8557.661, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8484.730, 1.000 // 8704.473, 1.222 // 8646.323, 0.000 // 8672.613, 0.000 8673.032, 0.000 // 8644.730, 1.224 // 8444, 279, 0.000 // 8707.618, 0.000 870.329, 0.000 // 8747.77, 0.000 // 8739.943, 1.164 // 870.441, 0.000 // 8708.718, 0.000 871.428, 0.000 // 8747.77, 0.000 // 8739.943, 1.164 // 870.441, 0.000 // 8708.718, 0.000 874.448, 0.000 // 8747.77, 0.000 // 8739.943, 1.164 // 870.441, 0.000 // 8816.831, 0.000 874.448, 0.000 // 8747.77, 0.000 // 8739.943, 1.164 // 870.141, 0.000 // 8816.831, 0.000 874.448, 0.000 // 8747.	7950 735	1 172 //	7951 928	0 000 //	7978 546	0 000 //	7979 546	1 205	// 7980 687	0 000
800.401, 0.000 // 8008.101, 1.184 // 8009.602, 0.000 // 8036.235, 0.000 // 8034.125, 1.194 8038.392, 0.000 // 8065.166, 0.000 // 8066.166, 1.177 // 8067.398, 0.000 // 8094.140, 0.000 8058.126, 0.000 // 8152.856, 1.165 // 8154.059, 0.000 // 8180.769, 0.000 // 8181.769, 1.189 8129.941, 0.000 // 8290.616, 0.000 // 8210.616, 1.203 // 8211.874, 0.000 // 8181.769, 1.189 8229.515, 1.177 // 8240.732, 0.000 // 8267.428, 0.000 // 8268.428, 1.181 // 8268.684, 0.000 8237.543, 0.000 // 8297.315, 1.183 // 8298.512, 0.000 // 8254.242, 0.000 // 8326.242, 1.204 8340.978, 0.000 // 8354.247, 0.000 // 8355.247, 1.187 // 8366.442, 0.000 // 8326.242, 1.204 8340.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8440.978, 0.000 // 8498.871, 0.000 // 8457.681, 1.199 // 8557.680, 0.000 8525.760, 0.000 // 8498.871, 0.000 // 8567.681, 1.199 // 8557.484, 0.000 8525.760, 0.000 // 8643.730, 0.000 // 8647.988, 0.000 // 8644.789, 0.000 // 8617.613, 0.000 8730.329, 0.000 // 8741.977, 0.000 // 8787.984, 1.164 // 8790.141, 0.000 // 8761.314, 1.187 8741.484, 0.000 // 8874.477, 0.000 // 8787.943, 1.164 // 8790.141, 0.000 // 8761.314, 1.187 874.484, 0.000 // 8787.943, 0.000 // 8783.945, 1.164 // 8790.141, 0.000 // 8846.684, 1.177 874.448, 0.000 // 8787.943, 0.000 // 8783.945, 0.000 // 8904.570, 0.000 // 8904.270, 1.170 870.463, 1.230, 0.000 // 8845.644, 0.000 // 8846.644, 1.177 // 8847.847, 0.000 874.448, 0.0000 // 8341.980,	1300.100,	1.1/2 //	7301.320,	0.000 //	1310.340,	0.000 //	1919.040,	1.200	// 1300.001,	0.000
8038.392, 0.000 // 8065.166, 0.000 // 8066.166, 1.177 // 8067.398, 0.000 // 804.140, 0.000 8095.140, 1.187 // 8096.332, 0.000 // 8134.059, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8151.856, 0.000 // 8152.856, 1.165 // 8154.059, 0.000 // 8126.769, 0.000 // 8238.553, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 8267.428, 0.000 // 8325.242, 0.000 // 8236.428, 0.000 8296.315, 0.000 // 8297.315, 1.183 // 8298.512, 0.000 // 8352.242, 0.000 // 8336.141, 0.000 8341.191, 1.215 // 8358.356, 0.000 // 8121.167 // 8356.428, 0.000 // 8335.191, 0.000 8440.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8469.862, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8456.681, 0.000 // 8469.862, 0.000 // 8577.798, 0.000 8585.760, 0.000 // 8586.760, 1.184 // 8587.988, 0.000 // 8614.789, 0.000 // 8515.789, 1.193 8617.028, 0.000 // 8564.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 875.134, 0.000 // 8760.134, 1.187 761.333, 0.000 // 8747.777, 0.000 // 8734.6464, 0.000 // 875.134, 0.000 // 8760.134, 1.187 761.333, 0.000 // 8787.943, 0.000 // 8784.664, 0.000 // 8769.134, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 893.270, 0.000 // 8961.912, 0.000 9018.870, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8964.700, 1.177 9050.031, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9045.780, 1.172 9050.031, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9345.43, 1.154 // 9136.734, 0.000 9163.632, 1.158 // 9107.822, 0.000 // 9134.543, 0.000 // 9374.471, 0.000 // 9345.43, 0.000 9164.663, 1.158 // 9107.822, 0.000 // 9271.978, 0.000 // 9374.477, 0.000 // 9345.432, 0.000 9166.663, 1.157 // 9164.380, 1.157 // 9165.569, 0.000 // 9137.434, 0.000 // 9135.432, 0.000 9166.631, 1.158 // 9167.820, 0.000 // 9271.978, 0.000 // 9243.980, 1.174 // 936.734, 0.000 9166.631, 1.158 // 9167.820, 0.000 // 9271.978, 0.000 // 9243.930, 0.000 // 9250.933, 0.000 // 9250.933, 0.000 // 9354.247, 0.000	8007.401,	0.000 //	8008.401,	1.184 //	8009.602,	0.000 //	8036.235,	0.000	// 8037.235,	1.194
8095.140, 1.187 // 8096.332, 0.000 // 8123.111, 0.000 // 8124.111, 1.190 // 8125.253, 0.000 8151.856, 0.000 // 8152.856, 1.165 // 8154.059, 0.000 // 8180.769, 0.000 // 8181.769, 1.189 8122.941, 0.000 // 8290.616, 0.000 // 8267.428, 0.000 // 8268.428, 1.181 // 8285.653, 0.000 8295.553, 1.179 // 8240.732, 0.000 // 8267.428, 0.000 // 8268.428, 1.181 // 8269.684, 0.000 8296.315, 0.000 // 8297.315, 1.183 // 8298.512, 0.000 // 8268.428, 1.181 // 8269.644, 0.000 8344.191, 1.215 // 8385.356, 0.000 // 8412.106, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8440.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8469.862, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8459.871, 1.192 // 8501.070, 0.000 // 8527.989, 0.000 8585.760, 0.000 // 8463.730, 0.000 // 8565.681, 0.000 // 8557.681, 1.199 // 8552.948, 0.000 8585.760, 0.000 // 8643.770, 0.000 // 8544.730, 1.228 // 8645.932, 0.000 // 8612.789, 1.193 8671.028, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8744.443, 0.000 // 875.443, 1.175 // 8876.664, 0.000 // 8704.41, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 8775.943, 0.000 // 8845.664, 0.000 // 8704.41, 0.000 // 8760.134, 1.170 8805.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 8961.912, 1.191 // 8963.123, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 8961.912, 1.191 // 8963.123, 0.000 // 8932.865, 0.000 // 9907.7804, 0.000 // 9105.673, 0.000 9168.670, 0.000 // 919.870, 1.205 // 9021.063, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9168.70, 0.000 // 919.870, 1.205 // 9021.633, 0.000 // 9135.543, 0.154 // 9136.734, 0.000 9166.63, 1.158 // 9107.828, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.946, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9156.520, 0.000 // 9366.337, 0.000 // 9278.337, 1.191 // 9365.433, 0.1107 9395.672, 0.000 // 9454.991, 1.177 // 9455.317	8038.392,	0.000 //	8065.166,	0.000 //	8066.166,	1.177 //	8067.398,	0.000	// 8094.140,	0.000
8151.865, 0.000 // 8152.856, 1.165 // 8154.059, 0.000 // 8180.769, 0.000 // 8181.769, 1.182 8129.41, 0.000 // 829.516, 0.000 // 820.616, 1.203 // 8211.874, 0.000 // 828.553, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 8267.428, 0.000 // 8352.422, 0.000 // 828.553, 0.000 8239.553, 0.000 // 8297.315, 1.183 // 8298.512, 0.000 // 8352.422, 0.000 // 8336.422, 1.204 8327.543, 0.000 // 8354.247, 0.000 // 8355.247, 1.187 // 8356.4422, 0.000 // 8335.191, 0.000 8344.191, 1.215 // 835.356, 0.000 // 8412.1060, 0.000 // 8469.862, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8498.871, 1.192 // 8501.070, 0.000 // 8575.681, 1.193 8528.798, 1.190 // 8529.954, 0.000 // 8565.6611, 0.000 // 8614.789, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8643.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8675.613, 0.000 853.613, 1.123 // 8643.730, 0.000 // 8764.664, 0.000 // 875.134, 0.000 // 8760.134, 1.137 873.613, 1.123 // 8643.730, 0.000 // 8784.664, 0.000 // 8765.134, 0.000 873.613, 1.187 // 8819.032, 0.000 // 8784.664, 0.000 // 876.134, 0.000 873.613, 1.187 // 8819.032, 0.000 // 8845.664, 0.000 // 8804.664, 1.177 // 8847.847, 0.000 887.444, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 893.270, 0.000 // 8942.70, 1.170 895.469, 0.000 // 8931.980, 0.000 // 8932.855, 0.000 // 893.270, 0.000 // 8942.70, 1.170 895.469, 0.000 // 8931.980, 0.000 // 8932.855, 0.000 // 893.270, 0.000 // 9944.780, 1.000 916.663, 1.158 // 9107.822, 0.000 // 9134.543, 0.000 /	8095 140	1 187 //	8096 332	0 000 //	8123 111	0 000 //	8124 111	1 190	// 8125 253	0 000
815.1.656, 0.000 // 812.656, 1.165 // 8134.059, 0.000 // 8181.659, 1.189 8122.941, 0.000 // 8209.616, 0.000 // 8207.428, 0.000 // 8268.428, 1.181 // 8269.684, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 8267.428, 0.000 // 8325.242, 0.000 // 8326.242, 1.204 8327.543, 0.000 // 8354.247, 0.000 // 8355.247, 1.187 // 8356.442, 0.000 // 8326.242, 1.204 8327.643, 0.000 // 8491.371, 1.000 // 8455.247, 1.187 // 8356.442, 0.000 // 8470.862, 1.181 8440.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8453.642, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8498.871, 1.192 // 8550.070, 0.000 // 8577.88, 0.000 8528.798, 1.190 // 8529.564, 0.000 // 8566.681, 0.000 // 8557.661, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8643.730, 0.000 // 85644.730, 1.228 // 8645.332, 0.000 // 8615.789, 1.193 8517.028, 0.000 // 8586.760, 1.184 // 8792.464, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 8787.943, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 876.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8903.270, 0.000 // 8942.70, 1.170 8905.469, 0.000 // 9831.890, 0.000 // 8392.985, 1.214 // 8934.185, 0.000 // 8904.270, 1.170 9906.831, 0.000 // 9831.980, 0.000 // 9834.853, 1.164 // 8790.141, 0.000 // 9105.663, 0.000 9166.633, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9166.631, 1.158 // 910	0454 056	1.101 //	0450.002,	4 4 6 5 1 /	0120.111,	0.000 //	0121.111,	0.000	// 0120.200,	1 100
<pre>8182.941, 0.000 // 8209.616, 0.000 // 8210.616, 1.203 // 8211.874, 0.000 // 8238.553, 0.000 8239.553, 1.179 // 8240.732, 0.000 // 8280.428, 0.000 // 8326.242, 1.004 8296.315, 0.000 // 8342.477, 0.000 // 8255.247, 1.187 // 8356.422, 0.000 // 8326.242, 1.204 8327.543, 0.000 // 8354.247, 0.000 // 8455.247, 1.187 // 8356.422, 0.000 // 8433.191, 0.000 8384.191, 1.215 // 8385.356, 0.000 // 8443.159, 0.000 // 8463.662, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8449.871, 0.000 // 8449.871, 1.192 // 8501.070, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8488.710, 0.000 // 8498.871, 1.192 // 8501.070, 0.000 // 8515.789, 0.000 8528.798, 1.190 // 8529.954, 0.000 // 8565.661, 0.100 // 8514.789, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8683.730, 0.000 // 8644.730, 1.228 // 8645.322, 0.000 // 8612.613, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 8703.718, 0.000 8713.332, 0.000 // 878.743, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 8703.718, 0.000 8817.831, 1.187 // 8819.032, 0.000 // 8785.664, 0.000 // 8846.664, 1.177 // 8847.847, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8934.185, 0.000 // 8960.912, 0.000 8961.912, 1.191 // 8963.123, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 8961.912, 1.191 // 8963.123, 0.000 // 8921.963, 0.000 // 9477.80, 0.000 // 9487.843, 0.177 9050.031, 0.000 // 9018.702, 0.000 // 9134.543, 0.000 // 9135.643, 0.000 // 9136.663, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 921.063, 0.000 // 9135.424, 0.000 // 9136.543, 0.000 // 9135.220, 1.163 9194.402, 0.000 // 921.011, 0.000 // 927.978, 0.000 // 9135.434, 0.000 // 9136.734, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 927.978, 0.000 // 927.978, 0.704 // 9281.945, 0.000 9264.22, 1.192 // 9397.455, 0.000 // 937.377, 1.171 // 9068.528, 0.000 // 935.222, 0.000 9396.282, 0.000 // 9454.921, 1.177 // 9455.317, 0.000 // 9421.995, 0.000 // 9422.980, 1.172 9454.161, 0.000 // 9565.733,</pre>	0151.050,	0.000 //	0152.050,	1.105 //	8154.059,	0.000 //	8180.769,	0.000	// 0101./09,	1.169
<pre>8239.553, 1.179 // 8240.732, 0.000 // 8267.428, 0.000 // 8268.428, 1.181 // 8269.684, 0.000 8296.315, 0.000 // 8297.315, 1.183 // 8298.512, 0.000 // 8325.242, 0.000 // 8382.191, 0.000 8384.191, 1.215 // 8385.356, 0.000 // 8412.106, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8440.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8440.978, 0.000 // 8498.871, 0.000 // 8499.871, 1.192 // 8501.070, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8566.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8528.798, 1.190 // 8529.954, 0.000 // 8566.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8586.760, 1.184 // 8587.988, 0.000 // 8614.789, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8643.730, 0.000 // 8501.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8709.141, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8783.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8804.270, 0.000 // 8804.270, 1.170 8905.469, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8903.270, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 9931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 9860.912, 0.000 918.870, 0.000 // 919.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 919.870, 1.205 // 9021.063, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.360, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.360, 0.000 // 9146.380, 1.157 // 9165.569, 0.000 // 937.477, 0.000 // 943.780, 1.172 938.652, 0.000 // 9222.011, 1.167 // 9223.343, 0.000 // 9238.945, 0.000 9138.670, 0.000 // 9262.020, 0.000 // 9278.978, 0.000 // 9238.477, 1.100 9454.081, 1.157 // 9455.377, 0.000 // 9437.973, 0.000 // 935.282, 0.000 9138.674, 0.000 // 9366.337, 0.000 // 9478.978, 0.000 // 9437.974, 0.000 9145.309, 0.000 // 9454.091, 1.177 // 9455.377, 0.000 // 9431.998, 0.000 // 9438.989, 0.000 9251.036</pre>	8182.941,	0.000 //	8209.616,	0.000 //	8210.616,	1.203 //	8211.874,	0.000	// 8238.553,	0.000
8296.315, 0.000 // 8297.315, 1.183 // 8298.512, 0.000 // 8325.242, 0.000 // 8326.242, 1.204 8327.543, 0.000 // 8354.247, 0.000 // 8355.247, 1.187 // 8356.442, 0.000 // 8383.191, 0.000 8384.191, 1.215 // 8385.356, 0.000 // 8412.106, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8440.973, 0.000 // 8441.973, 1.202 // 8443.159, 0.000 // 8613.700, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8499.871, 1.192 // 8501.070, 0.000 // 8527.798, 0.000 8528.798, 1.190 // 8529.954, 0.000 // 8456.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8553.760, 0.000 // 8567.760, 1.184 // 8557.988, 0.000 // 8614.739, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 863.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8615.789, 1.193 8617.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8759.134, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 8747.943, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 875.943, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 8804.270, 1.170 8905.469, 0.000 // 8815.484, 1.175 // 8876.664, 0.000 // 8803.270, 0.000 // 8804.270, 1.170 8905.469, 0.000 // 8819.1280, 0.000 // 8392.980, 1.214 // 8934.185, 0.000 // 8804.700, 1.172 9050.31, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9135.551, 1.192 // 892.136, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 9027.729, 1.170 // 9078.944, 0.000 // 9156.663, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9135.204, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 935.220, 1.163 9194.402, 0.000 // 9241.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 935.282, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9310.789, 0.000 // 9337.477, 0.000 // 935.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 968.528, 0.000 // 935.282, 0.000 9453.991, 0.000 // 9454.991, 1.177 // 9455.317, 0.000 // 9451.978, 0.000 // 953.674, 0.000 9545.304, 0.000 // 9540.372, 0.000 // 951.377, 0.000 // 9567.333, 0.000 // 9528.649, 0.000 9545.424, 0.000 // 9545.202, 0.000	8239.553.	1.179 //	8240.732.	0.000 //	8267.428.	0.000 //	8268.428.	1.181	// 8269.684.	0.000
01250110, 01000 // 0231110, 11103 // 0235112, 01000 // 0221124, 01000 // 022124, 1120 02371543, 01000 // 0231120, 01000 // 0255124, 01000 // 0221121, 01000 // 0221121, 01000 02840.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8456.422, 0.000 // 8470.862, 1.181 02840.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8451.070, 0.000 // 8470.862, 1.181 02841.911, 1.215 // 0200 // 8498.871, 0.000 // 8455.247, 1.192 // 8501.070, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8556.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8586.760, 1.184 // 8597.988, 0.000 // 8614.739, 0.000 // 8615.789, 1.193 85417.028, 0.000 // 8543.730, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 873.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 873.633, 0.000 // 8713.329, 1.184 // 8732.464, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 873.643, 1.187 // 8819.032, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8817.831, 1.187 // 8819.032, 0.000 // 878.943, 1.214 // 893.185, 0.000 // 894.270, 1.170 8954.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 893.4185, 0.000 // 894.270, 1.170 8961.912, 1.191 // 8963.123, 0.000 // 907.729, 1.170 // 9078.944, 0.000 // 9048.780, 1.172 9056.633, 1.158 // 9107.828, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9166.63, 1.158 // 9107.828, 0.000 // 9214.937, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9166.633, 1.157 // 9165.56	8206 315	0 000 //	9207 215	1 102 //	9009 E10	0 000 //	8305 0/0 [°]	0 000	1/ 9376 7/17	1 204
<pre>8327.543, 0.000 // 8354.247, 0.000 // 8355.247, 1.187 // 8356.422, 0.000 // 8383.191, 0.000 8384.191, 1.215 // 8385.356, 0.000 // 8412.106, 0.000 // 8413.106, 1.213 // 8414.253, 0.000 8240.978, 0.000 // 8448.871, 0.000 // 8419.871, 1.192 // 8501.070, 0.000 // 857.788, 0.000 8528.798, 1.190 // 8529.954, 0.000 // 8556.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8586.760, 1.184 // 8587.988, 0.000 // 8514.789, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8643.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8673.1329, 1.184 // 8732.464, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8759.134, 0.000 // 8616.831, 0.000 874.483, 0.000 // 8751.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8903.270, 0.000 // 8804.870, 1.170 8905.469, 0.000 // 8831.980, 0.000 // 8832.980, 1.214 // 8934.185, 0.000 // 8804.270, 1.170 8905.469, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9016.729, 0.000 // 9145.543, 0.000 // 9155.43, 1.154 // 9136.734, 0.000 9183.800, 0.000 // 9104.880, 1.157 // 9165.569, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 9145.433, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.682, 0.000 // 921.101, 0.000 // 922.101, 1.167 // 922.343, 0.000 // 928.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 937.977, 0.000 // 938.477, 1.192 9339.676, 0.000 // 9364.337, 0.000 // 937.373, 1.191 // 9368.528, 0.000 // 938.477, 1.192 9339.676, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 937.373, 1.191 // 9368.528, 0.000 // 938.477, 1.192 9362.822, 0.000 // 958.331, 1.181 // 9595.532, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9540.674, 1.201 // 9541.876, 0</pre>	0290.313,	0.000 //	0297.313,	1.105 //	0290.012,	0.000 //	0325.242,	0.000	// 0320.242,	1.204
<pre>8384.191, 1.215 // 8385.356, 0.000 // 8412.106, 0.000 // 8413.66, 1.213 // 8414.253, 0.000 8440.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8469.862, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8556.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8555.760, 0.000 // 8586.760, 1.184 // 8587.988, 0.000 // 8614.739, 0.000 // 8617.789, 1.193 8647.302, 0.000 // 8643.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8617.789, 1.000 8673.613, 1.213 // 8643.730, 0.000 // 8789.943, 1.228 // 8645.932, 0.000 // 8702.613, 0.000 873.613, 1.213 // 8647.777, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 873.613, 1.213 // 877.943, 0.000 // 8789.943, 1.164 // 8790.141, 0.000 // 8766.134, 1.187 7761.333, 0.000 // 8747.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8877.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8846.664, 1.177 // 8847.847, 0.000 8874.448, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8964.270, 1.170 8965.469, 0.000 // 9031.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8964.270, 1.170 8961.912, 1.191 // 8963.123, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.338, 0.000 // 914.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 914.380, 1.157 // 9165.569, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9386.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9373.4777, 0.000 // 9336.477, 1.192 9339.676, 0.000 // 9345.337, 0.000 // 9374.377, 1.102 // 3936.476, 0.000 9453.091, 0.000 // 9345.337, 0.000 // 9374.377, 1.194 // 926.381, 0.000 9454.091, 0.000 // 9454.197, 0.000 // 9451.977, 1.170 // 9426.381, 0.000 9454.282, 1.192 // 9397.485, 0.000 // 9565.202, 1.185 // 9657.333, 0.000 // 9539.674, 0.000 9543.091, 0.000 // 9543.37, 0.000 // 9656.202, 1.185 // 9657.333, 0.000 // 9539.674, 0.000 9543.091</pre>	8327.543,	0.000 //	8354.247,	0.000 //	8355.247,	1.187 //	8356.442,	0.000	// 8383.191,	0.000
8440.978, 0.000 // 8441.978, 1.202 // 8443.159, 0.000 // 8469.862, 0.000 // 8470.862, 1.181 8472.140, 0.000 // 8498.871, 0.000 // 8499.871, 1.192 // 8501.070, 0.000 // 8527.798, 0.000 8528.798, 1.190 // 8529.954, 0.000 // 8556.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8548.760, 1.184 // 8587.988, 0.000 // 8614.789, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8643.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8672.613, 0.000 873.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.0000 // 8702.474, 1.206 // 8703.718, 0.000 873.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8709.141, 0.000 // 8766.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8766.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8903.270, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 9018.70, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9042.780, 0.000 9018.870, 0.000 // 9018.70, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9105.663, 0.000 9106.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.661, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9137.477, 0.000 // 9251.036, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9137.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9454.161, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9543.3091, 0.000 // 9454.000 // 9564.733, 1.191 // 9856.473, 0.000 // 9427.902, 1.185 9628.428, 0.000 // 9454.000 // 9565.202, 0.000 // 9564.733, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 //	8384.191,	1.215 //	8385.356,	0.000 //	8412.106,	0.000 //	8413.106,	1.213	// 8414.253,	0.000
8472.140, 0.000 // 8498.871, 0.000 // 8499.871, 1.192 // 8501.070, 0.000 // 8527.798, 0.000 8528.798, 1.190 // 8529.954, 0.000 // 8556.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8586.760, 1.184 // 8587.988, 0.000 // 8614.789, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8643.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8672.613, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 873.329, 0.000 // 8737.943, 0.000 // 8783.943, 1.164 // 879.134, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 877.943, 0.000 // 878.943, 1.164 // 879.141, 0.000 // 8816.831, 0.000 8817.831, 1.187 // 8819.032, 0.000 // 878.943, 1.164 // 879.141, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8904.270, 1.172 9050.031, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.20, 0.000 // 913.220, 1.163 9164.402, 0.000 // 9221.101, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 936.582, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9385.2474, 0.000 933.676,	8440 978	0 000 //	8441 978	1 202 //	8443 159	0 000 //	8469 862	0 000	// 8470 862	1 181
8472.140, 0.000 // 8499.81, 0.000 // 8499.81, 1.192 // 8510.70, 0.000 // 8527.788, 0.000 8528.788, 1.190 // 8529.954, 0.000 // 8556.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8543.730, 0.000 // 8544.730, 1.228 // 8645.932, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 843.730, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8759.134, 0.000 // 8703.718, 0.000 871.333, 0.000 // 8787.943, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 878.943, 1.164 // 8790.141, 0.000 // 8961.341, 1.187 8761.331, 1.187 // 8819.032, 0.000 // 8845.664, 0.000 // 8846.664, 1.177 // 8847.847, 0.000 8874.448, 0.000 // 875.448, 1.175 // 8876.664, 0.000 // 8930.270, 0.000 // 8964.270, 1.170 8961.491, 1.191 // 8963.123, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8962.912, 0.000 9811.312, 1.191 // 8963.123, 0.000 // 921.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 905.031, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9174.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9163.380, 0.000 // 9364.337, 0.000 // 9278.978, 0.000 // 9374.77, 0.000 // 9281.945, 0.000 9330.676, 0.000 // 9364.337, 0.000 // 9278.978, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9330.676,	0470 440	0.000 //	0400.074	1.202 //	0400.074	1 100 //	0100.002,	0.000	// 0507 700	0.000
<pre>8528.798, 1.190 // 8529.954, 0.000 // 8556.681, 0.000 // 8557.681, 1.199 // 8558.948, 0.000 8585.760, 0.000 // 8586.760, 1.184 // 8587.988, 0.000 // 8614.789, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8643.730, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 873.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.000 // 8705.134, 0.000 // 8766.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8766.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8846.6831, 0.000 8817.831, 1.187 // 8819.032, 0.000 // 8845.664, 0.000 // 8943.270, 0.000 // 8944.270, 1.170 8905.469, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8930.270, 0.000 // 8904.270, 1.170 8961.912, 1.191 // 8963.123, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 9961.912, 1.191 // 8963.123, 0.000 // 9393.855, 0.000 // 8943.185, 0.000 // 8964.780, 1.172 9050.031, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9154.360, 0.000 // 9221.101, 0.000 // 9228.978, 0.000 // 937.978, 0.704 // 9281.945, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 937.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9341.998, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9364.337, 0.000 // 9424.197, 0.000 // 9431.988, 0.000 // 9422.98, 1.172 9484.161, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9433.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9564.202, 1.185 // 9657.383, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9543.31, 1.181 // 959.523, 0.000 // 9657.383, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9742.948, 1.176 // 9744.332, 0.000 // 9771.005, 0.000 // 9627.202, 1.185 977.3220, 0.000 // 979</pre>	8472.140,	0.000 //	8498.871,	0.000 //	8499.871,	1.192 //	8501.070,	0.000	// 8521.198,	0.000
<pre>8585.760, 0.000 // 8586.760, 1.184 // 8587.988, 0.000 // 8614.789, 0.000 // 8615.789, 1.193 8617.028, 0.000 // 8643.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8672.613, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8759.134, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8845.684, 1.000 8817.831, 1.187 // 8819.032, 0.000 // 8786.664, 0.000 // 8846.664, 1.177 // 8847.847, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8930.270, 0.000 // 8940.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8930, 1.214 // 8934.185, 0.000 // 8942.70, 1.170 9905.031, 0.000 // 9076.729, 0.000 // 8939.855, 0.000 // 8990.855, 1.192 // 8992.136, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 921.101, 0.000 // 9221.011, 1.167 // 9223.343, 0.000 // 9280.522, 0.100 9163.380, 0.000 // 921.101, 0.000 // 9278.978, 0.000 // 9179.78, 0.704 // 9281.945, 0.000 9306.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9544.091, 1.177 // 959.523, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9564.73, 0.000 // 9569.473, 1.194 // 957.0622, 0.000 9547.331, 0.000 // 958.331, 1.181 // 959.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 958.331, 1.181 // 959.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 958.331, 1.181 // 959.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9656.202, 0.00</pre>	8528.798,	1.190 //	8529.954,	0.000 //	8556.681,	0.000 //	8557.681,	1.199	// 8558.948,	0.000
8617.028, 0.000 // 8643.730, 0.000 // 8644.730, 1.228 // 8645.932, 0.000 // 8672.613, 0.000 8673.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8759.134, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8760.134, 1.187 8761.331, 1.187 // 8819.032, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8760.134, 1.187 8761.331, 1.187 // 8819.032, 0.000 // 8845.664, 0.000 // 8904.664, 1.177 // 8847.847, 0.000 8817.831, 1.187 // 8819.032, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 8961.912, 1.191 // 8963.123, 0.000 // 8939.855, 0.000 // 890.855, 1.192 // 8992.136, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.663, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9077.944, 0.000 // 9105.663, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9133.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.78, 0.000 // 937.477, 0.000 // 9250.036, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9397.485, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9339.5282, 0.000 9453.091, 0.000 // 9510.772, 0.000 // 9424.197, 0.000 // 9431.998, 0.000 // 9339.674, 0.000 9454.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9451.995, 0.000 // 9429.98, 1.172 9484.161, 0.000 // 9550.202, 0.000 // 9568.473, 0.000 // 9461.995, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9558.331, 1.181 // 9599.523, 0.000 // 9461.995, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9558.331, 1.181 // 9599.523, 0.000 // 9667.333, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9558.371, 1.161 // 9744.233, 0.000 // 9711.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 979.888, 0.000 // 9744.233, 0.000 // 9711.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 979.888	8585.760.	0.000 //	8586.760.	1.184 //	8587,988,	0.000 //	8614.789.	0.000	// 8615.789.	1.193
Sofi 1.025, 0.000 // Sofi 1.03, 0.000 // Sofi 1.73, 1.225 // Sofi 1.74, 0.000 // Sofi 1.010, 0.000 // Sofi 3.010, 0.000 // Sofi 3.0100	9617 009	0 000 //	96/3 730	0.000 //	8611 730	1 228 //	8645 032	0 000	// 9670 613	0 000
8673.613, 1.213 // 8674.777, 0.000 // 8701.474, 0.000 // 8702.474, 1.206 // 8703.718, 0.000 8730.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8759.134, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8817.831, 1.187 // 8819.032, 0.000 // 8845.664, 0.000 // 8903.270, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8831.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8904.270, 1.170 8961.912, 1.191 // 8963.123, 0.000 // 8983.955, 0.000 // 8930.855, 1.192 // 8992.136, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9106.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.880, 0.000 // 9221.101, 0.000 // 9278.978, 0.000 // 9132.200, 0.000 // 9133.220, 1.163 9194.402, 0.000 // 9211.01, 0.000 // 9278.978, 0.000 // 9179.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9377.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 937.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9541.772, 1.179 // 9512.995, 0.000 // 9339.674, 0.000 9544.674, 1.201 // 9541.876, 0.000 // 956.473, 0.000 // 9667.333, 0.000 // 9684.104, 0.000 9568.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9771.005, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9543.81, 1.181 // 9595.533, 0.000 // 9667.333, 0.000 // 9684.104, 0.000 9665.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9543.81, 1.181 // 9595.533, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9711.005, 0.000 // 9626.202, 1.185 9773.220, 0.000 // 9687.503	0017.020,	0.000 //	0043.730,	0.000 //	0044.730,	1.220 //	0040.952,	0.000	// 00/2.013,	0.000
8730.329, 0.000 // 8731.329, 1.184 // 8732.464, 0.000 // 8759.134, 0.000 // 8760.134, 1.187 8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8817.431, 1.187 // 8819.032, 0.000 // 8845.664, 0.000 // 8903.270, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 8990.855, 1.192 // 8992.136, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9166.380, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 937.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9339.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9597.331, 0.000 // 9563.331, 1.181 // 9599.523, 0.000 // 9667.433, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9543.31, 1.181 // 9599.523, 0.000 // 9667.433, 1.194 // 9570.662, 0.000 9541.948, 0.000 // 9684.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9655.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9684.104, 0.000 9826.693, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9805.7518, 0.000 // 9714.004, 1.184 // 9859.814, 0.000 9828.653, 0.000 // 9837	8673.613,	1.213 //	8674.777,	0.000 //	8701.474,	0.000 //	8702.474,	1.206	// 8703.718,	0.000
8761.333, 0.000 // 8787.943, 0.000 // 8788.943, 1.164 // 8790.141, 0.000 // 8816.831, 0.000 8817.831, 1.187 // 8819.032, 0.000 // 8845.664, 0.000 // 8846.664, 1.177 // 8847.847, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8903.270, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8904.270, 1.170 8961.912, 1.191 // 8963.123, 0.000 // 8989.855, 0.000 // 8990.855, 1.192 // 8992.136, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9166.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9280.852, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.78, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 937.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9424.197, 0.000 // 9437.477, 0.000 // 9335.282, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9451.975, 1.170 // 9426.381, 0.000 9454.161, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.988, 0.000 // 9482.988, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9634.104, 0.000 9597.331, 0.000 // 9541.876, 0.000 // 9565.202, 0.100 // 9664.202, 0.000 // 9644.104, 0.000 9655.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9714.104, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9815.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 984.332, 0.000 // 9845.332, 1.178 // 9946.496, 0.000 // 9915.326, 0.000	8730.329,	0.000 //	8731.329,	1.184 //	8732.464,	0.000 //	8759.134,	0.000	// 8760.134,	1.187
Silvas, 1.187 // 8819.332, 0.000 // 8845.664, 0.000 // 8846.664, 1.177 // 8847.847, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8903.270, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 9931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9185.663, 0.000 9168.633, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9374.77, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9432.998, 1.172 9484.161, 0.000 // 9548.331, 1.181 // 9599.523, 0.000 // 9669.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9588.31, 1.181 // 9599.523, 0.000 // 9669.473, 1.194 // 9570.662, 0.000 9655.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9644.104, 0.000 9645.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9792.888, 0.000 // 9808.88, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9805.883, 1.171 // 9802.082, 0.000 // 9825.814, 0.000 9826.653, 0.000 // 9873.32, 0.000 // 9875.518, 0.000 // 9915.316, 0.000 // 9915.316, 1.178 9917.612, 0.	8761 333	0 000 //	8787 943	0 000 //	8788 943	1 164 //	8790 141	0 000	// 8816 831	0 000
8817.831, 1.187 // 8819.032, 0.000 // 8845.644, 0.000 // 8847.647, 0.000 8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8903.270, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 9905.469, 0.000 // 9831.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8992.136, 0.000 9905.469, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9132.220, 1.163 9194.402, 0.000 // 9221.010, 0.000 // 9278.978, 0.000 // 9233.43, 0.000 // 9250.036, 0.000 9251.036, 1.179 / 9252.208, 0.000 // 9278.978, 0.000 // 938.477, 1.192 9393.676, 0.000 // 9397.485, 0.000 // 9387.477, 0.000 // 9384.781, 1.172 9339.676, 0.000 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 / 9426.381, 0.000 9484.161, 0.000 // 9451.772, 0.000 // 9451.377, 0.000	0017 001	1 107 //	0010 000	0.000 //	0045 664	1.104 //	0100.141,	4 477	// 0010.001,	0.000
8874.448, 0.000 // 8875.448, 1.175 // 8876.664, 0.000 // 8903.270, 0.000 // 8904.270, 1.170 8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 8961.912, 1.191 // 8963.123, 0.000 // 8989.855, 0.000 // 8990.855, 1.192 // 8992.136, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9078.944, 0.000 // 9105.663, 0.000 9106.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9374.77, 0.000 // 9338.477, 1.192 9398.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9396.282, 1.192 // 9309.582, 1.156 // 9310.789, 0.000 // 9435.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9451.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.61, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9428.998, 1.172 9484.61, 0.000 // 9541.876, 0.000 // 9568.473, 0.000 // 9459.473, 1.194 // 9570.662, 0.000 957.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9656.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 973.220, 0.000 // 9799.888, 0.000 // 975.7518, 0.000 // 9715.316, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9789.503, 1.177 // 9888.693, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9826.653, 0.000 // 984.332, 0.000 // 984.532, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	8817.831,	1.18/ //	8819.032,	0.000 //	8845.664,	0.000 //	8846.664,	1.1//	// 8847.847,	0.000
8905.469, 0.000 // 8931.980, 0.000 // 8932.980, 1.214 // 8934.185, 0.000 // 8960.912, 0.000 8961.912, 1.191 // 8963.123, 0.000 // 8989.855, 0.000 // 8990.855, 1.192 // 8992.136, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9106.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9267.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9421.995, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9669.473, 1.194 // 9570.662, 0.000 9547.331, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9644.104, 0.000 9645.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.005, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9807.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9713.164, 0.000 // 9915.316, 0.000 // 973.281, 0.000	8874.448,	0.000 //	8875.448,	1.175 //	8876.664,	0.000 //	8903.270,	0.000	// 8904.270,	1.170
8961.912, 1.191 // 8963.123, 0.000 // 8889.855, 0.000 // 8990.855, 1.192 // 8992.136, 0.000 9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9106.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9373.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9424.197, 0.000 // 9455.28, 0.000 // 9395.282, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9428.1978, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9597.331, 0.000 // 958.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9807.518, 0.000 // 9715.016, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9807.518, 0.000 // 9715.316, 0.000 // 9723.281, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9715.316, 0.000 // 973.281, 0.000	8905.469.	0.000 //	8931.980.	0.000 //	8932.980.	1.214 //	8934.185.	0.000	// 8960.912.	0.000
391:312, 1:191 // 393:123, 0:000 // 393:35, 0:000 // 993:353, 1:192 // 393:135, 0:000 9018.870, 0:000 // 9019.870, 1:205 // 9021:063, 0:000 // 9047.780, 0:000 // 9048.780, 1:172 9050:031, 0:000 // 9076.729, 0:000 // 9077.729, 1:170 // 9078.944, 0:000 // 9148.780, 1:172 9050:663, 1:158 // 9107.828, 0:000 // 9077.729, 1:170 // 9078.944, 0:000 // 9136.633, 0:000 9166.663, 1:158 // 9107.828, 0:000 // 9134.543, 0:000 // 9135.543, 1:154 // 9136.734, 0:000 9163:380, 0:000 // 9164:380, 1:157 // 9165.569, 0:000 // 91222:0, 0:000 // 9193.220, 1:163 9194:402, 0:000 // 9221:101, 0:000 // 9222:101, 1:167 // 9223.343, 0:000 // 9250.036, 0:000 9251:036, 1:179 // 9252:208, 0:000 // 9278.978, 0:000 // 937.477, 0:000 // 9250.036, 0:000 9308:582, 0:000 // 9309.582, 1:156 // 9310.789, 0:000 // 9337.477, 0:000 // 9338.477, 1:192 9339.676, 0:000 // 9366.337, 0:000 // 9424.197, 0:000 // 9455.197, 1:170 // 9426.381, 0:000 9396:282, 1:192 // 9397.485, 0:000 // 9424.197, 0:000 // 9481.998, 0:000 // 9482.998, 1:172 9484.161, 0:000 // 9454.091, 1:177 // 9455.317, 0:000 // 9481.998, 0:000 // 9482.998, 1:172 9484.161, 0:000 // 9510.772, 0:000 // 9568.473, 0:000 // 9569.473, 1:194 // 9570.662, 0:000 957.331, 0:000 // 9588.331, 1:181 // 9599.523, 0:000 // 9626.202, 0:000 // 9627.202, 1:185 9628.428, 0:000 // 9655.202, 0:000 // 9656.202, 1:185 // 9657.383, 0:000 // 9684.104, 0:000 9685.104, 1:191 // 9686.378, 0:000 // 9713.104, 0:000 // 9714.104, 1:171 // 9712.005, 1:153 9773.220	8061 010	1 101 //	0062 102	0.000 //	0000 000	0.000 //	0000 0EE	1 100	// 0000 126	0.000
9018.870, 0.000 // 9019.870, 1.205 // 9021.063, 0.000 // 9047.780, 0.000 // 9048.780, 1.172 9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9106.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 937.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9669.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9663.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 979.888, 0.000 // 980.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	0901.912,	1.191 //	0903.123,	0.000 //	0909.000,	0.000 //	0990.000,	1.192	// 0992.130,	0.000
9050.031, 0.000 // 9076.729, 0.000 // 9077.729, 1.170 // 9078.944, 0.000 // 9105.663, 0.000 9106.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9377.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9669.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 980.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9805.833, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9828.6503, 0.000 // 9742.943, 1.177 // 9888.693, 0.000 // 9713.104, 0.000 // 9713.104, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 979.888, 0.000 // 980.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 987.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	9018.870,	0.000 //	9019.870,	1.205 //	9021.063,	0.000 //	9047.780,	0.000	// 9048.780,	1.172
9106.663, 1.158 // 9107.828, 0.000 // 9134.543, 0.000 // 9135.543, 1.154 // 9136.734, 0.000 9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9662.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 980.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 980.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9815.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9742.948, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	9050.031,	0.000 //	9076.729,	0.000 //	9077.729,	1.170 //	9078.944,	0.000	// 9105.663,	0.000
9163.380, 0.000 // 9164.380, 1.157 // 9165.569, 0.000 // 9192.220, 0.000 // 9193.220, 1.163 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 955.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9875.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	9106 663	1 158 //	9107 828	0 000 //	9134 543	0 000 //	9135 543	1 154	// 9136 734	0 000
9193.380, 0.000 // 9194.380, 1.157 // 9185.589, 0.000 // 9192.220, 0.000 // 9193.220, 1.153 9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9799.888, 0.000 // 9808.88, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9713.104, 0.000 // 9713.104, 0.000 9828.6503, 0.000 // 9742.948, 1.177 // 9888.693, 0.000 // 9858.518, 1.184 // 9859.814, 0.000	0160.000,	1.100 //	0164 000	4 457 //	0105.040,	0.000 //	0100.040,	0.000	// 0100.104,	1 1 60
9194.402, 0.000 // 9221.101, 0.000 // 9222.101, 1.167 // 9223.343, 0.000 // 9250.036, 0.000 9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9514.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 973.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9820.822, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 987.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9163.380,	0.000 //	9164.380,	1.15/ //	9105.509,	0.000 //	9192.220,	0.000	// 9193.220,	1.103
9251.036, 1.179 // 9252.208, 0.000 // 9278.978, 0.000 // 9279.978, 0.704 // 9281.945, 0.000 9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9507.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9662.022, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9886.503, 0.000 // 9875.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	9194.402,	0.000 //	9221.101,	0.000 //	9222.101,	1.167 //	9223.343,	0.000	// 9250.036,	0.000
9308.582, 0.000 // 9309.582, 1.156 // 9310.789, 0.000 // 9337.477, 0.000 // 9338.477, 1.192 9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9643.78, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 987.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	9251.036,	1.179 //	9252.208,	0.000 //	9278.978,	0.000 //	9279.978,	0.704	// 9281.945,	0.000
<pre>3339.676, 0.000 // 9369.382, 1.186 // 9310.183, 0.000 // 9331.417, 0.000 // 9395.282, 0.000 93996.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9799.888, 0.000 // 980.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9847.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000</pre>	0308 583	0 000 //	0300 582	1 156 //	0310 780	0 000 //	0337 /77	0 000	// 0339 /77	1 100
9339.676, 0.000 // 9366.337, 0.000 // 9367.337, 1.191 // 9368.528, 0.000 // 9395.282, 0.000 9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 973.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9820.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 984.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9300.302,	0.000 //	9309.302,	1.150 //	9310.709,	0.000 //	9331.411,	0.000	// 9000.411,	1.132
9396.282, 1.192 // 9397.485, 0.000 // 9424.197, 0.000 // 9425.197, 1.170 // 9426.381, 0.000 9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9847.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	9339.676,	0.000 //	9366.337,	0.000 //	9367.337,	1.191 //	9368.528,	0.000	// 9395.282,	0.000
9453.091, 0.000 // 9454.091, 1.177 // 9455.317, 0.000 // 9481.998, 0.000 // 9482.998, 1.172 9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 987.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	9396.282,	1.192 //	9397.485,	0.000 //	9424.197,	0.000 //	9425.197,	1.170	// 9426.381,	0.000
9484.161, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.995, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9847.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	9453.091	0.000 //	9454.091	1.177 //	9455.317	0.000 //	9481.998	0.000	// 9482.998	1.172
954.101, 0.000 // 9510.772, 0.000 // 9511.772, 1.179 // 9512.955, 0.000 // 9539.674, 0.000 9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9714.105, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9659.814, 0.000 9886.503, 0.000 // 987.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9973.281, 0.000	0/0/ 161	0 000 //	0510 770	0.000 //	0511 770	1 170 //	0512.005	0.000	// 0530 674	0.000
9540.674, 1.201 // 9541.876, 0.000 // 9568.473, 0.000 // 9569.473, 1.194 // 9570.662, 0.000 9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	<i>5</i> 404.101,	0.000 //	9910.112,	0.000 //	3011.112,	1.119 //	<i>3012.99</i> 5,	0.000	11 9009.014,	0.000
9597.331, 0.000 // 9598.331, 1.181 // 9599.523, 0.000 // 9626.202, 0.000 // 9627.202, 1.185 9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9540.674,	1.201 //	9541.876,	0.000 //	9568.473,	0.000 //	9569.473,	1.194	// 9570.662,	0.000
9628.428, 0.000 // 9655.202, 0.000 // 9656.202, 1.185 // 9657.383, 0.000 // 9684.104, 0.000 9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9597.331.	0.000 //	9598.331.	1.181 //	9599.523.	0.000 //	9626.202.	0.000	// 9627.202.	1.185
9685.104, 1.191 // 9686.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9628 128	0 000 //	9655 202	0 000 //	9656 202	1 185 //	9657 383	0 000	// 968/ 10/	0 000
<pre>9085.104, 1.191 // 9086.378, 0.000 // 9713.104, 0.000 // 9714.104, 1.171 // 9715.284, 0.000 9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000</pre>	0005 104	1 101 //	0000.202,	0.000 //	0740 402	1.100 //	0714 100,	1 171	// 0745 001	0.000
9741.948, 0.000 // 9742.948, 1.176 // 9744.233, 0.000 // 9771.005, 0.000 // 9772.005, 1.153 9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9685.104,	1.191 //	9686.378,	0.000 //	9/13.104,	0.000 //	9/14.104,	1.171	// 9/15.284,	0.000
9773.220, 0.000 // 9799.888, 0.000 // 9800.888, 1.171 // 9802.082, 0.000 // 9828.649, 0.000 9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9741.948,	0.000 //	9742.948,	1.176 //	9744.233,	0.000 //	9771.005,	0.000	// 9772.005,	1.153
9829.649, 1.157 // 9830.792, 0.000 // 9857.518, 0.000 // 9858.518, 1.184 // 9859.814, 0.000 9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9773.220	0.000 //	9799.888	0.000 //	9800.888	1.171 //	9802.082	0.000	// 9828.649	0.000
9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	0000 640	1 157 //	0020 700	0.000 //	0057 510		0000 540	1 104	// 0050.044	0.000
9886.503, 0.000 // 9887.503, 1.177 // 9888.693, 0.000 // 9915.316, 0.000 // 9916.316, 1.178 9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	<i>3023.049</i> ,	1.10/ //	3030.192,	0.000 //	3031.310,	0.000 //	3000.010,	1.104	// 9009.014,	0.000
9917.612, 0.000 // 9944.332, 0.000 // 9945.332, 1.178 // 9946.496, 0.000 // 9973.281, 0.000	9886.503,	0.000 //	9887.503,	1.177 //	9888.693,	0.000 //	9915.316,	0.000	// 9916.316,	1.178
	9917.612,	0.000 //	9944.332,	0.000 //	9945.332,	1.178 //	9946.496,	0.000	// 9973.281,	0.000

007/ 091	1 1 20 // 0	075 /08 0	000 // 10	000 180 0	000 // 10	003 192 1	196 // 10	004 413 0	000
10031 002		10032 002	1 194 //	1002.102, 0		10060 073		1004.413, 0	1 1 9 9
10051.092,	0.000 //	10032.092,	1.104 //	10033.203,	1 204 //	10001.073,	0.000 //	10117 769	0.000
10110 760	1 104 //	10110 000	0.000 //	10146 665	1.204 //	10147 665	1 100 //	10117.700,	0.000
10175 //6	0.000 //	10119.992,	1 225 //	10140.003, 10177.628	0.000 //	1020/ 3/0	0.000 //	10140.029,	1 173
10206 5/3	0.000 //	10233 263	0.000 //	1023/ 263	1 18/ //	10235 /03	0.000 //	10262 208	0 000
10263 208	1 191 //	10264 363	0.000 //	10234.203, 10291,119	0 000 //	10200.400,	1 182 //	10202.200,	0.000
10320 084	0.000 //	10321 084	1 184 //	10322 322	0.000 //	10349 049	0.000 //	10350 049	1 165
10351 264	0.000 //	10378 024	0.000 //	10379 024	1 170 //	10380 224	0.000 //	10406 999	0 000
10407 999	1 151 //	10409 291	0 000 //	10436 035	0 000 //	10437 035	1 204 //	10438 187	0.000
10464.853.	0.000 //	10465.853.	1.167 //	10467.025.	0.000 //	10493.808.	0.000 //	10494.808.	1.166
10496.178.	0.000 //	10522.829.	0.000 //	10523.829.	1.178 //	10525.022.	0.000 //	10551.709.	0.000
10552.709.	1.177 //	10553.856.	0.000 //	10580.482.	0.000 //	10581.482.	1.181 //	10582.666.	0.000
10609.341.	0.000 //	10610.341.	1.149 //	10611.519.	0.000 //	10638.230.	0.000 //	10639.230.	1.162
10640.408.	0.000 //	10667.019.	0.000 //	10668.019.	1.181 //	10669.180.	0.000 //	10695.877.	0.000
10696.877.	1.154 //	10698.112.	0.000 //	10724.856.	0.000 //	10725.856.	1.190 //	10727.090.	0.000
10753.865.	0.000 //	10754.865.	1.179 //	10756.120.	0.000 //	10782.899.	0.000 //	10783.899.	1.166
10785.195,	0.000 //	10811.856,	0.000 //	10812.856,	1.167 //	10814.023,	0.000 //	10840.744,	0.000
10841.744,	1.174 //	10842.938,	0.000 //	10869.571,	0.000 //	10870.571,	1.160 //	10871.721,	0.000
10898.502,	0.000 //	10899.502,	1.196 //	10900.708,	0.000 //	10927.341,	0.000 //	10928.341,	1.181
10929.549,	0.000 //	10956.152,	0.000 //	10957.152,	1.187 //	10958.345,	0.000 //	10985.166,	0.000
10986.166,	1.139 //	10987.350,	0.000 //	11013.936,	0.000 //	11014.936,	1.161 //	11016.131,	0.000
11042.731,	0.000 //	11043.731,	1.138 //	11044.920,	0.000 //	11071.728,	0.000 //	11072.728,	1.136
11073.952,	0.000 //	11100.727,	0.000 //	11101.727,	1.166 //	11102.861,	0.000 //	11129.513,	0.000
11130.513,	1.121 //	11131.690,	0.000 //	11158.366,	0.000 //	11159.366,	1.127 //	11160.497,	0.000
11187.295,	0.000 //	11188.295,	1.117 //	11189.596,	0.000 //	11216.371,	0.000 //	11217.371,	1.147
11218.562,	0.000 //	11245.273,	0.000 //	11246.273,	1.146 //	11247.486,	0.000 //	11274.179,	0.000
11275.179,	1.127 //	11276.360,	0.000 //	11303.032,	0.000 //	11304.032,	1.150 //	11305.207,	0.000
11331.899,	0.000 //	11332.899,	1.125 //	11334.154,	0.000 //	11360.861,	0.000 //	11361.861,	1.129
11363.024,	0.000 //	11389.783,	0.000 //	11390.783,	1.145 //	11392.025,	0.000 //	11418.563,	0.000
11419.563,	1.141 //	11420.731,	0.000 //	11447.393,	0.000 //	11448.393,	1.123 //	11449.611,	0.000
11476.461,	0.000 //	11477.461,	1.135 //	11478.659,	0.000 //	11505.285,	0.000 //	11506.285,	1.124
11507.494,	0.000 //	11534.212,	0.000 //	11535.212,	1.141 //	11536.414,	0.000 //	11563.192,	0.000
11564.192,	1.117 //	11565.396,	0.000 //	11592.049,	0.000 //	11593.049,	1.115 //	11594.222,	0.000
11620.828,	0.000 //	11621.828,	1.116 //	11623.016,	0.000 //	11649.753,	0.000 //	11650.753,	1.125
11651.945,	0.000 //	11678.726,	0.000 //	11679.726,	1.151 //	11680.939,	0.000 //	11707.625,	0.000
11708.625,	1.128 //	11709.975,	0.000 //	11736.697,	0.000 //	11737.697,	1.120 //	11738.882,	0.000
11765.603,	0.000 //	11766.603,	1.118 //	11767.797,	0.000 //	11794.414,	0.000 //	11795.414,	1.124
11796.614,	0.000 //	11823.403,	0.000 //	11824.403,	1.149 //	11825.628,	0.000 //	11852.283,	0.000
11853.283,	1.115 //	11854.424,	0.000 //	11881.215,	0.000 //	11882.215,	1.139 //	11883.378,	0.000
11910.080,	0.000 //	11911.080,	1.142 //	11912.328,	0.000 //	11939.035,	0.000 //	11940.035,	0.000
11941.160,	0.000 //	11967.793,	0.000 //	11968.793,	1.113 //	11970.026,	0.000 //	11996.808,	0.000
11997.808,	1.115 //	11999.030,	0.000 //	12025.778,	0.000 //	12026.778,	1.124 //	12027.944,	0.000
12054.622,	0.000 //	12055.622,	1.124 //	12056.860,	0.000 //	12083.671,	0.000 //	12084.671,	1.124
12085.875,	0.000 //	12112.527,	0.000 //	12113.527,	1.125 //	12114.683,	0.000 //	12141.476,	0.000
12142.476,	1.114 //	12143.652,	0.000 //	12170.251,	0.000 //	12171.251,	1.123 //	12172.383,	0.000
12199.017,	0.000 //	12200.017,	1.138 //	12201.184,	0.000 //	12227.829,	0.000 //	12228.829,	1.148
12230.072,	0.000 //	12256.882,	0.000 //	12257.882,	1.148 //	12259.076,	0.000 //	12285.756,	0.000
12286.756,	1.158 //	12287.942,	0.000 //	12314.515,	0.000 //	12315.515,	1.161 //	12316.718,	0.000
12343.349,	0.000 //	12344.349,	1.137 //	12345.526,	0.000 //	12372.160,	0.000 //	12373.160,	0.509
12375.407,	0.000 //	12402.160,	0.000 //	12403.160,	1.124 //	12404.402,	0.000 //	12431.044,	0.000
12432.044,	1.129 //	12433.412,	0.000 //	12460.123,	0.000 //	12461.123,	1.125 //	12462.327,	0.000
12500 050	0.000 //	12490.008,	1.133 //	12491.242,	1 107 //	12511.001,	0.000 //	12515.881,	1.132
12520.052,		12540./52,	0.000 //	12041.152,	1.12/ //	12040.904,	1 174 //	12010.499,	0.000
10622 121	1.129 //	1062/ 104	1 150 //	10625 217	0.000 //	12603.324,	1.1/1 //	12600.509,	1 120
1266/ 170		12034.131,	1.100 \/	12601 025	1 120 //	12602.007,	0.000 //	10710 005	1.130
12720 005	1 100 //	10700.900,		107/0 706	1.130 //	127/0 706	1 1/1 //	12750 067	0.000
10777 500	1.102 //	10770 500	1 120 //	10770 701	0.000 //	12006 100,	1.140 //	12007 460	1 1/5
12808 642	0.000 //	12835 3/2	0 000 //	12836 3/2	1 141 //	12837 574	0.000 //	12864 264	0 000
12865 264	1 157 //	12866 508	0 000 //	12893 099	0 000 //	12894 099	1 170 //	12895 293	0 000
12921 880	0.000 //	12922 880	1.151 //	12924 054	0.000 //	12950 913	0.000 //	12951 913	1.140
12953 100	0.000 //	12979 771	0.000 //	12980 771	1.151 //	12981 997	0.000 //	13008 783	0.000
-20000.100,	5.000 //	-20.0.111,	2.000 //	-20000.111,	//	-2001.001,		,	5.000

13009 783	1 1/15 //	13010 969	0 000 //	13037 710	0 000 //	13038 710	1 138 /	13030 802	0 000
12066 650	0.000 //	12067 650	1 1 1 7 //	12060 064	0.000 //	12005 502	1.100 //	12006 502,	1 140
12007 601	0.000 //	12104 447	1.14/ //	12105 447	0.000 //	13095.525,	0.000 //	13090.023,	1.140
13097.091,	0.000 //	13124.447,	0.000 //	13125.447,	0.000 //	13120.559,	0.000 //	13153.174,	0.000
13154.174,	1.153 //	13155.348,	0.000 //	13182.020,	0.000 //	13183.020,	1.131 //	13184.201,	0.000
13210.924,	0.000 //	13211.924,	1.139 //	13213.130,	0.000 //	13239.874,	0.000 //	13240.874,	1.138
13242.072,	0.000 //	13268.762,	0.000 //	13269.762,	1.132 //	13270.978,	0.000 //	13297.647,	0.000
13298.647,	1.129 //	13299.893,	0.000 //	13326.557,	0.000 //	13327.557,	1.129 //	13328.808,	0.000
13355.553,	0.000 //	13356.553,	1.144 //	13357.730,	0.000 //	13384.327,	0.000 //	13385.327,	1.138
13386.501,	0.000 //	13413.188,	0.000 //	13414.188,	1.143 //	13415.364,	0.000 //	13442.127,	0.000
13443.127,	1.131 //	13444.399,	0.000 //	13471.163,	0.000 //	13472.163,	1.140 //	13473.403,	0.000
13500.176,	0.000 //	13501.176,	1.097 //	13502.362,	0.000 //	13529.309,	0.000 //	13530.309,	1.133
13531.519,	0.000 //	13558.279,	0.000 //	13559.279,	1.118 //	13560.435,	0.000 //	13587.192,	0.000
13588.192,	1.103 //	13589.386,	0.000 //	13616.108,	0.000 //	13617.108,	1.111 //	13618.391,	0.000
13645.088,	0.000 //	13646.088,	1.116 //	13647.254,	0.000 //	13673.959,	0.000 //	13674.959,	1.163
13676.170,	0.000 //	13702.913,	0.000 //	13703.913,	1.130 //	13705.093,	0.000 //	13731.744,	0.000
13732.744,	1.116 //	13733.928,	0.000 //	13760.621,	0.000 //	13761.621,	1.122 //	13762.834,	0.000
13789.362,	0.000 //	13790.362,	1.130 //	13791.574,	0.000 //	13818.444,	0.000 //	13819.444,	1.137
13820.668.	0.000 //	13847.358.	0.000 //	13848.358.	1.118 //	13849.601.	0.000 //	13876.189.	0.000
13877.189.	1.153 //	13878.372.	0.000 //	13905.071.	0.000 //	13906.071.	1.138 //	13907.269.	0.000
13934.067.	0.000 //	13935.067.	1.124 //	13936.242.	0.000 //	13962.966.	0.000 //	13963.966.	1.142
13965.154.	0.000 //	13991.877.	0.000 //	13992.877.	1.161 //	13994.065.	0.000 //	14020.780.	0.000
14021.780.	1.149 //	14022.956.	0.000 //	14049.634.	0.000 //	14050.634.	1.151 /	14051.871.	0.000
14078 498	0 000 //	14079 498	1 132 //	14080 871	0 000 //	14107 497	0 000 /	14108 497	1 122
14109 723	0.000 //	14136 326	0.000 //	14137 326	1 117 //	14138 537	0.000 //	14165 301	0 000
14166 301	1 1/19 //	14167 603	0.000 //	1410/ 3/3	0.000 //	14105 3/2	1 1/10 /	14106 501	0.000
14223 208	1.140 //	14107.095,	1 112 //	14194.040,	0.000 //	14190.040, 14050.103	0 000 /	14190.021,	1 165
14223.200,	0.000 //	14224.200,	1.112 //	14220.390,	1 156 //	14202.103,	0.000 //	14203.103,	0.000
14204.410,	0.000 //	14201.190,	0.000 //	14202.190,	1.156 //	14203.394,	1 160 /	14310.225,	0.000
14311.225,	0.098 //	14312.335,	1 1 2 2 //	14339.117,	0.000 //	14340.117,	1.109 //	14341.277,	1 100
14368.029,	0.000 //	14369.029,	1.182 //	14370.201,	0.000 //	14397.009,	0.000 //	14398.009,	1.162
14399.235,	0.000 //	14425.891,	0.000 //	14426.891,	1.202 //	14428.087,	0.000 //	14454.768,	0.000
14455.768,	1.1/3 //	14456.921,	0.000 //	14483.547,	0.000 //	14484.547,	1.193 //	14485.739,	0.000
14512.377,	0.000 //	14513.377,	1.158 //	14514.618,	0.000 //	14541.403,	0.000 //	14542.403,	1.169
14543.604,	0.000 //	14570.324,	0.000 //	145/1.324,	1.189 //	14572.599,	0.000 //	14599.430,	0.000
14600.430,	1.160 //	14601.644,	0.000 //	14628.436,	0.000 //	14629.436,	1.175 //	14630.644,	0.000
14657.354,	0.000 //	14658.354,	1.180 //	14659.577,	0.000 //	14686.380,	0.000 //	14687.380,	1.169
14688.545,	0.000 //	14715.154,	0.000 //	14716.154,	1.162 //	14717.334,	0.000 //	14744.004,	0.000
14745.004,	1.154 //	14746.237,	0.000 //	14772.878,	0.000 //	14773.878,	1.159 //	14775.051,	0.000
14801.675,	0.000 //	14802.675,	1.169 //	14803.831,	0.000 //	14830.433,	0.000 //	14831.433,	1.166
14832.603,	0.000 //	14859.245,	0.000 //	14860.245,	1.162 //	14861.429,	0.000 //	14888.124,	0.000
14889.124,	1.174 //	14890.324,	0.000 //	14917.032,	0.000 //	14918.032,	1.168 //	14919.239,	0.000
14945.929,	0.000 //	14946.929,	1.153 //	14948.089,	0.000 //	14974.804,	0.000 //	14975.804,	1.165
14976.994,	0.000 //	15003.644,	0.000 //	15004.644,	1.151 //	15005.814,	0.000 //	15032.657,	0.000
15033.657,	1.158 //	15034.872,	0.000 //	15061.455,	0.000 //	15062.455,	1.161 //	15063.662,	0.000
15090.346,	0.000 //	15091.346,	1.159 //	15092.604,	0.000 //	15119.414,	0.000 //	15120.414,	1.170
15121.600,	0.000 //	15148.316,	0.000 //	15149.316,	1.140 //	15150.571,	0.000 //	15177.234,	0.000
15178.234,	1.141 //	15179.465,	0.000 //	15206.245,	0.000 //	15207.245,	1.177 //	15208.427,	0.000
15235.084,	0.000 //	15236.084,	1.168 //	15237.284,	0.000 //	15263.981,	0.000 //	15264.981,	1.142
15266.181,	0.000 //	15292.869,	0.000 //	15293.869,	1.154 //	15295.033,	0.000 //	15321.615,	0.000
15322.615,	1.178 //	15324.341,	0.000 //	15351.045,	0.000 //	15352.045,	1.086 //	15353.346,	0.000
15380.084,	0.000 //	15381.084,	1.132 //	15382.281,	0.000 //	15409.024,	0.000 //	15410.024,	1.159
15411.285,	0.000 //	15437.939,	0.000 //	15438.939,	1.157 //	15440.125,	0.000 //	15466.861,	0.000
15467.861,	1.146 //	15469.053,	0.000 //	15495.766,	0.000 //	15496.766,	1.155 //	15498.014,	0.000
15524.765,	0.000 //	15525.765,	0.000 //	15526.908,	0.000 //	15553.611,	0.000 //	15554.611,	1.180
15555.779,	0.000 //	15582.422,	0.000 //	15583.422,	1.168 //	15584.613,	0.000 //	15611.345,	0.000
15612.345,	1.161 //	15613.567.	0.000 //	15640.294.	0.000 //	15641.294.	1.150 //	15642.474.	0.000
15669.087.	0.000 //	15670.087.	1.157 //	15671.250.	0.000 //	15697.972.	0.000 //	15698.972.	1.174
15700.200.	0.000 //	15726.926.	0.000 //	15727.926.	1.154 //	15729.151.	0.000 //	15755.825.	0.000
15756.825.	1.168 //	15758.033.	0.000 //	15784.735.	0.000 //	15785.735.	1.162 //	15786.942.	0.000
15813.668.	0.000 //	15814.668.	1.178 //	15815.888.	0.000 //	15842.464.	0.000 /	15843.464.	1.166
15844.659.	0.000 //	15871.326.	0.000 //	15872.326.	1.169 //	15873.503.	0.000 /	15900.118.	0.000
15901.118.	1.173 //	15902.284.	0.000 //	15928.908.	0.000 //	15929.908.	1.169 /	15931.104.	0.000
15957.779.	0.000 //	15958.779.	1.167 //	15959.920.	0.000 //	15986.496.	0.000 //	15987.496.	1.189
15988.734	0.000 //	16015.518	0.000 //	16016.518	1.185 //	16017.704	0.000 /	16044.298	0.000
,	/ /	· · · · · · · · · · · · · · · · · · ·	/		/ /	,			

16045 000	1 107 //	16046 471	0 000 //	16070 115	0 000 //	16074 115	1 170 /	4 4 6 0 7 5 2 0 6	0 000
16045.298,	1.19/ //	16046.471,	0.000 //	16073.115,	0.000 //	16074.115,	1.1/9 /	10075.326,	0.000
16102.020,	0.000 //	16103.020,	1.182 //	16104.286,	0.000 //	16131.038,	0.000 /	16132.038,	1.159
16133.308,	0.000 //	16160.117,	0.000 //	16161.117,	0.922 //	16162.904,	0.000 /	/ 16189.623,	0.000
16190.623.	1.192 //	16191.817.	0.000 //	16218.553.	0.000 //	16219.553.	1.180 /	16220.786.	0.000
16247 592	0 000 //	16248 592	1 168 //	16249 823	0 000 //	16276 547	0 000 /	16277 547	1 169
10247.002,	0.000 //	10240.002,	1.100 //	10243.023,	0.000 //	102/0.04/,	0.000 /	10211.041,	1.103
162/8./4/,	0.000 //	16305.523,	0.000 //	16306.523,	1.1/8 //	16307.805,	0.000 /	16334.568,	0.000
16335.568,	1.184 //	16336.738,	0.000 //	16363.480,	0.000 //	16364.480,	1.190 /	16365.680,	0.000
16392.426,	0.000 //	16393.426,	1.192 //	16394.665,	0.000 //	16421.237,	0.000 /	16422.237,	1.168
16423.413.	0.000 //	16450.031.	0.000 //	16451.031.	1.178 //	16452.242.	0.000 /	/ 16478.898.	0.000
16/79 898	1 17/ //	16/81 125	0 000 //	16507 861	0 000 //	16508 861	1 167 /	/ 16510 120	0 000
10479.090,	1.1/4 //	10401.120,	0.000 //	10507.001,	0.000 //	10500.001,	1.107 /	10510.120,	4 4 6 4
16536.881,	0.000 //	16537.881,	1.198 //	16539.051,	0.000 //	10505.050,	0.000 /	10500.050,	1.101
16567.839,	0.000 //	16594.676,	0.000 //	16595.676,	1.173 //	16596.868,	0.000 /	16623.688,	0.000
16624.688,	1.182 //	16625.872,	0.000 //	16652.575,	0.000 //	16653.575,	1.278 /	16654.763,	0.000
16681.434.	0.000 //	16682.434.	1.175 //	16683.655.	0.000 //	16710.559.	0.000 /	/ 16711.559.	0.000
16712 810	0 000 //	16739 626	0 000 //	16740 626	1 162 //	16741 872	0 000 /	16768 634	0 000
16760 624	1 102 //	16770 905	0.000 //	16707 562	0.000 //	16709 662	1 150 /	16700.004,	0.000
10/09.034,	1.103 //	10//0.805,	0.000 //	10/9/.503,	0.000 //	10/98.503,	1.152 /	10/99./00,	0.000
16826.430,	0.000 //	16827.430,	1.179 //	16828.633,	0.000 //	16855.331,	0.000 /	16856.331,	1.159
16857.485,	0.000 //	16884.184,	0.000 //	16885.184,	1.141 //	16886.381,	0.000 /	/ 16912.987,	0.000
16913.987,	1.162 //	16915.228,	0.000 //	16941.926,	0.000 //	16942.926,	1.175 /	/ 16944.128,	0.000
16970.826.	0.000 //	16971.826.	1.159 //	16973.025.	0.000 //	16999.754	0.000 /	/ 17000.754.	1.174
17001 043	0 000 //	17028 630	0.000 //	17020 630	1 160 //	17030 830	0.000 /	/ 17057 504	0 000
17001.943,	0.000 //	17020.039,	0.000 //	17029.039,	1.109 //	17030.039,	0.000 /	17057.504,	0.000
17058.504,	1.150 //	17059.709,	0.000 //	17086.412,	0.000 //	17087.412,	1.164 /	17088.575,	0.000
17115.293,	0.000 //	17116.293,	1.190 //	17117.454,	0.000 //	17144.103,	0.000 /	/ 17145.103,	1.183
17146.293,	0.000 //	17172.988,	0.000 //	17173.988,	1.173 //	17175.248,	0.000 /	/ 17202.010,	0.000
17203.010.	1.173 //	17204.163.	0.000 //	17230.929.	0.000 //	17231.929.	1.165 /	17233.076.	0.000
17250 803	0 000 //	17260 803	1 165 //	17261 0/8	0 000 //	17288 682	0 000 /	/ 17280 682	1 153
17200.000,	0.000 //	17200.000,	1.100 //	17201.040,	0.000 //	17200.002,	0.000 /	17203.002,	1.100
17290.854,	0.000 //	1/31/.644,	0.000 //	1/318.644,	1.156 //	1/319.852,	0.000 /	1/346.530,	0.000
17347.530,	1.160 //	17348.691,	0.000 //	17375.450,	0.000 //	17376.450,	1.170 /	/ 17377.619,	0.000
17404.376,	0.000 //	17405.376,	1.167 //	17406.539,	0.000 //	17433.238,	0.000 /	/ 17434.238,	1.172
17435.432,	0.000 //	17462.194,	0.000 //	17463.194,	1.152 //	17464.408,	0.000 /	/ 17491.144,	0.000
17492 144	1 150 //	17493 358	0 000 //	17520 119	0 000 //	17521 119	1 124 /	/ 17522 300	0 000
17540 054	0.000 //	17550.054	1 110 //	17651 076	0.000 //	17577 007	0.000 /	/ 17570 007	1 157
17549.054,	0.000 //	17550.054,	1.110 //	17551.275,	0.000 //	17577.097,	0.000 /	11510.091,	1.157
17580.063,	0.000 //	17606.722,	0.000 //	1/60/./22,	1.120 //	17608.951,	0.000 /	1/635.68/,	0.000
17636.687,	1.170 //	17637.842,	0.000 //	17664.680,	0.000 //	17665.680,	1.164 /	/ 17666.976,	0.000
17693.648,	0.000 //	17694.648,	1.148 //	17695.861,	0.000 //	17722.575,	0.000 /	/ 17723.575,	1.181
17724.724.	0.000 //	17751.507.	0.000 //	17752.507.	1.182 //	17753.817.	0.000 /	/ 17780.692.	0.000
17781 692	1 17/ //	17782 871	0 000 //	17800 580	0 000 //	17810 589	1 173 /	/ 17811 778	0 000
17/01.032,	1.1/4 //	1702.071,	1 101 //	17009.009,	0.000 //	17010.000,	1.175 /	17011.770,	4 470
1/838.538,	0.000 //	17839.538,	1.181 //	1/840./35,	0.000 //	1/86/.335,	0.000 /	1/868.335,	1.1/3
17869.511,	0.000 //	17896.279,	0.000 //	17897.279,	1.171 //	17898.514,	0.000 /	/ 17925.318,	0.000
17926.318,	1.155 //	17927.545,	0.000 //	17954.241,	0.000 //	17955.241,	1.153 /	/ 17956.416,	0.000
17983.128,	0.000 //	17984.128,	1.166 //	17985.352,	0.000 //	18011.957,	0.000 /	/ 18012.957,	1.156
18014.143.	0.000 //	18040.897.	0.000 //	18041.897.	1.172 //	18043.112.	0.000 /	/ 18069.807.	0.000
19070 907	1 155 //	18071 073	0 000 //	19009 673	0.000 //	18000 673	1 136 /	/ 19100 9/9	0 000
10070.007,	1.155 //	10071.973,	0.000 //	10090.073,	0.000 //	10099.073,	1.130 /	10100.040,	0.000
18127.617,	0.000 //	18128.617,	1.166 //	18129.802,	0.000 //	18156.535,	0.000 /	18157.535,	1.151
18158.762,	0.000 //	18185.473,	0.000 //	18186.473,	1.184 //	18187.650,	0.000 /	/ 18214.307,	0.000
18215.307,	1.153 //	18216.482,	0.000 //	18243.219,	0.000 //	18244.219,	1.161 /	/ 18245.385,	0.000
18272.198,	0.000 //	18273.198,	1.163 //	18274.363,	0.000 //	18300.989,	0.000 /	/ 18301.989,	1.135
18303.192.	0.000 //	18329.814	0.000 //	18330.814	1.157 //	18332.055.	0.000 /	/ 18358.863.	0.000
19350 963	1 160 //	18361 050	0 000 //	10307 0/7	0.000 //	10300 0/7	1 171 /	/ 19300 045	0 000
10359.005,	1.102 //	10301.030,	0.000 //	10307.047,	0.000 //	10300.047,	1.1/1 //	10390.045,	0.000
18416.802,	0.000 //	18417.802,	1.160 //	18418.980,	0.000 //	18445.708,	0.000 /	18446.708,	1.158
18448.015,	0.000 //	18474.780,	0.000 //	18475.780,	1.163 //	18476.953,	0.000 /	/ 18503.600,	0.000
18504.600,	1.158 //	18505.787,	0.000 //	18532.407,	0.000 //	18533.407,	1.146 /	/ 18534.616,	0.000
18561.254.	0.000 //	18562.254.	1.155 //	18563.443.	0.000 //	18590.076.	0.000 /	/ 18591.076.	1.213
18592 334	0 000 //	18619 027	0 000 //	18620 027	1 154 //	18621 231	0 000 /	18647 858	0 000
106/0 050	1 160 //	10650 047	0.000 //	10676 714	0.000 //	10677 714	1 150 /	/ 10670 005	0.000
10040.058,	1.150 //	10050.047,	0.000 //	100/0./11,	0.000 //	100//./11,	1.120 //	100/0.935,	0.000
18705.688,	0.000 //	18706.688,	1.148 //	18707.895,	0.000 //	18734.615,	0.000 /	18735.615,	1.174
18736.858,	0.000 //	18763.533,	0.000 //	18764.533,	1.152 //	18765.695,	0.000 /	′ 18792.382,	0.000
18793.382,	1.174 //	18794.565,	0.000 //	18821.230,	0.000 //	18822.230,	1.149 /	/ 18823.436,	0.000
18850 257	0.000 //	18851.257	1.169 //	18852.421	0.000 //	18879.138	0.000 /	/ 18880.138	1.160
18881 289	0 000 //	18908 051	0 000 //	18909 051	1 177 //	18910 250	0 000 /	18936 903	0 000
10001.200,	1 170 //	10020 040	0.000 //	10065 710	1.11//	10066 710	1 152 /	10000.000,	0.000
10931.903,	1.119 //	10939.046,	0.000 //	10905./12,	0.000 //	10900./12,	1.153 /	10901.001,	0.000
18994.480,	0.000 //	18995.480,	1.152 //	18996.701,	0.000 //	19023.318,	0.000 /	19024.318,	1.144
19025 501	0.000 //	19052.180,	0.000 //	19053.180,	1.141 //	19054.341,	0.000 /	19081.053,	0.000

10000 050	1 101 11	10000 005	0 000 //	10100 050	0 000 //	10110 050	0 000	1/ 10110 000	0 000
19082.053,	1.161 //	19083.265,	0.000 //	19109.958,	0.000 //	19110.958,	0.000	// 19112.060,	0.000
19138.757,	0.000 //	19139.757,	1.147 //	19140.926,	0.000 //	19167.627,	0.000	// 19168.627,	1.137
19169.814,	0.000 //	19196.655,	0.000 //	19197.655,	1.132 //	19198.862,	0.000	// 19225.585,	0.000
19226 585	1 167 //	19227 750	0 000 //	19254 455	0 000 //	19255 455	1 149	// 19256 621	0 000
10220.000,	0.000 //	10221.100,	1 1 6 1 //	10005 407	0.000 //	10200.400,	0.000	// 10210.021,	1 1 1 2 2
19283.219,	0.000 //	19284.219,	1.104 //	19285.437,	0.000 //	19312.047,	0.000	// 19313.04/,	1.143
19314.230,	0.000 //	19340.966,	0.000 //	19341.966,	1.151 //	19343.172,	0.000	// 19369.786,	0.000
19370.786,	1.167 //	19371.961,	0.000 //	19398.650,	0.000 //	19399.650,	1.145	// 19400.867,	0.000
19427.568.	0.000 //	19428.568.	1.144 //	19429.776.	0.000 //	19456.441.	0.000	// 19457.441.	1.148
10/59 633	0.000 //	10/95 300	0.000 //	10/96 300	1 103 //	10/97 56/	0.000	// 1051/ 205	0 000
19450.055,	0.000 //	19405.590,	0.000 //	19400.390,	1.123 //	19407.004,	0.000	// 19014.290,	0.000
19515.295,	1.164 //	19516.541,	0.000 //	19543.221,	0.000 //	19544.221,	1.151	// 19545.421,	0.000
19572.127,	0.000 //	19573.127,	1.133 //	19574.335,	0.000 //	19601.021,	0.000	// 19602.021,	1.150
19603.154,	0.000 //	19629.766,	0.000 //	19630.766,	1.098 //	19632.046,	0.000	// 19658.783,	0.000
19659.783,	1.143 //	19660.979,	0.000 //	19687.737,	0.000 //	19688.737,	1.148	// 19689.918,	0.000
19716.588.	0.000 //	19717.588.	1.129 //	19718.797.	0.000 //	19745.458.	0.000	// 19746.458.	1.155
19747 659	0 000 //	19774 384	0 000 //	19775 384	1 157 //	19776 700	0 000	// 19803 463	0 000
10001 162	1 1/10 //	10005 660	0.000 //	10020 200	0.000 //	10022 200	1 105	// 10024 570	0.000
19004.403,	1.140 //	19805.000,	0.000 //	19032.355,	0.000 //	19033.355,	1.125	// 19034.572,	0.000
19861.285,	0.000 //	19862.285,	1.141 //	19863.485,	0.000 //	19890.150,	0.000	// 19891.150,	1.164
19892.326,	0.000 //	19919.106,	0.000 //	19920.106,	1.138 //	19921.295,	0.000	// 19948.117,	0.000
19949.117,	1.156 //	19950.364,	0.000 //	19977.042,	0.000 //	19978.042,	1.147	// 19979.270,	0.000
20005.861,	0.000 //	20006.861,	1.144 //	20008.051,	0.000 //	20034.773,	0.000	// 20035.773,	1.165
20036.960.	0.000 //	20063.795.	0.000 //	20064.795.	1.117 //	20066.029.	0.000	// 20092.735.	0.000
200003 735	1 1/1 //	200001 013	0.000 //	20101.1664	0.000 //	20000.020,	1 1/7	// 20002.100,	0.000
20093.735,	1.144 //	20094.943,	0.000 //	20121.004,	0.000 //	20122.004,	1.14/	// 20123.020,	1 1 2 5
20150.690,	0.000 //	20151.690,	1.153 //	20152.904,	0.000 //	20179.731,	0.000	// 20180.731,	1.165
20181.971,	0.000 //	20208.769,	0.000 //	20209.769,	1.145 //	20210.913,	0.000	// 20237.579,	0.000
20238.579,	1.134 //	20239.783,	0.000 //	20266.524,	0.000 //	20267.524,	1.167	// 20268.689,	0.000
20295.376,	0.000 //	20296.376,	0.000 //	20297.524,	0.000 //	20324.268,	0.000	// 20325.268,	1.145
20326.466.	0.000 //	20353.202	0.000 //	20354.202	1.158 //	20355.398	0.000	// 20382.045.	0.000
20383 0/5	1 1/1 //	2038/ 313	0 000 //	20/11 1/6	0 000 //	20/12 1/6	1 137	// 20/13 3/3	0 000
20303.045,	1.144 //	20004.010,	0.000 //	20411.140,	0.000 //	20412.140,	1.107	// 20410.040,	0.000
20439.975,	0.000 //	20440.975,	1.164 //	20442.129,	0.000 //	20468.951,	0.000	// 20469.951,	1.152
20471.097,	0.000 //	20497.728,	0.000 //	20498.728,	1.134 //	20499.896,	0.000	// 20526.660,	0.000
20527.660,	1.109 //	20528.857,	0.000 //	20555.524,	0.000 //	20556.524,	1.116	// 20557.721,	0.000
20584.403,	0.000 //	20585.403,	1.163 //	20586.609,	0.000 //	20613.308,	0.000	// 20614.308,	1.155
20615.532.	0.000 //	20642.213.	0.000 //	20643.213.	1.128 //	20644.402.	0.000	// 20671.139.	0.000
20672 139	1 130 //	20673 337	0 000 //	20699 962	0 000 //	20700 962	1 117	// 20702 145	0 000
20012.100,	0.000 //	20010.001,	1 100 //	20000.002,	0.000 //	20700.302,	0.000	// 20702.140,	1 112
20120.190,	0.000 //	20129.190,	1.122 //	20130.900,	0.000 //	20151.169,	0.000	// 20156.169,	1.115
20759.965,	0.000 //	20786.708,	0.000 //	20787.708,	1.136 //	20788.897,	0.000	// 20815.601,	0.000
20816.601,	1.121 //	20817.775,	0.000 //	20844.438,	0.000 //	20845.438,	1.121	// 20846.663,	0.000
20873.322,	0.000 //	20874.322,	1.140 //	20875.513,	0.000 //	20902.193,	0.000	// 20903.193,	1.140
20904.375,	0.000 //	20931.137,	0.000 //	20932.137,	1.116 //	20933.343,	0.000	// 20960.063,	0.000
20961.063.	1.139 //	20962.262.	0.000 //	20988.947.	0.000 //	20989.947.	1.141	// 20991.122.	0.000
21017 758	0 000 //	21018 758	1 160 //	21019 983	0 000 //	21046 666	0 000	// 21047 666	1 150
21017.700,	0.000 //	21010.100,	0.000 //	21010.000,	1 166 //	21010.000,	0.000	// 01104 549	0.000
21046.655,	0.000 //	21075.520,	0.000 //	21070.520,	1.100 //	21077.741,	0.000	// 21104.540,	0.000
21105.548,	1.13/ //	21106.728,	0.000 //	21133.399,	0.000 //	21134.399,	1.126	// 21135.5/1,	0.000
21162.206,	0.000 //	21163.206,	1.107 //	21164.401,	0.000 //	21191.176,	0.000	// 21192.176,	1.150
21193.379,	0.000 //	21220.041,	0.000 //	21221.041,	1.153 //	21222.285,	0.000	// 21249.040,	0.000
21250.040,	1.139 //	21251.253,	0.000 //	21277.874,	0.000 //	21278.874,	1.132	// 21280.065,	0.000
21306.797.	0.000 //	21307.797.	1.114 //	21308.970.	0.000 //	21335.695.	0.000	// 21336.695.	1.165
21337 887	0 000 //	21364 615	0 000 //	21365 615	1 160 //	21366 819	0 000	// 21393 615	0 000
2130/ 615	1 1/12 //	21305 777	0 000 //	21/22 506	0 000 //	21/23 506	1 163	// 21/2/ 66/	0 000
21334.013,	1.142 //	21333.111,	0.000 //	21422.000,	0.000 //	21420.000,	1.105	// 01401 000	1 100
21451.278,	0.000 //	21452.278,	1.153 //	21453.471,	0.000 //	21480.209,	0.000	// 21481.209,	1.100
21482.443,	0.000 //	21509.283,	0.000 //	21510.283,	0.000 //	21511.412,	0.000	// 21538.184,	0.000
21539.184,	1.119 //	21540.384,	0.000 //	21567.084,	0.000 //	21568.084,	1.142	// 21569.331,	0.000
21596.086,	0.000 //	21597.086,	1.158 //	21598.264,	0.000 //	21625.071,	0.000	// 21626.071,	1.150
21627.304.	0.000 //	21654.142.	0.000 //	21655.142.	1.149 //	21656.281.	0.000	// 21683.001.	0.000
21684 001	1 136 //	21685 160	0 000 //	21711 829	0 000 //	21712 829	1 132	// 21714 004	0 000
21004.001,	0.000 //	21000.100,	1 166 //	21712 017	0.000 //	21712.023,	0 000	// 01770 750	1 1/2
21/40./03,	0.000 //	21/41./03,	1.100 //	21143.017,	0.000 //	21/09./03,	0.000	// 21/10.103,	1.143
21//1.923,	0.000 //	21/98.640,	0.000 //	21/99.640,	1.146 //	∠1800.864,	0.000	// 2182/.541,	0.000
21828.541,	1.130 //	21829.751,	0.000 //	21856.447,	0.000 //	21857.447,	1.129	// 21858.688,	0.000
21885.607,	0.000 //	21886.607,	1.157 //	21887.963,	0.000 //	21914.795,	0.000	// 21915.795,	1.120
21916.967,	0.000 //	21943.696,	0.000 //	21944.696,	1.150 //	21945.905,	0.000	// 21972.648,	0.000
21973.648.	1.124 //	21974.849.	0.000 //	22001.510.	0.000 //	22002.510.	1.132	// 22003.729.	0.000
22030.476.	0.000 //	22031.476.	1.134 //	22032.641.	0.000 //	22059.281	0.000	// 22060.281.	1.133
22061 486	0.000 //	22088 393	0.000 //	22089 393	1.141 //	22090 588	0.000	// 22117 479	0.000
,	2.200 //	,		,	//	,		,,	

00110 470		00110 000	a aaa //	00110 001	a aaa //	00117 001		1/ 00/ 40 507	o ooo
22118.479,	1.121 //	22119.628,	0.000 //	22146.284,	0.000 //	22147.284,	1.131	// 22148.58/,	0.000
22175.400,	0.000 //	22176.400,	1.137 //	22177.645,	0.000 //	22204.441,	0.000	// 22205.441,	1.137
22206.684.	0.000 //	22233.511.	0.000 //	22234.511.	1.136 //	22235.671.	0.000	// 22262.427.	0.000
22263 127	1 139 //	22264 634	0 000 //	22201 477	0 000 //	22202 177	1 1/2	// 22203 665	0 000
22200.427,	1.130 //	22204.004,	0.000 //	22231.477,	0.000 //	22232.411,	1.140	// 22230.000,	0.000
22320.445,	0.000 //	22321.445,	1.12/ //	22322.652,	0.000 //	22349.460,	0.000	/ 22350.460,	1.137
22351.683,	0.000 //	22378.416,	0.000 //	22379.416,	1.159 //	22380.688,	0.000	// 22407.312,	0.000
22408.312,	1.105 //	22409.523,	0.000 //	22436.219,	0.000 //	22437.219,	1.121	// 22438.421,	0.000
22465.243.	0.000 //	22466.243.	1.135 //	22467.470.	0.000 //	22494.117.	0.000	// 22495.117.	1.140
22100.210,	0.000 //	221001210,	0.000 //	22101110,	1 110 //	DDEDE 124	0.000	// 2210001117,	0 000
22490.273,	0.000 //	22522.954,	0.000 //	22525.954,	1.119 //	22525.134,	0.000	// 22551.94/,	0.000
22552.947,	1.113 //	22554.113,	0.000 //	22580.795,	0.000 //	22581.795,	1.149	// 22582.992,	0.000
22609.687,	0.000 //	22610.687,	1.145 //	22611.880,	0.000 //	22638.674,	0.000	// 22639.674,	1.139
22640.848,	0.000 //	22667.649,	0.000 //	22668.649,	1.116 //	22669.883,	0.000	// 22696.682,	0.000
22697 682	0 000 //	22698 825	0 000 //	22725 500	0 000 //	22726 500	1 188	// 22727 683	0 000
22001.002,	0.000 //	22000.020,	1 120 //	22720.000,	0.000 //	22720.000,	0.000	// 00704 004	1 100
22754.556,	0.000 //	22155.556,	1.130 //	22750.555,	0.000 //	22703.334,	0.000	// 22/04.334,	1.120
22785.525,	0.000 //	22812.223,	0.000 //	22813.223,	1.128 //	22814.386,	0.000	// 22841.073,	0.000
22842.073,	1.116 //	22843.229,	0.000 //	22869.871,	0.000 //	22870.871,	1.115	// 22872.046,	0.000
22898.667,	0.000 //	22899.667,	1.123 //	22900.853,	0.000 //	22927.595,	0.000	// 22928.595,	1.129
22929 754	0 000 //	22956 487	0 000 //	22957 487	1 137 //	22958 704	0 000	// 22985 375	0 000
22020.101,	1 100 //	22000.101,	0.000 //	220011 216	0.000 //	22000.101,	1 1/1	// 02016 E40	0.000
22900.375,	1.120 //	22901.000,	0.000 //	23014.310,	0.000 //	23013.310,	1.141	// 23010.040,	0.000
23043.403,	0.000 //	23044.403,	0.801 //	23046.205,	0.000 //	23072.911,	0.000	// 23073.911,	1.159
23075.103,	0.000 //	23101.911,	0.000 //	23102.911,	1.150 //	23104.080,	0.000	// 23130.716,	0.000
23131.716,	1.146 //	23132.901,	0.000 //	23159.519,	0.000 //	23160.519,	1.120	// 23161.711,	0.000
23188 406	0 000 //	23189 406	1 128 //	23190 575	0 000 //	23217 253	0 000	// 23218 253	1 134
20100.400,	0.000 //	20100.400,	1.120 //	20100.010,	1 150 //	20217.200,	0.000	// 20210.200,	0.000
23219.429,	0.000 //	23240.140,	0.000 //	23247.140,	1.152 //	23248.334,	0.000	// 23214.949,	0.000
23275.949,	1.134 //	23277.144,	0.000 //	23303.839,	0.000 //	23304.839,	1.148	// 23306.041,	0.000
23332.804,	0.000 //	23333.804,	1.106 //	23335.019,	0.000 //	23361.869,	0.000	// 23362.869,	1.133
23364.112.	0.000 //	23390.881.	0.000 //	23391.881.	1.113 //	23393.071.	0.000	// 23419.774.	0.000
23420 774	1 148 //	23421 934	0 000 //	23448 800	0 000 //	23449 800	1 127	// 23450 942	0 000
02477 600	0.000 //	20121.001,	1 101 //	20110.000,	0.000 //	20110.000,	0.000	// 00507 574	1 1 2 6
23477.080,	0.000 //	23478.000,	1.101 //	23419.013,	0.000 //	23506.574,	0.000	// 2350/.5/4,	1.130
23508.778,	0.000 //	23535.563,	0.000 //	23536.563,	1.120 //	23537.774,	0.000	// 23564.556,	0.000
23565.556,	1.113 //	23566.734,	0.000 //	23593.399,	0.000 //	23594.399,	1.121	// 23595.613,	0.000
23622.350,	0.000 //	23623.350,	1.130 //	23624.606,	0.000 //	23651.358,	0.000	// 23652.358,	1.126
23653 584	0 000 //	23680 319	0 000 //	23681 319	1 133 //	23682 517	0 000	// 23709 244	0 000
20000.004,	1 101 //	20000.010,	0.000 //	20001.010,	1.100 //	20002.017,	4 407	// 00740 007	0.000
23710.244,	1.121 //	23/11.43/,	0.000 //	23738.152,	0.000 //	23739.152,	1.12/	// 23/40.30/,	0.000
23767.212,	0.000 //	23768.212,	1.122 //	23769.446,	0.000 //	23796.039,	0.000	// 23797.039,	1.133
23798.246,	0.000 //	23824.950,	0.000 //	23825.950,	1.120 //	23827.144,	0.000	// 23853.907,	0.000
23854.907,	1.112 //	23856.121,	0.000 //	23882.971,	0.000 //	23883.971,	1.120	// 23885.179,	0.000
23911 927	0 000 //	23912 927	0 000 //	23914 014	0 000 //	23940 647	0 000	// 23941 647	1 139
20011.021,	0.000 //	20012.021,	0.000 //	20014.014,	1 106 //	20040.041,	0.000	// 20041.041,	0.000
23942.804,	0.000 //	23969.733,	0.000 //	23970.733,	1.120 //	239/1.951,	0.000	// 23998.703,	0.000
23999.703,	1.137 //	24000.902,	0.000 //	24027.688,	0.000 //	24028.688,	1.153	// 24029.900,	0.000
24056.622,	0.000 //	24057.622,	1.121 //	24058.924,	0.000 //	24085.701,	0.000	// 24086.701,	1.137
24087.913,	0.000 //	24114.671,	0.000 //	24115.671,	1.138 //	24116.918,	0.000	// 24143.605,	0.000
24144 605	1 147 //	24145 813	0 000 //	24172 464	0 000 //	24173 464	1 148	// 24174 647	0 000
24144.000,	0.000 //	24140.010,	1 1/2 //	24172.404,	0.000 //	24170.404,	0.000	// 24114.041,	1 101
24201.423,	0.000 //	24202.423,	1.143 //	24203.029,	0.000 //	24230.249,	0.000	// 24231.249,	1.121
24232.511,	0.000 //	24259.221,	0.000 //	24260.221,	1.133 //	24261.418,	0.000	// 24288.127,	0.000
24289.127,	1.125 //	24290.324,	0.000 //	24317.063,	0.000 //	24318.063,	1.102	// 24319.239,	0.000
24346.020,	0.000 //	24347.020,	1.139 //	24348.183,	0.000 //	24374.917,	0.000	// 24375.917,	1.163
24377.134.	0.000 //	24403.823.	0.000 //	24404.823.	1.125 //	24406.013.	0.000	// 24432.660.	0.000
24/33 660	1 161 //	2//3/ 885	0 000 //	24/61 581	0 000 //	24/62 581	1 135	// 21/63 730	0 000
24400.000,	1.101 //	24404.000,	0.000 //	24401.001,	0.000 //	24402.301,	1.100	// 24400.700,	0.000
24490.522,	0.000 //	24491.522,	1.148 //	24492.768,	0.000 //	24519.433,	0.000	// 24520.433,	1.125
24521.604,	0.000 //	24548.252,	0.000 //	24549.252,	1.149 //	24550.469,	0.000	// 24577.268,	0.000
24578.268,	1.148 //	24579.464,	0.000 //	24606.145,	0.000 //	24607.145,	1.106	// 24608.370,	0.000
24635.189	0.000 //	24636.189.	1.145 //	24637.365.	0.000 //	24664.115	0.000	// 24665.115.	1.116
24666 307	0 000 //	24692 979	0 000 //	24693 979	1 084 //	24695 194	0 000	// 24722 018	0 000
21000.001,	1 100 //	2-1002.010,	0.000 //	24000.010,	1.001 //	24000.104,	1 000	// 04752 004	0.000
24/23.018,	1.109 //	24/24.191,	0.000 //	24150.831,	0.000 //	24/51.83/,	1.088	/ 24/53.004,	0.000
24779.689,	0.000 //	24780.689,	1.094 //	24781.907,	0.000 //	24808.633,	0.000	// 24809.633,	1.111
24810.814,	0.000 //	24837.492,	0.000 //	24838.492,	1.089 //	24839.720,	0.000	// 24866.404,	0.000
24867.404.	1.115 //	24868.644.	0.000 //	24895.359.	0.000 //	24896.359	1.148	// 24897.534.	0.000
24924 222	0 000 //	24925 222	1 109 //	24926 122,	0 000 //	24953 112	0 000	// 2495/ 119	1 102
21021.220,	0.000 //	24024 044	1.109 //	24020.422,	1 100 //	24000.110,	0.000	// 05040.110,	0.000
24955.272,	0.000 //	24981.944,	0.000 //	24982.944,	1.109 //	∠4984.138,	0.000	/ 25010.858,	0.000
25011.858,	1.119 //	25013.022,	0.000 //	25039.702,	0.000 //	25040.702,	1.124	// 25041.856,	0.000
25068.678,	0.000 //	25069.678,	1.127 //	25071.013,	0.000 //	25097.856,	0.000	// 25098.856,	0.000
25100.044.	0.000 //	25126.871,	0.000 //	25127.871,	1.131 //	25129.271.	0.000	// 25156.035.	0.000
,		,		,		,			

25157.035,	1.019 /	/	25158.095,	0.000 //	25184.793,	0.000 //	25185.793,	1.144	11	25186.966,	0.000
25213.686,	0.000 /	/	25214.686,	1.133 //	25215.881,	0.000 //	25242.566,	0.000	//	25243.566,	1.163
25244.777,	0.000 /	1	25271.518,	0.000 //	25272.518,	1.144 //	25273.691,	0.000	//	25300.462,	0.000
25301.462,	1.097 /	1	25302.669,	0.000 //	25329.293,	0.000 //	25330.293,	1.159	//	25331.493,	0.000
25358.178,	0.000 /	1	25359.178,	1.131 //	25360.365,	0.000 //	25387.085,	0.000	11	25388.085,	1.144
25389.238.	0.000 /	1	25415.940.	0.000 //	25416.940.	1.126 //	25418.145.	0.000	11	25444.844.	0.000
25445 844	1 135 /	1	25447 015	0 000 //	25473 765	0 000 //	25474 765	1 123	11	25475 894	0 000
25502 570	0 000 /	<i>'</i> ,	25503 570	1 118 //	25504 767	0.000 //	25531 365	0 000	11	25532 365	1 116
25502.570,	0.000 /		25505.070,	1.110 //	20004.707,	1 154 //	20001.000,	0.000	<i>''</i>	20002.000,	0.000
25533.564,	0.000 /		25560.237,	0.000 //	25561.237,	1.154 //	25562.444,	0.000	<i>'</i> ,	25569.234,	0.000
25590.234,	1.121 /		25591.468,	0.000 //	25618.264,	0.000 //	25619.264,	1.127	11	25620.491,	0.000
25647.251,	0.000 /	7	25648.251,	1.101 //	25649.419,	0.000 //	25676.081,	0.000	11	25677.081,	1.131
25678.271,	0.000 /	/	25704.985,	0.000 //	25705.985,	1.133 //	25707.167,	0.000	//	25733.956,	0.000
25734.956,	1.104 /	1	25736.181,	0.000 //	25762.891,	0.000 //	25763.891,	1.140	//	25765.257,	0.000
25791.982,	0.000 /	1	25792.982,	1.115 //	25794.136,	0.000 //	25820.808,	0.000	//	25821.808,	1.133
25823.024,	0.000 /	1	25849.689,	0.000 //	25850.689,	1.103 //	25851.875,	0.000	//	25878.601,	0.000
25879.601,	1.128 /	1	25880.781,	0.000 //	25907.535,	0.000 //	25908.535,	1.096	11	25909.761,	0.000
25936.501.	0.000 /	1	25937.501.	1.104 //	25938.681	0.000 //	25965.452.	0.000	11	25966.452.	1.116
25967 623		1	25994 267	0 000 //	25995 267	1 117 //	25996 484	0 000	11	26023 274	0 000
26024 274	1 11/	<i>.</i> ,	26025 507	0.000 //	26052.201,	0.000 //	26053 235	1 1 25	<i>''</i>	26054 412	0.000
20024.274,	0.000		20020.007,	1 116 //	20002.200,	0.000 //	20000.200,	0.000	<i>''</i>	20004.412,	1 110
20001.131,	0.000 /		20002.131,	1.110 //	20003.324,	0.000 //	20110.025,	0.000	<i>''</i> ,	20111.025,	1.110
26112.189,	0.000 /		26138.882,	0.000 //	26139.882,	1.119 //	26141.032,	0.000	11	26167.769,	0.000
26168.769,	1.111 /	/	26169.930,	0.000 //	26196.620,	0.000 //	26197.620,	1.112	//	26198.790,	0.000
26225.549,	0.000 /	/	26226.549,	0.413 //	26228.965,	0.000 //	26255.736,	0.000	//	26256.736,	1.128
26257.934,	0.000 /	1	26284.633,	0.000 //	26285.633,	1.118 //	26286.824,	0.000	//	26313.638,	0.000
26314.638,	0.000 /	1	26315.723,	0.000 //	26342.476,	0.000 //	26343.476,	1.100	//	26344.664,	0.000
26371.404,	0.000 /	1	26372.404,	1.090 //	26373.598,	0.000 //	26400.305,	0.000	11	26401.305,	1.134
26402.512,	0.000 /	1	26429.186,	0.000 //	26430.186,	1.133 //	26431.338,	0.000	11	26458.021,	0.000
26459.021.	1.120 /	1	26460.195.	0.000 //	26486.848.	0.000 //	26487.848.	1.108	11	26489.069.	0.000
26515 750	0 000 /	1	26516 750	1 110 //	26517 925	0 000 //	26544 695	0 000	11	26545 695	1 128
26546 995	0.000 /	<i>.</i> ,	26573 651	0.000 //	26574 651	1 100 //	26575 919	0.000	<i>''</i>	26602 502	0.000
20040.000,	1 116	<i>.</i> ,	20070.001,	0.000 //	20074.001,	1.100 //	20070.010,	1 105	<i>''</i>	20002.092,	0.000
20003.592,	1.110 /		20004.790,	0.000 //	20031.001,	0.000 //	20032.001,	1.125	<i>''</i>	20033.110,	1 000
26660.654,	0.000 /		26661.654,	1.118 //	26662.870,	0.000 //	26689.601,	0.000		26690.601,	1.099
26691.778,	0.000 /	/	26718.376,	0.000 //	26/19.3/6,	1.101 //	26720.532,	0.000	//	26747.241,	0.000
26748.241,	1.068 /	/	26749.455,	0.000 //	26776.129,	0.000 //	26777.129,	1.116	//	26778.293,	0.000
26804.986,	0.000 /	1	26805.986,	1.114 //	26807.162,	0.000 //	26833.899,	0.000	//	26834.899,	1.124
26836.095,	0.000 /	1	26862.733,	0.000 //	26863.733,	1.110 //	26864.929,	0.000	//	26891.764,	0.000
26892.764,	1.099 /	1	26893.934,	0.000 //	26920.549,	0.000 //	26921.549,	1.079	//	26922.774,	0.000
26949.490,	0.000 /	1	26950.490,	1.115 //	26951.653,	0.000 //	26978.496,	0.000	//	26979.496,	1.107
26980.702,	0.000 /	1	27007.418,	0.000 //	27008.418,	1.108 //	27009.618,	0.000	11	27036.293,	0.000
27037.293.	1.129 /	1	27038.480.	0.000 //	27065.142.	0.000 //	27066.142.	1.114	11	27067.345.	0.000
27094.179.	0.000 /	1	27095.179.	1.106 //	27096.359.	0.000 //	27123.013.	0.000	11	27124.013.	1.095
27125.196.	0.000 /		27151.906.	0.000 //	27152.906.	1.100 //	27154.095.	0.000	11	27180.814.	0.000
27181 814	1 100 /	1	27183 019	0 000 //	27209 761	0 000 //	27210 761	1 116	11	27211 947	0 000
27238 718	0 000 /	1	27239 718	1 093 //	27240 951	0 000 //	27267 627	0 000	11	27268 627	1 103
27269 786	0 000 /	1	27296 482	0 000 //	27297 482	1 122 //	27298 650	0 000	11	27325 374	0 000
27206 374	1 093 /	<i>'</i> ,	27200.102,	0.000 //	2735/ 300	0.000 //	27355 300	1 087	11	27356 /0/	0 000
27323 306	0.000	<i>.</i> ,	27324 306	1 11/ //	27395 462	0.000 //	27000.000,	0.000	<i>''</i>	27000.404,	1 106
27303.300,	0.000 /	<i>.</i> ,	27304.300,	1.114 //	27303.402,	1 119 //	27412.100,	0.000	<i>''</i>	27413.100,	0.000
27414.414,	0.000 /		27441.135,	0.000 //	27442.135,	1.110 //	27443.324,	0.000	<i>''</i>	27470.025,	0.000
27471.025,	1.132 /		2/4/2.2/5,	0.000 //	27499.092,	0.000 //	27500.092,	0.000	11	27501.228,	0.000
27527.945,	0.000 /	/	27528.945,	1.113 //	27530.281,	0.000 //	27556.954,	0.000	11	27557.954,	1.111
27559.124,	0.000 /	/	27585.856,	0.000 //	27586.856,	1.121 //	27588.039,	0.000	//	27614.815,	0.000
27615.815,	1.121 /	1	27617.007,	0.000 //	27643.647,	0.000 //	27644.647,	1.103	//	27645.842,	0.000
27672.526,	0.000 /	1	27673.526,	1.125 //	27674.688,	0.000 //	27701.440,	0.000	//	27702.440,	1.117
27703.711,	0.000 /	1	27730.426,	0.000 //	27731.426,	1.132 //	27732.641,	0.000	//	27759.369,	0.000
27760.369,	1.104 /	1	27761.582,	0.000 //	27788.248,	0.000 //	27789.248,	1.146	11	27790.414,	0.000
27817.117.	0.000 /	1	27818.117.	1.123 //	27819.302.	0.000 //	27845.969.	0.000	11	27846.969.	1.101
27848.123	0.000 /	1	27874.811	0.000 //	27875.811	1.125 //	27876.943	0.000	11	27903.602	0.000
27904 602	1.105 /		27905 763	0.000 //	27932 444	0.000 //	27933 444	1.108	11	27934 627	0.000
27961 382	0 000 /	<i>'</i>	27962 382	1 100 //	27963 530	0 000 //	27990 202	0 000	11	27991 2022	1 102
27001.002,	0.000 /	<i>'</i> ,	28010 116	1.103 //	28020 1/4	1 126 //	21000.200,	0.000	11	280/8 000	1.103
21332.000,	1 111	<i>'</i> ,	20013.140,	0.000 //	20020.140,	1.120 //	20021.331,	1 1 2 1	',	20040.009,	0.000
∠ou49.009,	1.111 /		∠ougu.184,		20010.812,	0.000 //	20011.012,	1.131	"	20019.098,	1 101
28105.81/,	0.000 /	/	20100.81/,	1.115 //	28101.981,	0.000 //	28134.708,	0.000	11	28135.708,	1.131
28136.945,	0.000 /	1	28163.634,	0.000 //	28164.634,	1.127 //	28165.939,	0.000	11	28192.812,	0.000

00100 010		00405 004	0 000 //	00004 000	0 000 //		4 000	11 00004 405	o ooo
28193.812,	1.104 //	28195.221,	0.000 //	28221.988,	0.000 //	28222.988,	1.093 ,	/ 28224.185,	0.000
28250.917,	0.000 //	28251.917,	1.099 //	28253.188,	0.000 //	28279.985,	0.000 /	// 28280.985,	1.124
28282.213,	0.000 //	28308.972,	0.000 //	28309.972,	1.105 //	28311.173,	0.000 /	// 28337.952,	0.000
28338 952	1 117 //	28340 122	0 000 //	28366 802	0 000 //	28367 802	1 111	1/ 28368 966	0 000
20000.002,	0.000 //	20010.122,	1 120 //	20202.002,	0.000 //	20001.002,	0.000	/ 20000.000,	1 005
20395.024,	0.000 //	20390.024,	1.139 //	20397.010,	0.000 //	20424.000,	0.000 ,	/ 20425.000,	1.095
28426.849,	0.000 //	28453.691,	0.000 //	28454.691,	1.118 //	28455.899,	0.000	/ 28482.572,	0.000
28483.572,	1.113 //	28484.733,	0.000 //	28511.389,	0.000 //	28512.389,	1.110 ,	// 28513.541,	0.000
28540.270,	0.000 //	28541.270,	1.094 //	28542.482,	0.000 //	28569.117,	0.000 /	// 28570.117,	1.090
28571.289.	0.000 //	28597.991.	0.000 //	28598.991.	1.083 //	28600.159.	0.000	// 28626.887.	0.000
28627 887	1 09/ //	28629 066	0 000 //	28655 823	0 000 //	28656 823	1 058	// 28658 017	0 000
20021.001,	1.004 //	20025.000,	1 100 //	20000.020,	0.000 //	20000.020,	1.000 /	/ 20000.011,	0.000
20004.195,	0.000 //	20005.795,	1.100 //	20000.993,	0.000 //	20713.000,	0.000 ,	// 20/14.000,	0.000
28715.849,	0.000 //	28742.599,	0.000 //	28743.599,	1.075 //	28744.776,	0.000	// 28771.589,	0.000
28772.589,	1.066 //	28773.843,	0.000 //	28800.552,	0.000 //	28801.552,	1.094 ,	// 28802.749,	0.000
28829.410,	0.000 //	28830.410,	1.118 //	28831.631,	0.000 //	28858.285,	0.000 /	// 28859.285,	1.097
28860.501.	0.000 //	28887.172.	0.000 //	28888.172.	1.105 //	28889.435.	0.000	// 28916.307.	0.000
28917 307	1 079 //	28918 510	0 000 //	28945 242	0 000 //	28946 242	1 108	// 28947 428	0 000
2007/ 100	1.010 //	20010.010,	1 105 //	20010.212,	0.000 //	20010.212,	0.000	/ 20011.120,	1 100
28974.182,	0.000 //	20975.102,	1.105 //	20910.351,	0.000 //	29003.093,	0.000 ,	/ 29004.093,	1.122
29005.272,	0.000 //	29031.959,	0.000 //	29032.959,	1.087 //	29034.107,	0.000	/ 29060.724,	0.000
29061.724,	1.114 //	29063.033,	0.000 //	29089.679,	0.000 //	29090.679,	1.085 ,	// 29091.892,	0.000
29118.683,	0.000 //	29119.683,	1.087 //	29120.825,	0.000 //	29147.484,	0.000	// 29148.484,	1.062
29149.646.	0.000 //	29176.379.	0.000 //	29177.379.	1.098 //	29178.561.	0.000	// 29205.287.	0.000
29206 287	1 079 //	29207 493	0 000 //	29234 282	0 000 //	29235 282	1 076	// 29236 460	0 000
20200.201,	0.000 //	2026/ 100,	1 075 //	20201.202,	0.000 //	20200.202,	0.000	// 20203.100,	1 090
29203.109,	0.000 //	29204.109,	1.075 //	29205.200,	0.000 //	29292.073,	0.000 ,	// 29293.013,	1.000
29294.258,	0.000 //	29321.005,	0.000 //	29322.005,	1.108 //	29323.191,	0.000 ,	7 29349.999,	0.000
29350.999,	1.073 //	29352.194,	0.000 //	29378.977,	0.000 //	29379.977,	1.098 ,	// 29381.130,	0.000
29407.876,	0.000 //	29408.876,	1.091 //	29410.097,	0.000 //	29436.953,	0.000 /	// 29437.953,	1.089
29439.164.	0.000 //	29466.024.	0.000 //	29467.024.	1.090 //	29468.195.	0.000	// 29494.976.	0.000
29495 976	1 070 //	29497 190	0 000 //	29523 807	0 000 //	29524 807	1 076	// 29526 003	0 000
20100.010,	0.000 //	20107.100,	1 070 //	20020.001,	0.000 //	20021.001,	0.000	/ 20020.000,	1 075
29552.766,	0.000 //	29553.766,	1.072 //	29554.962,	0.000 //	29581.730,	0.000 ,	// 29582.730,	1.075
29584.064,	0.000 //	29610.761,	0.000 //	29611.761,	1.096 //	29612.945,	0.000	// 29639.874,	0.000
29640.874,	1.093 //	29642.066,	0.000 //	29668.853,	0.000 //	29669.853,	1.107 ,	// 29671.251,	0.000
29698.031,	0.000 //	29699.031,	1.056 //	29700.191,	0.000 //	29727.026,	0.000 /	// 29728.026,	1.086
29729.255.	0.000 //	29756.055.	0.000 //	29757.055.	0.804 //	29758.867.	0.000	// 29785.594.	0.000
29786 594	1 100 //	29787 782	0 000 //	29814 580	0 000 //	29815 580	1 103	// 29816 805	0 000
20100.004,	0.000 //	20101.102,	1 007 //	20014.000,	0.000 //	20010.000,	0.000	/ 20010.000,	1 111
29043.019,	0.000 //	29044.019,	1.097 //	29045.009,	0.000 //	29012.592,	0.000 ,	/ 29013.592,	1.114
29874.807,	0.000 //	29901.679,	0.000 //	29902.679,	0.000 //	29903.757,	0.000 ,	/ 29930.649,	0.000
29931.649,	0.000 //	29932.726,	0.000 //	29959.557,	0.000 //	29960.557,	0.000 ,	// 29961.681,	0.000
29988.498,	0.000 //	29989.498,	1.089 //	29990.660,	0.000 //	30017.345,	0.000	// 30018.345,	1.073
30019.558,	0.000 //	30046.313,	0.000 //	30047.313,	1.103 //	30048.553,	0.000	// 30075.402,	0.000
30076.402.	1.099 //	30077.584.	0.000 //	30104.294.	0.000 //	30105.294.	1.090	// 30106.472.	0.000
30133 185	0 000 //	30134 185	1 082 //	30135 312	0 000 //	30162 096	0 000	// 30163 096	1 065
20100.100,	0.000 //	20104.100,	1.002 //	20100.012,	0.000 //	20102.030,	0.000 /	// 20010.030,	1.000
30164.303,	0.000 //	30191.071,	0.000 //	30192.071,	1.078 //	30193.254,	0.000	// 30219.94/,	0.000
30220.947,	1.085 //	30222.173,	0.000 //	30249.067,	0.000 //	30250.067,	1.066 ,	// 30251.275,	0.000
30278.002,	0.000 //	30279.002,	1.092 //	30280.165,	0.000 //	30306.909,	0.000 /	// 30307.909,	1.098
30309.091,	0.000 //	30335.858,	0.000 //	30336.858,	1.069 //	30338.042,	0.000 /	// 30364.667,	0.000
30365.667.	1.082 //	30366.844.	0.000 //	30393.637.	0.000 //	30394.637.	1.079	// 30395.844.	0.000
30422 608	0 000 //	30423 608	1 078 //	30424 787	0 000 //	30451 420	0.000	// 30452 420	1 083
20452 604	0.000 //	20420.000,	0.000 //	20/01 215	1 076 //	20402 406	0.000	// 20500 125	0.000
30453.004,	0.000 //	30460.315,	0.000 //	30401.315,	1.076 //	30402.490,	0.000	// 30509.135,	0.000
30510.135,	1.066 //	30511.307,	0.000 //	30538.059,	0.000 //	30539.059,	1.077	// 30540.327,	0.000
30567.137,	0.000 //	30568.137,	1.091 //	30569.340,	0.000 //	30596.077,	0.000 ,	// 30597.077,	1.078
30598.237,	0.000 //	30625.042,	0.000 //	30626.042,	1.117 //	30627.224,	0.000 /	// 30654.001,	0.000
30655.001,	1.071 //	30656.156,	0.000 //	30682.849,	0.000 //	30683.849,	1.078	// 30685.060,	0.000
30711.728.	0.000 //	30712.728	1.076 //	30714.047	0.000 //	30740.750.	0.000	// 30741.750.	1.083
307/2 902	0 000 //	30769 571	0 000 //	30770 571	1 098 //	30771 744	0 000	// 30708 307	0 000
20700 207	1 000 //	20000 001	0.000 //	20007 270	1.000 //	20000 070	1 000	/ 20000 500	0.000
30/99.39/,	1.089 //	30800.621,	0.000 //	30827.378,	0.000 //	30828.378,	1.098	/ 30829.562,	0.000
30856.389,	0.000 //	30857.389,	1.103 //	30858.541,	0.000 //	30885.353,	0.000	/ 30886.353,	1.105
30887.504,	0.000 //	30914.278,	0.000 //	30915.278,	1.058 //	30916.419,	0.000 ,	// 30943.213,	0.000
30944.213,	1.077 //	30945.405,	0.000 //	30972.156,	0.000 //	30973.156,	1.087	// 30974.347,	0.000
31001.026	0.000 //	31002.026	1.085 //	31003.272	0.000 //	31030.007	0.000	// 31031.007	1.079
31032 210	0.000 //	31058 907	0.000 //	31059 907	1.104 //	31061 061	0.000	// 31087 801	0.000
31088 801	1 000 //	31080 055	0 000 //	31116 704	0 000 //	31117 70/	0 000	// 31118 810	0 000
211/15 /07	1.032 //	21146 407	1 000 //	211/7 605	0.000 //	2117/ 254	0.000	// 21175 254	1 000
51145.49/,	0.000 //	31140.49/,	T.080 //	51141.000,	0.000 //	311/4.351,	0.000 /	/ 311/3.351,	1.092
31176.539,	0.000 //	31203.125,	0.000 //	31204.125,	1.064 //	31205.388,	0.000	// 31232.043,	0.000

04000 040	4 050 //	04004 040	0 000 //	04000 000	0 000 //	04004 000	1 0 1 0	11 01000 000	o
31233.043,	1.053 //	31234.213,	0.000 //	31260.903,	0.000 //	31261.903,	1.048	// 31263.096,	0.000
31289.864,	0.000 //	31290.864,	1.065 //	31292.017,	0.000 //	31318.685,	0.000	// 31319.685,	1.073
31320.885.	0.000 //	31347.609.	0.000 //	31348.609.	1.053 //	31349.803.	0.000	// 31376.568.	0.000
31377 568	1 05/ //	31378 753	0 000 //	31/05 532	0 000 //	31/06 532	1 031	// 31/07 7/7	0 000
51577.500,	1.004 //	01405 400	0.000 //	01400.002,	0.000 //	01400.002,	1.001	// 0140/./4/	0.000
31434.426,	0.000 //	31435.426,	1.051 //	31436.641,	0.000 //	31463.402,	0.000	// 31464.402,	1.046
31465.620,	0.000 //	31492.314,	0.000 //	31493.314,	1.023 //	31494.490,	0.000	// 31521.372,	0.000
31522.372,	1.039 //	31523.568,	0.000 //	31550.188,	0.000 //	31551.188,	1.046	// 31552.334,	0.000
31579.005.	0.000 //	31580.005.	1.026 //	31581.168.	0.000 //	31608.013.	0.000	// 31609.013.	1.046
31610 191	0 000 //	31637 029	0 000 //	31638 029	1 044 //	31639 257	0 000	// 31665 915	0 000
21666 015	1 062 //	21669 102	0.000 //	21604 771	0.000 //	21605.201,	1 054	// 21606.060	0.000
31000.915,	1.003 //	31000.103,	0.000 //	31094.771,	0.000 //	31095.771,	1.054	// 51090.900,	0.000
31/23.6/4,	0.000 //	31/24.6/4,	1.0// //	31/25.84/,	0.000 //	31752.560,	0.000	// 31/53.560,	1.064
31754.737,	0.000 //	31781.547,	0.000 //	31782.547,	1.055 //	31783.743,	0.000	// 31810.474,	0.000
31811.474,	1.084 //	31812.676,	0.000 //	31839.320,	0.000 //	31840.320,	1.065	// 31841.503,	0.000
31868.259,	0.000 //	31869.259,	1.045 //	31870.454,	0.000 //	31897.167,	0.000	// 31898.167,	1.051
31899.337	0.000 //	31926.063	0.000 //	31927.063	1.047 //	31928.243	0.000	// 31954.899.	0.000
31055 800	1 072 //	31957 104	0 000 //	31983 8/0	0 000 //	3198/ 8/0	1 0/12	// 31986 063	0 000
22010 701	1.072 //	20012 701	1 041 //	20014 064	0.000 //	22041 620	0.000	// 22042 620	1 044
32012.791,	0.000 //	32013.791,	1.041 //	32014.964,	0.000 //	32041.089,	0.000	// 32042.089,	1.044
32043.847,	0.000 //	32070.523,	0.000 //	32071.523,	1.051 //	32072.703,	0.000	// 32099.408,	0.000
32100.408,	1.045 //	32101.583,	0.000 //	32128.426,	0.000 //	32129.426,	1.037	// 32130.587,	0.000
32157.271,	0.000 //	32158.271,	1.048 //	32159.466,	0.000 //	32186.170,	0.000	// 32187.170,	1.052
32188.336,	0.000 //	32215.174,	0.000 //	32216.174,	1.046 //	32217.394,	0.000	// 32244.222,	0.000
32245.222.	1.057 //	32246.403.	0.000 //	32273.153.	0.000 //	32274.153.	1.051	// 32275.301.	0.000
32302.225.	0.000 //	32303.225.	0.000 //	32304.322.	0.000 //	32331.001.	0.000	// 32332.001.	1.045
32333 246	0.000 //	32360 042	0.000 //	32361 042	1 113 //	30360 011	0.000	// 32389 025	0 000
22333.240,	0.000 //	32300.042,	0.000 //	32301.042,	1.113 //	32302.211,	1 050	// 02000.020,	0.000
32390.025,	1.048 //	32391.224,	0.000 //	32418.051,	0.000 //	32419.051,	1.050	// 32420.251,	0.000
32447.116,	0.000 //	32448.116,	1.053 //	32449.320,	0.000 //	32475.978,	0.000	// 32476.978,	1.058
32478.179,	0.000 //	32504.961,	0.000 //	32505.961,	1.048 //	32507.113,	0.000	// 32533.795,	0.000
32534.795,	1.061 //	32535.973,	0.000 //	32562.641,	0.000 //	32563.641,	1.058	// 32564.838,	0.000
32591.595,	0.000 //	32592.595,	1.043 //	32593.771,	0.000 //	32620.511,	0.000	// 32621.511,	1.058
32622.713.	0.000 //	32649.474.	0.000 //	32650.474.	1.052 //	32651.652.	0.000	// 32678.256.	0.000
32679 256	1 070 //	32680 417	0 000 //	32707 142	0 000 //	32708 142	1 044	// 32709 349	0 000
30736 193	0.000 //	30737 193	1 0/3 //	30739 335	0.000 //	30765 050	0.000	// 30766 050	1 03/
32730.103,	0.000 //	32737.103,	1.043 //	32730.333,	1 051 //	32705.050,	0.000	// 32700.030,	1.034
32101.225,	0.000 //	32/94.003,	0.000 //	32/95.003,	1.051 //	32/90.1/8,	0.000	// 32823.007,	0.000
32824.007,	0.999 //	32825.317,	0.000 //	32852.035,	0.000 //	32853.035,	1.043	// 32854.213,	0.000
32880.932,	0.000 //	32881.932,	1.045 //	32883.089,	0.000 //	32909.790,	0.000	// 32910.790,	1.027
32911.990,	0.000 //	32938.680,	0.000 //	32939.680,	1.063 //	32940.874,	0.000	// 32967.545,	0.000
32968.545,	1.034 //	32969.712,	0.000 //	32996.566,	0.000 //	32997.566,	1.057	// 32998.769,	0.000
33025.491.	0.000 //	33026.491.	1.036 //	33027.724.	0.000 //	33054.422.	0.000	// 33055.422.	1.064
33056 592	0 000 //	33083 400	0 000 //	3308/ /00	1 011 //	33085 701	0 000	// 33112 53/	0 000
22112 524	1.000 //	22114 714	0.000 //	22141 444	1.011 //	22140 444	1 001	// 00112.004,	0.000
33113.534,	1.026 //	33114./14,	0.000 //	33141.444,	0.000 //	33142.444,	1.021	// 33143.01/,	0.000
33170.374,	0.000 //	331/1.3/4,	1.019 //	33172.618,	0.000 //	33199.339,	0.000	// 33200.339,	1.028
33201.539,	0.000 //	33228.273,	0.000 //	33229.273,	1.046 //	33230.439,	0.000	// 33257.162,	0.000
33258.162,	1.023 //	33259.345,	0.000 //	33286.044,	0.000 //	33287.044,	1.036	// 33288.292,	0.000
33315.139,	0.000 //	33316.139,	1.034 //	33317.349,	0.000 //	33344.122,	0.000	// 33345.122,	1.034
33346.308.	0.000 //	33373.070.	0.000 //	33374.070.	1.017 //	33375.268.	0.000	// 33402.128.	0.000
33403 128	1 027 //	33405 013	0 000 //	33431 879	0 000 //	33432 879	1 023	// 33434 066	0 000
33460 913	0.000 //	33/61 913	1 051 //	33/62 002	0.000 //	33/80 820	0.000	// 33/00 820	0.000
33400.013,	0.000 //	33401.013,	1.051 //	33402.992,	0.000 //	33409.020,	0.000	// 33490.620,	0.000
33491.965,	0.000 //	33518.667,	0.000 //	33519.667,	1.023 //	33520.837,	0.000	// 33547.662,	0.000
33548.662,	1.044 //	33549.835,	0.000 //	33576.494,	0.000 //	33577.494,	1.032	// 33578.635,	0.000
33605.415,	0.000 //	33606.415,	1.017 //	33607.629,	0.000 //	33634.350,	0.000	// 33635.350,	1.031
33636.517,	0.000 //	33663.445,	0.000 //	33664.445,	1.037 //	33665.602,	0.000	// 33692.280,	0.000
33693.280,	1.029 //	33694.472,	0.000 //	33721.245,	0.000 //	33722.245,	1.023	// 33723.404,	0.000
33750.349	0.000 //	33751.349	1.037 //	33752.508.	0.000 //	33779.439.	0.000	// 33780.439.	1.032
33781 634	0.000 //	33808 371	0.000 //	33809 371	1.034 //	33810 553	0.000	// 33837 281	0.000
22020 004	1 022 //	22020 1/1	0.000 //	33966 116	0.000 //	33967 116	1 016	// 22060 076	0.000
22004 004	1.023 //	22005 201		22007 047	0.000 //	22002 045	1.010	// 0000.2/0,	1 040
33894.994,	0.000 //	33895.994,	1.014 //	33897.217,	0.000 //	33923.915,	0.000	// 33924.915,	1.043
33926.132,	0.000 //	33952.913,	0.000 //	33953.913,	1.022 //	33955.098,	0.000	// 33981.810,	0.000
33982.810,	1.024 //	33983.969,	0.000 //	34010.692,	0.000 //	34011.692,	1.043	// 34012.874,	0.000
34039.571,	0.000 //	34040.571,	1.041 //	34041.753,	0.000 //	34068.423,	0.000	// 34069.423,	1.040
34070.587,	0.000 //	34097.407,	0.000 //	34098.407,	1.019 //	34099.747,	0.000	// 34126.493,	0.000
34127.493.	1.008 //	34128.715.	0.000 //	34156.032.	0.000 //	34157.032.	0.663	// 34157.670.	0.000
34184.367	0.000 //	34185.367	1.053 //	34186.558	0.000 //	34213.251	0.000	// 34214.251	1.053
34215 /21	0 000 //	34242 110	0 000 //	34243 110	1 050 //	34044 350	0 000	// 34071 100	0 000
57210.721,	5.000 //	UILIL, 113,	5.000 //	JIZIO.113,	1.000 //	JIZII.002,	5.000	,, 0 <u>12</u> ,1.132,	5.000

34272.192,	1.018 //	34273.508,	0.000 //	34300.328,	0.000 //	34301.328,	1.024 /	/ 34302.478,	0.000
34329.245,	0.000 //	34330.245,	1.036 //	34331.410,	0.000 //	34358.106,	0.000 /	/ 34359.106,	1.030
34360.319,	0.000 //	34387.146,	0.000 //	34388.146,	1.029 //	34389.325,	0.000 /	/ 34416.256,	0.000
34417 256	1 009 //	34418 427	0 000 //	34445 306	0 000 //	34446 306	1 024 /	/ 34447 538	0 000
3//7/ 330	0 000 //	3//75 330	1 007 //	3//76 531	0 000 //	3/503 287	0 000 /	/ 3/50/ 287	1 010
24505 505	0.000 //	34520.000	1.007 //	24522 000	1 004 //	04500.207,	0.000 /	/ 04564 004	1.010
34505.525,	0.000 //	34532.200,	0.000 //	34533.200,	1.034 //	34534.465,	0.000 /	/ 34501.231,	0.000
34562.231,	0.968 //	34563.427,	0.000 //	34590.149,	0.000 //	34591.149,	1.013 /	/ 34592.375,	0.000
34619.100,	0.000 //	34620.100,	1.008 //	34621.325,	0.000 //	34648.014,	0.000 /	/ 34649.014,	0.988
34650.216,	0.000 //	34677.054,	0.000 //	34678.054,	1.002 //	34679.282,	0.000 /	/ 34706.159,	0.000
34707.159.	0.000 //	34708.242.	0.000 //	34735.076.	0.000 //	34736.076.	0.975 /	/ 34737.273.	0.000
34764 189	0 000 //	34765 189	1 013 //	34766 384	0 000 //	34793 182	0 000 /	/ 34794 182	1 004
24705 200	0.000 //	24000.100,	0.000 //	24002 001	1 007 //	21001 201	0.000 /	/ 24054.102,	0.000
34795.396,	0.000 //	34022.221,	0.000 //	34023.221,	1.007 77	34024.304,	0.000 /	/ 34051.200,	0.000
34852.266,	1.042 //	34853.496,	0.000 //	34880.347,	0.000 //	34881.347,	1.017 /	/ 34882.492,	0.000
34909.301,	0.000 //	34910.301,	1.010 //	34911.532,	0.000 //	34938.280,	0.000 /	/ 34939.280,	1.018
34940.440,	0.000 //	34967.175,	0.000 //	34968.175,	1.029 //	34969.354,	0.000 /	/ 34996.115,	0.000
34997.115.	1.015 //	34998.278.	0.000 //	35025.043.	0.000 //	35026.043.	1.004 /	/ 35027.212.	0.000
35053 953	0 000 //	35054 953	1 036 //	35056 189	0 000 //	35082 890	0 000 /	/ 35083 890	1 104
25005.000,	0.000 //	25111 070	0.000 //	25110 070	1 016 //	2511/ 152	0.000 /	/ 25140 066	0.000
35065.059,	0.000 //	35111.072,	0.000 //	35112.072,	1.010 //	35114.155,	0.000 /	/ 35140.900,	0.000
35141.966,	1.033 //	35143.219,	0.000 //	35170.168,	0.000 //	351/1.168,	1.023 /	/ 351/2.330,	0.000
35199.172,	0.000 //	35200.172,	1.012 //	35201.366,	0.000 //	35228.082,	0.000 /	/ 35229.082,	1.014
35230.321,	0.000 //	35257.061,	0.000 //	35258.061,	1.010 //	35259.263,	0.000 /	/ 35286.094,	0.000
35287.094,	1.039 //	35288.272,	0.000 //	35315.169,	0.000 //	35316.169,	1.054 /	/ 35317.366,	0.000
35344.109.	0.000 //	35345.109.	1.002 //	35346.305.	0.000 //	35373.010.	0.000 /	/ 35374.010.	1.032
35375 10/	0 000 //	35/01 83/	0 000 //	35/02 83/	1 016 //	35/0/ 036	0 000 /	/ 35/30 775	0 000
05010.104,	0.000 //	25422.007	0.000 //	35452.054,	1.010 //	35404.050,	0.000 /	/ 25401.000	0.000
35431.775,	1.011 //	35432.987,	0.000 //	35459.753,	0.000 //	35460.753,	1.019 /	/ 35461.920,	0.000
35488.787,	0.000 //	35489.787,	1.003 //	35490.987,	0.000 //	35517.797,	0.000 /	/ 35518.797,	0.998
35520.047,	0.000 //	35546.771,	0.000 //	35547.771,	1.022 //	35548.965,	0.000 /	/ 35575.756,	0.000
35576.756,	1.008 //	35577.978,	0.000 //	35604.780,	0.000 //	35605.780,	1.017 /	/ 35607.019,	0.000
35633.786.	0.000 //	35634.786.	0.994 //	35635.978.	0.000 //	35662.750.	0.000 /	/ 35663.750.	1.038
35664 952	0 000 //	35691 648	0 000 //	35692 648	0 995 //	35693 840	0 000 /	/ 35720 605	0 000
25701 605	0.000 //	25700 704	0.000 //	25740 607	0.000 //	25750 607	1 000 /	/ 25751 050	0.000
35721.005,	0.994 //	35722.794,	0.000 //	35749.097,	0.000 //	35750.097,	1.000 /	/ 35/51.950,	0.000
35778.883,	0.000 //	35779.883,	1.018 //	35781.080,	0.000 //	35807.860,	0.000 /	/ 35808.860,	1.011
35810.011,	0.000 //	35836.700,	0.000 //	35837.700,	0.995 //	35838.828,	0.000 /	/ 35865.579,	0.000
35866.579,	0.000 //	35867.665,	0.000 //	35894.471,	0.000 //	35895.471,	1.018 /	/ 35896.675,	0.000
35923.437,	0.000 //	35924.437,	1.014 //	35925.628,	0.000 //	35952.368,	0.000 /	/ 35953.368,	1.012
35954.544.	0.000 //	35981.392.	0.000 //	35982.392.	1.015 //	35983.583.	0.000 /	/ 36010.411.	0.000
36011 411	1 036 //	36012 592	0 000 //	36039 496	0 000 //	36040 496	0 983 /	/ 36041 739	0 000
36068 520	0.000 //	36060 520	1 034 //	36070 734	0 000 //	36007 455	0 000 /	/ 36008 /55	1 000
30008.320,	0.000 //	30009.320,	1.034 //	30070.734,	0.000 //	30097.433,	0.000 /	/ 30090.435,	1.009
36099.801,	0.000 //	36126.489,	0.000 //	36127.489,	1.032 //	36128.698,	0.000 /	/ 36155.518,	0.000
36156.518,	1.028 //	36157.711,	0.000 //	36184.463,	0.000 //	36185.463,	1.030 /	/ 36186.617,	0.000
36213.445,	0.000 //	36214.445,	1.031 //	36215.608,	0.000 //	36242.437,	0.000 /	/ 36243.437,	0.998
36244.618,	0.000 //	36271.510,	0.000 //	36272.510,	1.024 //	36273.796,	0.000 /	/ 36300.674,	0.000
36301.674,	1.027 //	36302.863,	0.000 //	36329.583,	0.000 //	36330.583,	1.049 /	/ 36331.760,	0.000
36358.589.	0.000 //	36359.589.	1.106 //	36360.747.	0.000 //	36387.510.	0.000 /	/ 36388.510.	1.029
36389 680	0 000 //	36416 443	0 000 //	36417 443	1 040 //	36418 650	0 000 /	/ 36445 371	0 000
26446 271	1 000 //	26447 600	0.000 //	26474 260	0.000 //	26475 260	1 007 /	/ 26476 515	0.000
30440.3/1,	1.020 //	30447.020,	0.000 //	36474.360,	0.000 //	364/5.360,	1.027 /	/ 304/0.515,	0.000
36503.248,	0.000 //	36504.248,	1.037 //	36505.413,	0.000 //	36532.172,	0.000 /	/ 36533.172,	1.048
36534.372,	0.000 //	36561.089,	0.000 //	36562.089,	1.065 //	36563.322,	0.000 /	/ 36590.078,	0.000
36591.078,	0.755 //	36593.549,	0.000 //	36620.371,	0.000 //	36621.371,	1.019 /	/ 36622.581,	0.000
36649.327,	0.000 //	36650.327,	1.019 //	36651.592,	0.000 //	36678.425,	0.000 /	/ 36679.425,	1.028
36680.605.	0.000 //	36707.473.	0.000 //	36708.473.	1.032 //	36709.625.	0.000 /	/ 36736.415.	0.000
36737 /15	0 073 //	36739 617	0.000 //	36765 350	0.000 //	36766 350	1 019 /	/ 36767 550	0.000
30737.413,	0.913 //	30730.017,	0.000 //	30703.352,	0.000 //	30700.352,	1.010 /	/ 2000/ 200	1 000
30/94.304,	0.000 //	30195.304,	1.013 //	30/90.492,	0.000 //	30823.200,	0.000 /	/ 30824.200,	1.020
36825.415,	0.000 //	36852.155,	0.000 //	36853.155,	0.985 //	36854.339,	0.000 /	/ 36880.982,	0.000
36881.982,	0.997 //	36883.191,	0.000 //	36909.926,	0.000 //	36910.926,	0.999 /	/ 36912.100,	0.000
36938.908,	0.000 //	36939.908,	1.014 //	36941.065,	0.000 //	36967.761,	0.000 /	/ 36968.761,	1.024
36969.908.	0.000 //	36996.732	0.000 //	36997.732.	1.031 //	36998.984.	0.000 /	/ 37025.671.	0.000
37026.671	1.005 //	37027 833	0.000 //	37054.515	0.000 //	37055.515	1.009 /	/ 37056.699	0.000
37083 525	0.000 //	3708/ 505	1 030 //	37085 949	0.000 //	37112 605	0 000 /	/ 37112 605	1 0/0
27114 020	0.000 //	37004.323,	1.030 //	07140 700	1 010 //	27142 074	0.000 /	/ 07170 001	1.049
3/114.933,	0.000 //	3/141./08,	0.000 //	3/142./08,	1.019 //	3/143.8/4,	0.000 /	/ 3/1/0.621,	0.000
3/1/1.621,	1.050 //	3/1/2.812,	0.000 //	37199.753,	0.000 //	37200.753,	1.025 /	/ 37201.915,	0.000
37228.816,	0.000 //	37229.816,	0.000 //	37230.945,	0.000 //	37257.724,	0.000 /	/ 37258.724,	1.042
37259.914,	0.000 //	37286.693,	0.000 //	37287.693,	1.036 //	37288.887,	0.000 /	/ 37315.617,	0.000

37316.617,	1.029 //	37317.984,	0.000 //	37344.801,	0.000 //	37345.801,	1.009 /	// 37347.029,	0.000
37373.804,	0.000 //	37374.804,	1.032 //	37375.997,	0.000 //	37402.775,	0.000 /	// 37403.775,	1.046
37404.954,	0.000 //	37431.689,	0.000 //	37432.689,	1.014 //	37433.851,	0.000 /	// 37460.746,	0.000
37461 746	1 022 //	37462 959	0 000 //	37489 716	0 000 //	37490 716	1 013	/ 37491 910	0 000
37519 656	0.000 //	37510 656	1 039 //	37520 807	0.000 //	37547 564	0.000	/ 37549 564	1 009
37510.030,	0.000 //	37519.050,	1.030 //	37520.007,	0.000 //	37547.504,	0.000 /	/ 37340.304,	1.000
37549.766,	0.000 //	3/5/6./3/,	0.000 //	3/5//./3/,	1.036 //	37578.932,	0.000 /	7 37605.704,	0.000
37606.704,	1.036 //	37607.908,	0.000 //	37634.713,	0.000 //	37635.713,	1.028 ,	// 37636.902,	0.000
37663.620,	0.000 //	37664.620,	1.024 //	37665.906,	0.000 //	37692.631,	0.000 /	// 37693.631,	1.016
37694.864.	0.000 //	37721.669.	0.000 //	37722.669.	1.023 //	37723.922.	0.000	// 37750.779.	0.000
37751 779	1 025 //	37753 070	0 000 //	37779 833	0 000 //	37780 833	1 013	/ 37782 029	0 000
27000 050	1.020 //	27000 050	1 041 //	27011 114	0.000 //	27027 075	0.000	/ 07702.025,	0.000
37000.052,	0.000 //	37609.652,	1.041 //	37011.114,	0.000 //	31031.915,	0.000 /	/ 31030.915,	0.962
37840.192,	0.000 //	37867.047,	0.000 //	37868.047,	0.986 //	37869.283,	0.000 /	7 37896.065,	0.000
37897.065,	1.021 //	37898.268,	0.000 //	37924.993,	0.000 //	37925.993,	1.018 /	// 37927.218,	0.000
37954.052,	0.000 //	37955.052,	1.034 //	37956.321,	0.000 //	37983.141,	0.000 /	// 37984.141,	1.032
37985.451.	0.000 //	38012.145.	0.000 //	38013.145.	1.000 //	38014.356.	0.000	// 38041.144.	0.000
38042 144	1 004 //	38043 352	0 000 //	38070 162	0 000 //	38071 162	1 018	/ 38072 375	0 000
200042.144,	1.004 //	20100 007	1 007 //	20101 007	0.000 //	20100 002	1.010 /	/ 00012.010,	1 010
38099.097,	0.000 //	38100.097,	1.03/ //	38101.267,	0.000 //	38128.083,	0.000 /	/ 38129.083,	1.019
38130.289,	0.000 //	38157.061,	0.000 //	38158.061,	1.036 //	38159.284,	0.000 ,	/ 38186.113,	0.000
38187.113,	1.041 //	38188.314,	0.000 //	38215.173,	0.000 //	38216.173,	1.003 /	// 38217.338,	0.000
38244.072,	0.000 //	38245.072,	1.013 //	38246.244,	0.000 //	38273.044,	0.000 /	// 38274.044,	0.991
38275.204.	0.000 //	38301.939.	0.000 //	38302.939.	1.009 //	38304.137.	0.000	// 38330.949.	0.000
38331 0/0	1 009 //	38333 10/	0 000 //	38360 039	0 000 //	38361 039	0 000	/ 38360 050	0 000
30331.343,	1.003 //	20200 026	1 002 //	20201 205	0.000 //	20410 111	0.333 /	/ 00002.202,	1 001
38389.026,	0.000 //	38390.026,	1.003 //	36391.305,	0.000 //	38418.111,	0.000 /	/ 38419.111,	1.001
38420.301,	0.000 //	38447.000,	0.000 //	38448.000,	0.973 //	38449.313,	0.000 /	/ 38476.132,	0.000
38477.132,	1.015 //	38478.317,	0.000 //	38505.289,	0.000 //	38506.289,	1.027 /	// 38507.531,	0.000
38534.310,	0.000 //	38535.310,	1.084 //	38536.553,	0.000 //	38563.479,	0.000 /	// 38564.479,	1.016
38565.674.	0.000 //	38592.547.	0.000 //	38593.547.	1.001 //	38594.751.	0.000	/ 38621.507.	0.000
38622 507	1 018 //	38623 666	0 000 //	38650 524	0 000 //	38651 524	1 006	/ 38652 687	0 000
30022.307,	1.010 //	200223.000,	0.000 //	20000.024,	0.000 //	20200 267	1.000 /	/ 00002.007,	1 000
38679.465,	0.000 //	38680.465,	1.006 //	38681.633,	0.000 //	38708.367,	0.000 /	/ 38/09.36/,	1.006
38710.539,	0.000 //	38737.268,	0.000 //	38738.268,	0.999 //	38739.538,	0.000 /	/ 38766.413,	0.000
38767.413,	0.993 //	38768.593,	0.000 //	38795.433,	0.000 //	38796.433,	1.017 /	// 38797.723,	0.000
38824.500,	0.000 //	38825.500,	0.985 //	38826.682,	0.000 //	38853.460,	0.000	// 38854.460,	0.998
38855.675.	0.000 //	38882.415.	0.000 //	38883.415.	1.015 //	38884.586.	0.000	// 38911.520.	0.000
38010 500	0 095 //	20012 717	0 000 //	380/0 /85	0.000 //	390/1 /95	1 004	/ 380/0 607	0 000
20020 400	0.303 //	20070 400	1 004 //	20074 647	0.000 //	20000 240	1.024 /	/ 00042.001,	1 010
38969.429,	0.000 //	38970.429,	1.024 //	389/1.64/,	0.000 //	38998.348,	0.000 /	/ 38999.348,	1.010
39000.503,	0.000 //	39027.221,	0.000 //	39028.221,	0.999 //	39029.400,	0.000 /	7 39056.298,	0.000
39057.298,	1.002 //	39058.479,	0.000 //	39085.152,	0.000 //	39086.152,	0.989 /	// 39087.322,	0.000
39114.091,	0.000 //	39115.091,	1.014 //	39116.348,	0.000 //	39143.289,	0.000 /	// 39144.289,	0.987
39145.523.	0.000 //	39172.293	0.000 //	39173.293.	1.019 //	39174.541.	0.000	/ 39201.257	0.000
30202 257	0 987 //	30203 128	0 000 //	30230 326	0 000 //	30231 326	0 070	// 30232 /08	0 000
30202.201,	0.301 //	20260 424	1 000 //	20261 701	0.000 //	20202.120,	0.010	/ 39232.430,	0.000
39259.424,	0.000 //	39260.424,	1.028 //	39261.701,	0.000 //	39266.439,	0.000 /	/ 39269.439,	0.997
39290.616,	0.000 //	39317.364,	0.000 //	39318.364,	1.000 //	39319.513,	0.000 ,	/ 39346.174,	0.000
39347.174,	0.988 //	39348.366,	0.000 //	39375.163,	0.000 //	39376.163,	0.994 /	// 39377.446,	0.000
39404.322,	0.000 //	39405.322,	0.980 //	39406.482,	0.000 //	39433.206,	0.000 /	// 39434.206,	1.005
39435.379,	0.000 //	39462.044,	0.000 //	39463.044,	0.988 //	39464.218,	0.000	// 39490.925,	0.000
39491 925	1 002 //	39493 085	0 000 //	39519 820	0 000 //	39520 820	1 022	/ 39522 034	0 000
305/8 075	0.000 //	305/0 075	0.000 //	30551 057	0.000 //	30577 765	0 000	/ 30578 765	1 012
39340.973,	0.000 //	39349.975,	0.000 //	39331.037,	0.000 //	39311.103,	0.000 /	/ 39576.705,	1.012
39579.906,	0.000 //	39606.715,	0.000 //	39607.715,	0.989 //	39608.906,	0.000 /	/ 39635.680,	0.000
39636.680,	0.959 //	39637.896,	0.000 //	39664.704,	0.000 //	39665.704,	0.984 /	7 39666.856,	0.000
39693.531,	0.000 //	39694.531,	0.995 //	39695.730,	0.000 //	39722.514,	0.000 /	// 39723.514,	1.007
39724.699,	0.000 //	39751.473,	0.000 //	39752.473,	1.003 //	39753.658,	0.000 /	// 39780.447,	0.000
39781.447.	0.980 //	39782.672.	0.000 //	39809.455.	0.000 //	39810.455.	1.007	/ 39811.712.	0.000
39838 643	0 000 //	39839 643	1 010 //	39840 808	0 000 //	39867 658	0 000	/ 39868 658	1 002
20060.040,	0.000 //	20006 724	1.010 //	33040.000,	1.000 //	20000 057	0.000 /	/ 30000.000,	0.002
33003.092,	0.000 //	39090.134,	0.000 //	09091.134,	1.020 //	Jaoao. 35/,	0.000 /	/ 39925.802,	0.000
39926.802,	0.994 //	39928.006,	0.000 //	39954.801,	0.000 //	39955.801,	1.018 ,	/ 39956.966,	0.000
39983.716,	0.000 //	39984.716,	1.002 //	39986.016,	0.000 //	40012.844,	0.000 ,	/ 40013.844,	1.024
40015.012,	0.000 //	40041.785,	0.000 //	40042.785,	0.993 //	40043.963,	0.000 /	// 40070.710,	0.000
40071.710.	0.995 //	40072.843.	0.000 //	40099.574.	0.000 //	40100.574.	0.994	/ 40101.820.	0.000
40128 634	0.000 //	40129 634	1.006 //	40130 821	0.000 //	40157 568	0.000	/ 40158 568	1,104
10150 7/F	0.000 //	10120.00±,	0.000 //	10187 529	1 007 //	/0188 710	0 000	/ 10215 670	0 000
40016 670	1 010 //	40017 005	0.000 //	40044 047	1.00/ //	10100.119,	1 040	/ 40210.019,	0.000
40210.679,	1.012 //	40217.965,	0.000 //	40244.81/,	0.000 //	40245.81/,	1.049 /	/ 4024/.014,	0.000
40273.928,	0.000 //	40274.928,	1.004 //	40276.122,	0.000 //	40303.106,	0.000 ,	/ 40304.106,	1.013
40305.289,	0.000 //	40332.101,	0.000 //	40333.101,	1.007 //	40334.254,	0.000 ,	// 40361.191,	0.000

40000 404	4 005 //	40040 000	a aaa //	40000 047	a aaa //	40004 047		1 10000 110	o ooo
40362.191,	1.005 //	40363.389,	0.000 //	40390.247,	0.000 //	40391.247,	1.011 /	/ 40392.418,	0.000
40419.185,	0.000 //	40420.185,	1.006 //	40421.360,	0.000 //	40448.194,	0.000 /	/ 40449.194,	0.984
40450.400.	0.000 //	40477.237.	0.000 //	40478.237.	0.997 //	40479.602.	0.000 /	/ 40506.403.	0.000
10507 103	1 003 //	10508 608	0 000 //	10535 549	0 000 //	10536 549	1 005	/ 10537 704	0 000
40507.400,	1.003 //	40500.050,	0.000 //	40505.040,	0.000 //	40500.040,	1.005 /	/ 10001.121,	0.000
40564.432,	0.000 //	40565.432,	1.003 //	40566.645,	0.000 //	40593.483,	0.000 /	/ 40594.483,	0.981
40595.694,	0.000 //	40622.552,	0.000 //	40623.552,	0.997 //	40624.770,	0.000 /	/ 40651.663,	0.000
40652.663,	0.991 //	40653.900,	0.000 //	40680.648,	0.000 //	40681.648,	0.993 /	/ 40682.841,	0.000
40709.644.	0.000 //	40710.644.	0.981 //	40711.846.	0.000 //	40738.741.	0.000 /	/ 40739.741.	0.982
40740 004	0 000 //	40767 701	0 000 //	40769 701	0 967 //	40770 000	0 000 /	/ 10706 600	0 000
40740.924,	0.000 //	40707.721,	0.000 //	40700.721,	0.901 //	40110.009,	0.000 /	/ 40/90.090,	0.000
40797.690,	0.994 //	40798.969,	0.000 //	40825.904,	0.000 //	40826.904,	0.973 /	/ 40828.113,	0.000
40854.828,	0.000 //	40855.828,	1.003 //	40857.014,	0.000 //	40883.767,	0.000 /	/ 40884.767,	0.984
40885.946,	0.000 //	40912.708,	0.000 //	40913.708,	0.974 //	40914.976,	0.000 /	/ 40941.906,	0.000
40942.906.	0.981 //	40944.087.	0.000 //	40970.756.	0.000 //	40971.756.	0.982 /	/ 40972.972.	0.000
10000 686	0 000 //	/1000 686	0 953 //	/1001 808	0 000 //	/1028 /00	0 000 /	/ 11020 100	0 981
41000 710	0.000 //	41057 507	0.300 //	41001.000,	0.000 //	41020.433,	0.000 /	/ 41023.433,	0.301
41030.713,	0.000 //	41057.587,	0.000 //	41058.587,	0.981 //	41059.744,	0.000 /	/ 41080.442,	0.000
41087.442,	0.979 //	41088.651,	0.000 //	41115.406,	0.000 //	41116.406,	1.000 /	/ 41117.593,	0.000
41144.467,	0.000 //	41145.467,	0.968 //	41146.651,	0.000 //	41173.469,	0.000 /	/ 41174.469,	1.032
41175.691,	0.000 //	41202.413,	0.000 //	41203.413,	0.948 //	41204.633,	0.000 /	/ 41231.411,	0.000
41232 411	1 025 //	41233 698	0 000 //	41260 425	0 000 //	41261 425	0 985 /	/ 41262 606	0 000
11202.111, 11000 E20	0.000 //	41000 520	0.000 //	41200.120,	0.000 //	A1210 EDD	0.000 /	/ 11202.000,	0.000
41209.550,	0.000 //	41290.550,	0.964 //	41291.750,	0.000 //	41310.520,	0.000 /	/ 41319.520,	0.909
41320.657,	0.000 //	41347.356,	0.000 //	41348.356,	0.972 //	41349.620,	0.000 /	/ 41376.560,	0.000
41377.560,	1.004 //	41378.848,	0.000 //	41405.734,	0.000 //	41406.734,	0.993 /	/ 41407.942,	0.000
41434.754,	0.000 //	41435.754,	0.990 //	41436.955,	0.000 //	41463.788,	0.000 /	/ 41464.788,	0.999
41465 977	0 000 //	41492 756	0 000 //	41493 756	0 979 //	41495 053	0 000 /	/ 41521 878	0 000
11100.077	0.000 //	41504 004	0.000 //	A1EE0 046	0.000 //	A1EE1 046	0.000 /	/ 11021.010,	0.000
41522.070,	0.990 //	41524.004,	0.000 //	41550.940,	0.000 //	41551.940,	0.901 /	/ 41555.220,	0.000
41580.132,	0.000 //	41581.132,	0.956 //	41582.436,	0.000 //	41609.436,	0.000 /	/ 41610.436,	0.947
41611.691,	0.000 //	41638.465,	0.000 //	41639.465,	0.998 //	41640.642,	0.000 /	/ 41667.372,	0.000
41668.372,	1.011 //	41669.557,	0.000 //	41696.301,	0.000 //	41697.301,	1.012 /	/ 41698.517,	0.000
41725.318.	0.000 //	41726.318.	0.969 //	41727.539.	0.000 //	41754.456.	0.000 /	/ 41755.456.	0.966
/1756 695	0 000 //	/1783 778	0 000 //	/178/ 778	1 002 //	/1786 00/	0 000 /	/ /1813 120	0 000
41014 100	0.000 //	41015 000	0.000 //	41040.000	1.002 //	41042.066	0.000 /	/ 41044 241	0.000
41814.129,	0.000 //	41815.223,	0.000 //	41842.066,	0.000 //	41843.066,	0.948 /	/ 41844.341,	0.000
41871.218,	0.000 //	41872.218,	0.956 //	41873.416,	0.000 //	41900.409,	0.000 /	/ 41901.409,	0.956
41902.589,	0.000 //	41929.454,	0.000 //	41930.454,	0.994 //	41931.709,	0.000 /	/ 41958.547,	0.000
41959.547,	0.961 //	41960.749,	0.000 //	41987.595,	0.000 //	41988.595,	0.971 /	/ 41989.758,	0.000
42016.570.	0.000 //	42017.570.	0.949 //	42018.821.	0.000 //	42045.851.	0.000 /	/ 42046.851.	0.961
12010.010,	0.000 //	42075 010	0.000 //	12010.021,	0 071 //	42077 227	0.000 /	/ 12010.001,	0.000
42040.027,	0.000 //	42075.019,	0.000 //	42070.019,	0.9/1 //	42011.221,	0.000 /	/ 42103.93/,	0.000
42104.937,	0.948 //	42106.213,	0.000 //	42133.051,	0.000 //	42134.051,	0.961 /	/ 42135.231,	0.000
42162.177,	0.000 //	42163.177,	0.975 //	42164.364,	0.000 //	42191.148,	0.000 /	/ 42192.148,	0.952
42193.351,	0.000 //	42220.225,	0.000 //	42221.225,	0.983 //	42222.408,	0.000 /	/ 42249.271,	0.000
42250.271,	0.976 //	42251.502,	0.000 //	42278.475,	0.000 //	42279.475,	0.970 /	/ 42280.649,	0.000
42307.386.	0.000 //	42308.386	0.980 //	42309.563	0.000 //	42336.382	0.000 /	/ 42337.382.	0.970
12001.000,	0.000 //	12000.000,	0.000 //	10266 410	0.070 //	12000.002,	0.000 /	/ 12001.002,	0.000
42330.530,	0.000 //	42305.410,	0.000 //	42300.410,	0.976 //	42307.590,	0.000 /	/ 42394.404,	0.000
42395.404,	0.975 //	42396.582,	0.000 //	42423.341,	0.000 //	42424.341,	0.964 /	/ 42425.589,	0.000
42452.471,	0.000 //	42453.471,	0.972 //	42455.236,	0.000 //	42482.024,	0.000 /	/ 42483.024,	0.944
42484.264,	0.000 //	42511.106,	0.000 //	42512.106,	0.967 //	42513.363,	0.000 /	/ 42540.250,	0.000
42541.250.	0.974 //	42542.467.	0.000 //	42569.316.	0.000 //	42570.316.	0.960 /	/ 42571.578.	0.000
42598 442	0 000 //	42599 442	0 962 //	42600 667	0 000 //	42627 437	0 000 /	/ 42628 437	0 959
12600.112,	0.000 //	12000.112,	0.000 //	12666.661,	0.075 //	10650 715	0.000 /	/ 12020.101,	0.000
42029.007,	0.000 //	42050.511,	0.000 //	42057.511,	0.915 //	42030.713,	0.000 /	/ 42000.070,	0.000
42686.575,	1.018 //	42687.761,	0.000 //	42/14.55/,	0.000 //	42/15.55/,	0.984 /	/ 42/16./56,	0.000
42743.620,	0.000 //	42744.620,	1.002 //	42745.873,	0.000 //	42772.845,	0.000 /	/ 42773.845,	0.965
42775.029,	0.000 //	42801.823,	0.000 //	42802.823,	0.959 //	42804.002,	0.000 /	/ 42830.898,	0.000
42831.898.	0.979 //	42833.192.	0.000 //	42860.209.	0.000 //	42861.209.	0.975 /	/ 42862.429.	0.000
12880 2/8	0 000 //	12800 2/8	0 973 //	/2801 /1/	0 000 //	/2018 100	0 000 /	/ 12010 100	0 982
42000.240,	0.000 //	42000.240,	0.010 //	42001.414,	0.000 //	42010.100,	0.000 /	/ 42010.100,	0.002
42920.303,	0.000 //	42941.224,	0.000 //	42940.224,	0.934 //	42949.434,	0.000 /	/ 42910.201,	0.000
42977.287,	0.955 //	42978.465,	0.000 //	43005.158,	0.000 //	43006.158,	0.967 /	/ 43007.331,	0.000
43034.152,	0.000 //	43035.152,	0.977 //	43036.333,	0.000 //	43063.230,	0.000 /	/ 43064.230,	0.977
43065.495,	0.000 //	43092.474,	0.000 //	43093.474,	0.963 //	43094.695,	0.000 /	/ 43121.428,	0.000
43122.428.	1.009 //	43123.603.	0.000 //	43150.368.	0.000 //	43151.368	0.981	/ 43152.558.	0.000
43179 338	0 000 //	43180 338	0 986 //	43181 622	0 000 //	43208 435	0 000 /	/ 43209 435	0 973
12210 505	0.000 //	13337 ADF	0.000 //	12020 105	0 7/2 //	12200.700,	0.000 /	/ 12067 000	0.000
43210.395,	0.000 //	40000 010	0.000 //	40000.400,	0.143 //	43240.341,	0.000 /	/ 4320/.080,	0.000
43268.080,	1.001 //	43269.313,	0.000 //	43296.140,	0.000 //	43297.140,	0.985 /	/ 43298.300,	0.000
43325.121,	0.000 //	43326.121,	0.987 //	43327.367,	0.000 //	43354.129,	0.000 /	/ 43355.129,	1.031
		40000 040	0 000 //	12201 060	1 009 //	13385 275	0 000 /	/ 12/10 017	0 000

12/12 017	0 000 //	12111 110	0 000 //	42444 250	0 000 //	42440 250	1 010	11 12112 610	0 000
43413.217,	0.999 //	43414.448,	0.000 //	43441.350,	0.000 //	43442.350,	1.012	// 43443.040,	0.000
43470.573,	0.000 //	43471.573,	1.005 //	43472.764,	0.000 //	43499.544,	0.000	// 43500.544,	0.999
43501.776,	0.000 //	43528.506,	0.000 //	43529.506,	1.004 //	43530.697,	0.000	// 43557.533,	0.000
43558.533.	1.018 //	43559.728.	0.000 //	43586.697.	0.000 //	43587.697.	1.005	// 43588.867.	0.000
43615 877	0 000 //	43616 877	0 970 //	43618 094	0 000 //	43644 957	0 000	// 43645 957	0 000
40010.017,	0.000 //	40010.077,	0.310 //	40070.004,	1.000 //	40075 047	0.000	// 40700 657	0.000
43647.043,	0.000 //	43673.739,	0.000 //	43674.739,	1.002 //	43675.947,	0.000	// 43/02.65/,	0.000
43703.657,	0.993 //	43704.881,	0.000 //	43731.635,	0.000 //	43732.635,	0.993	// 43733.840,	0.000
43760.789,	0.000 //	43761.789,	0.995 //	43763.032,	0.000 //	43789.717,	0.000	// 43790.717,	1.012
43792.012.	0.000 //	43818.838.	0.000 //	43819.838.	0.974 //	43821.050.	0.000	// 43847.848.	0.000
43848 848	0 992 //	43850 012	0 000 //	43876 816	0 000 //	43877 816	0 999	// 43878 999	0 000
4200E 749	0.002 //	42006 749	0.000 //	42007 067	0.000 //	42024 076	0.000	// 42025 076	1 016
43905.740,	0.000 //	43900.740,	0.913 //	43907.907,	0.000 //	43934.070,	0.000	// 43935.070,	1.010
43937.196,	0.000 //	43964.174,	0.000 //	43965.174,	0.969 //	43966.532,	0.000	// 43993.407,	0.000
43994.407,	0.985 //	43995.603,	0.000 //	44022.510,	0.000 //	44023.510,	0.996	// 44024.852,	0.000
44051.630,	0.000 //	44052.630,	1.001 //	44053.824,	0.000 //	44080.790,	0.000	// 44081.790,	0.966
44083.036.	0.000 //	44109.753.	0.000 //	44110.753.	0.989 //	44111.915.	0.000	// 44138.633.	0.000
44139 633	0 984 //	44140 824	0 000 //	44167 559	0 000 //	44168 559	0 984	// 44169 828	0 000
44100.000,	0.004 //	44407 674	0.000 //	44400.040	0.000 //	44005 650	0.004	// 44000 050	0.000
44196.071,	0.000 //	44197.071,	0.986 //	44198.849,	0.000 //	44225.050,	0.000	// 44220.050,	0.989
44227.829,	0.000 //	44254.692,	0.000 //	44255.692,	0.961 //	44256.892,	0.000	// 44283.597,	0.000
44284.597,	0.973 //	44285.780,	0.000 //	44312.528,	0.000 //	44313.528,	0.955	// 44314.721,	0.000
44341.499,	0.000 //	44342.499,	0.999 //	44343.726,	0.000 //	44370.502,	0.000	// 44371.502,	0.976
44372.694.	0.000 //	44399.415.	0.000 //	44400.415.	0.987 //	44401.635.	0.000	// 44428.374.	0.000
44429 374	1 010 //	44430 559	0 000 //	44457 414	0 000 //	44458 414	0 980	// 44459 634	0 000
44406 555	1.010 //	44407 555	0.000 //	44400 700	0.000 //	44515 564	0.300	// 44516 564	0.000
44486.555,	0.000 //	44487.555,	0.999 //	44488.768,	0.000 //	44515.564,	0.000	// 44516.564,	0.976
44517.807,	0.000 //	44544.744,	0.000 //	44545.744,	1.048 //	44546.972,	0.000	// 44573.858,	0.000
44574.858,	0.999 //	44576.100,	0.000 //	44603.067,	0.000 //	44604.067,	1.013	// 44605.310,	0.000
44632.267,	0.000 //	44633.267,	1.026 //	44634.507,	0.000 //	44661.494,	0.000	// 44662.494,	1.055
44663.683.	0.000 //	44690.693.	0.000 //	44691.693.	1.050 //	44692.878.	0.000	// 44719.613.	0.000
14720 613	1 020 //	AA701 837	0 000 //	11718 596	0.000 //	11719 596	1 02/	// //750 823	0 000
44727 000	1.020 //	44770 000	0.000 //	44770.000,	0.000 //	44743.330,	1.024	// 44/00.020,	0.000
44///.639,	0.000 //	44//8.639,	1.043 //	44/79.836,	0.000 //	44806.740,	0.000	// 44807.740,	1.065
44808.939,	0.000 //	44835.905,	0.000 //	44836.905,	1.039 //	44838.121,	0.000	// 44864.857,	0.000
44865.857,	1.035 //	44867.062,	0.000 //	44893.973,	0.000 //	44894.973,	1.038	// 44896.203,	0.000
44922.871,	0.000 //	44923.871,	1.054 //	44925.051,	0.000 //	44951.889,	0.000	// 44952.889,	1.065
44954 101	0 000 //	44980 917	0 000 //	44981 917	1 036 //	44983 105	0 000	// 45009 895	0 000
11001.101, 4E010 00E		45010 044	0.000 //	AE020 020	0.000 //	11000.100,	1 002	// 45041 014	0.000
45010.895,	1.044 //	45012.044,	0.000 //	45038.838,	0.000 //	45039.838,	1.023	// 45041.014,	0.000
45067.962,	0.000 //	45068.962,	1.039 //	45070.161,	0.000 //	45097.079,	0.000	// 45098.079,	1.053
45099.283,	0.000 //	45126.163,	0.000 //	45127.163,	1.043 //	45128.337,	0.000	// 45155.177,	0.000
45156.177,	1.039 //	45157.359,	0.000 //	45184.220,	0.000 //	45185.220,	1.033	// 45186.452,	0.000
45213.340.	0.000 //	45214.340.	1.035 //	45215.622.	0.000 //	45242.372.	0.000	// 45243.372.	1.036
45244 697	0 000 //	45271 529	0 000 //	45272 529	1 022 //	45273 723	0 000	// 45300 565	0 000
45201 565	1 029 //	45200 700	0.000 //	45200 406	1.022 //	45220.120,	1 012	// 45000.000,	0.000
45301.565,	1.038 //	45302.792,	0.000 //	45329.496,	0.000 //	45330.496,	1.013	// 45331./10,	0.000
45358.577,	0.000 //	45359.577,	1.035 //	45360.760,	0.000 //	45387.484,	0.000	// 45388.484,	1.053
45389.643,	0.000 //	45416.510,	0.000 //	45417.510,	1.048 //	45418.732,	0.000	// 45445.578,	0.000
45446.578,	1.082 //	45447.804,	0.000 //	45474.624,	0.000 //	45475.624,	1.043	// 45476.826,	0.000
45503.688.	0.000 //	45504.688.	1.054 //	45505.884.	0.000 //	45532.834.	0.000	// 45533.834.	1.015
45535 026	0 000 //	45561 787	0 000 //	45562 787	1 017 //	45563 950	0 000	// 45590 847	0 000
AEE01 047	1 020 //	45502.066	0.000 //	46610 960	0.000 //	10000.000,	1 020	// 45600.010,	0.000
45591.047,	1.032 //	45595.000,	0.000 //	45019.059,	0.000 //	45020.059,	1.030	// 45022.079,	0.000
45649.013,	0.000 //	45650.013,	1.001 //	45651.155,	0.000 //	45677.910,	0.000	// 456/8.910,	1.061
45680.097,	0.000 //	45706.928,	0.000 //	45707.928,	1.006 //	45709.121,	0.000	// 45736.009,	0.000
45737.009,	0.000 //	45738.081,	0.000 //	45764.893,	0.000 //	45765.893,	1.038	// 45767.108,	0.000
45793.925.	0.000 //	45794.925.	1.013 //	45796.119.	0.000 //	45822.885.	0.000	// 45823.885.	1.032
45825 096	0 000 //	45851 882	0 000 //	45852 882	1 022 //	45854 090	0 000	// 45881 017	0 000
10020.000,	1 040 //	AE002 100	0.000 //	45000 009	0.000 //	45010 009	1 005	// 45010 170	0.000
45002.017,	1.042 //	45005.192,	0.000 //	40909.990,	0.000 //	45910.990,	1.025	// 40912.170,	0.000
45939.254,	0.000 //	45940.254,	1.027 //	45941.481,	0.000 //	45968.322,	0.000	// 45969.322,	1.022
45970.548,	0.000 //	45997.436,	0.000 //	45998.436,	1.018 //	45999.668,	0.000	// 46026.473,	0.000
46027.473,	1.026 //	46028.676,	0.000 //	46055.421,	0.000 //	46056.421,	1.034	// 46057.617,	0.000
46084.500.	0.000 //	46085.500.	1.003 //	46086.756.	0.000 //	46113.583.	0.000	// 46114.583.	1.036
46115 720	0.000 //	46142 568	0.000 //	46143 568	1.010 //	46144 732	0.000	// 46171 518	0.000
A6170 519	1 010 //	A6173 701	0.000 //	16200 E16	0.000 //	16201 51 <i>C</i>	1 017	// 16202 704	0 000
40112.010,	1.013 //	401/3./01,	0.000 //	40200.510,	0.000 //	40201.510,	1.01/	// 40202./04,	0.000
46229.428,	0.000 //	46230.428,	1.043 //	46231.591,	0.000 //	46258.400,	0.000	// 46259.400,	1.074
46260.593,	0.000 //	46287.428,	0.000 //	46288.428,	1.030 //	46289.672,	0.000	// 46316.567,	0.000
46317.567,	1.022 //	46318.754,	0.000 //	46345.501,	0.000 //	46346.501,	1.044	// 46347.689,	0.000
46374.433.	0.000 //	46375.433,	1.039 //	46376.655.	0.000 //	46403.436.	0.000	// 46404.436.	1.029
46405.616	0.000 //	46432.582	0.000 //	46433.582	1.012 //	46434.781	0.000	// 46461.571	0.000
,		,	2.220 //	,	//	,	2.000	,,,	2.300

46462.571,	1.003 //	46463.817,	0.000 //	46490.801,	0.000 //	46491.801,	1.010	// 46493.027,	0.000
46519.937,	0.000 //	46520.937,	1.029 //	46522.201,	0.000 //	46549.006,	0.000	// 46550.006,	1.037
46551.233,	0.000 //	46578.054,	0.000 //	46579.054,	1.058 //	46580.176,	0.000	// 46607.034,	0.000
46608 034	1 023 //	46609 250	0 000 //	46636 177	0 000 //	46637 177	1 037	// 46638 334	0 000
A6665 1/1	0 000 //	A6666 1A1	1 033 //	46667 365	0 000 //	1669/ 228	0 000	// 16695 228	1 030
40000.141,	0.000 //	46702 000	1.000 //	46704 000	1 040 //	46705 426	0.000	// 40030.220,	1.000
40090.432,	0.000 //	40723.208,	0.000 //	40724.208,	1.040 //	40725.430,	0.000	// 40/52.224,	0.000
46753.224,	1.024 //	46754.406,	0.000 //	46781.211,	0.000 //	46782.211,	1.016	// 46783.393,	0.000
46810.160,	0.000 //	46811.160,	1.003 //	46812.370,	0.000 //	46839.143,	0.000	// 46840.143,	1.009
46841.321,	0.000 //	46868.073,	0.000 //	46869.073,	0.997 //	46870.268,	0.000	// 46896.990,	0.000
46897.990,	1.012 //	46899.177,	0.000 //	46925.878,	0.000 //	46926.878,	1.006	// 46928.045,	0.000
46954.742,	0.000 //	46955.742,	0.772 //	46957.725,	0.000 //	46984.487,	0.000	// 46985.487,	1.030
46986.702.	0.000 //	47013.490.	0.000 //	47014.490.	1.023 //	47015.679.	0.000	// 47042.438.	0.000
47043 438	1 000 //	47044 665	0 000 //	47071 636	0 000 //	47072 636	1 006	// 47073 830	0 000
47100 660	0.000 //	47101 660	1 040 //	47100 024	0.000 //	47100 571	0.000	// 47120 571	1 000
47100.009,	0.000 //	47101.009,	1.040 //	47102.034,	0.000 //	47129.071,	0.000	// 47100.071,	0.000
4/131./44,	0.000 //	4/158.583,	0.000 //	4/159.583,	1.041 //	4/160.749,	0.000	// 4/18/.589,	0.000
47188.589,	1.012 //	47189.762,	0.000 //	47216.519,	0.000 //	47217.519,	1.025	// 47218.712,	0.000
47245.555,	0.000 //	47246.555,	1.018 //	47247.755,	0.000 //	47274.587,	0.000	// 47275.587,	1.032
47276.831,	0.000 //	47303.567,	0.000 //	47304.567,	0.994 //	47305.786,	0.000	// 47332.516,	0.000
47333.516,	1.017 //	47334.772,	0.000 //	47361.538,	0.000 //	47362.538,	1.005	// 47363.751,	0.000
47390.521,	0.000 //	47391.521,	1.016 //	47392.711,	0.000 //	47419.396,	0.000	// 47420.396,	1.026
47421.590.	0.000 //	47448.474.	0.000 //	47449.474.	1.035 //	47450.657.	0.000	// 47477.454.	0.000
47478 454	1 018 //	47479 652	0 000 //	47506 432	0 000 //	47507 432	1 020	// 47508 637	0 000
47525 475	0.000 //	47536 475	1 010 //	47537 670	0.000 //	47564 420	0.000	// 47565 400	1 006
47555.475,	0.000 //	47500.475,	1.010 //	47507.072,	0.000 //	47504.420,	0.000	// 47000.420,	1.000
4/505.5/8,	0.000 //	47593.330,	0.000 //	47594.330,	0.988 //	47595.528,	0.000	// 4/622.345,	0.000
47623.345,	1.028 //	47624.496,	0.000 //	47651.435,	0.000 //	47652.435,	1.002	// 47653.598,	0.000
47680.358,	0.000 //	47681.358,	1.027 //	47682.542,	0.000 //	47709.490,	0.000	// 47710.490,	1.025
47711.700,	0.000 //	47738.550,	0.000 //	47739.550,	1.023 //	47740.744,	0.000	// 47767.657,	0.000
47768.657,	1.015 //	47769.878,	0.000 //	47796.691,	0.000 //	47797.691,	1.002	// 47798.945,	0.000
47825.812,	0.000 //	47826.812,	1.023 //	47828.038,	0.000 //	47854.862,	0.000	// 47855.862,	1.015
47857.051.	0.000 //	47883.993.	0.000 //	47884.993.	0.000 //	47886.098.	0.000	// 47912.986.	0.000
47913 986	1 021 //	47915 200	0 000 //	47941 983	0 000 //	47942 983	1 016	// 47944 159	0 000
17070 037	0.000 //	47071 037	1 007 //	17072 127	0.000 //	17000 801	0.000	// 19000 80/	1 011
41910.931,	0.000 //	41911.931,	1.007 //	41913.131,	1 007 //	47999.094,	0.000	// 40000.034,	0.000
40002.009,	0.000 //	40020.034,	0.000 //	40029.034,	1.007 //	40031.017,	0.000	// 40057.705,	0.000
48058.765,	1.016 //	48060.009,	0.000 //	48086.844,	0.000 //	48087.844,	1.007	// 48089.125,	0.000
48115.878,	0.000 //	48116.878,	1.016 //	48118.068,	0.000 //	48144.824,	0.000	// 48145.824,	1.005
48146.999,	0.000 //	48173.857,	0.000 //	48174.857,	0.995 //	48176.080,	0.000	// 48203.036,	0.000
48204.036,	0.982 //	48205.471,	0.000 //	48232.196,	0.000 //	48233.196,	0.997	// 48234.332,	0.000
48261.271,	0.000 //	48262.271,	1.006 //	48263.436,	0.000 //	48290.314,	0.000	// 48291.314,	1.003
48292.515,	0.000 //	48319.312,	0.000 //	48320.312,	0.983 //	48321.502,	0.000	// 48348.363,	0.000
48349.363.	0.996 //	48350.586.	0.000 //	48377.585.	0.000 //	48378.585.	1.002	// 48379.773.	0.000
48406 608	0 000 //	48407 608	0 989 //	48408 857	0 000 //	48435 660	0 000	// 48436 660	1 022
10100.000,	0.000 //	18161 700	0.000 //	19165 700	0.005 //	19166 974	0.000	// 10100.000,	0 000
40401.010,	1 007 //	40404.700,	0.000 //	40405.700,	0.995 //	40400.074,	0.000	// 40493.733,	0.000
40494.733,	1.007 77	48495.903,	0.000 //	40522.000,	0.000 //	40523.000,	0.986	// 40524.910,	0.000
48551.760,	0.000 //	48552.760,	0.999 //	48554.125,	0.000 //	48580.953,	0.000	// 48581.953,	0.995
48583.233,	0.000 //	48610.077,	0.000 //	48611.077,	0.968 //	48612.304,	0.000	// 48639.047,	0.000
48640.047,	0.958 //	48641.227,	0.000 //	48668.081,	0.000 //	48669.081,	0.979	// 48670.280,	0.000
48697.230,	0.000 //	48698.230,	0.963 //	48699.460,	0.000 //	48726.316,	0.000	// 48727.316,	0.974
48728.534,	0.000 //	48755.442,	0.000 //	48756.442,	0.992 //	48757.677,	0.000	// 48784.461,	0.000
48785.461.	1.004 //	48786.709.	0.000 //	48813.558.	0.000 //	48814.558.	0.999	// 48815.796.	0.000
48842.562	0.000 //	48843.562.	0.978 //	48844.812.	0.000 //	48871.569.	0.000	// 48872.569.	0.976
/8873 753	0.000 //	18900 450	0.000 //	/8901 /50	0 993 //	18902 6/1	0 000	// 18072.000,	0 000
40070.700,	0.000 //	40001 710	0.000 //	40301.430,	0.990 //	40302.041,	0.000	// 40323.000,	0.000
40930.303,	0.909 //	40931.710,	0.000 //	40900.009,	0.000 //	40909.009,	0.902	// 40900.092,	0.000
48987.450,	0.000 //	48988.450,	0.995 //	48989.666,	0.000 //	49016.505,	0.000	// 49017.505,	0.970
49018.803,	0.000 //	49045.753,	0.000 //	49046.753,	1.007 //	49047.993,	0.000	// 49074.890,	0.000
49075.890,	1.031 //	49077.095,	0.000 //	49104.049,	0.000 //	49105.049,	0.991	// 49106.242,	0.000
49133.101,	0.000 //	49134.101,	0.994 //	49135.390,	0.000 //	49162.203,	0.000	// 49163.203,	0.979
49164.431,	0.000 //	49191.434,	0.000 //	49192.434,	0.974 //	49193.650,	0.000	// 49220.456,	0.000
49221.456,	0.989 //	49222.662,	0.000 //	49249.648,	0.000 //	49250.648,	0.988	// 49251.835,	0.000
49278.681	0.000 //	49279.681.	0.981 //	49280.849	0.000 //	49307.623	0.000	// 49308.623.	0.991
49309.936	0.000 //	49336 673	0.000 //	49337 673	1.033 //	49338 859	0.000	// 49365.667	0.000
49366 667	1.003 //	49367 864	0.000 //	49394 618	0.000 //	49395 618	0.980	// 49396 966	0.000
49423 701	0 000 //	49424 701	0 967 //	49425 031	0 000 //	49452 675	0 000	// 19153 675	0 070
104E4 007	0.000 //	10121 000	0.000 //	10120.301,	1 000 //	10101 000	0.000	// 40 = 14 0 = 0.073,	0.012
49404.907,	0.000 //	49401.092,	0.000 //	49402.892,	1.000 //	49404.082,	0.000	// 49511.000,	0.000

49512.060,	1.002 //	49513.282,	0.000 //	49540.169,	0.000 //	49541.169,	0.971	// 49542.391,	0.000
49569.215.	0.000 //	49570.215.	0.995 //	49571.496.	0.000 //	49598.391.	0.000	// 49599.391.	0.996
10600 562	0.000 //	40607 602	0.000 //	10600 602	0 070 //	40600 000	0 000	// 10656 620	0 000
49000.505,	0.000 //	49027.003,	0.000 //	49020.003,	0.919 //	49029.902,	0.000	// 49050.052,	0.000
49657.632,	0.991 //	49658.835,	0.000 //	49685.657,	0.000 //	49686.657,	0.994	// 49687.844,	0.000
49714.738.	0.000 //	49715.738.	0.998 //	49716.911.	0.000 //	49743.746.	0.000	// 49744.746.	0.965
40745 004	0.000 //	40770 712	0.000 //	40772 712	0.067 //	40774 010	0.000	// 10001 600	0.000
49745.924,	0.000 //	49/12.113,	0.000 //	49//3./13,	0.967 //	49//4.912,	0.000	// 49801.088,	0.000
49802.688,	0.962 //	49803.907,	0.000 //	49830.744,	0.000 //	49831.744,	0.979	// 49832.908,	0.000
49859.757.	0.000 //	49860.757.	1.005 //	49861.984.	0.000 //	49888.946.	0.000	// 49889.946.	0.963
10000.101,	0.000 //	10000.101,	1.000 //	10001.001,	0.000 //	10000.010,	0.000	// 10000.010,	0.000
49891.123,	0.000 //	49917.948,	0.000 //	49918.948,	0.993 //	49920.208,	0.000	// 49946.942,	0.000
49947.942,	0.997 //	49949.135,	0.000 //	49975.844,	0.000 //	49976.844,	0.994	// 49978.031,	0.000
50005 004	0 000 //	50006 004	1 007 //	50007 242	0 000 //	50034 182	0 000	// 50035 182	0 987
50000.004,	0.000 //	50000.004,	1.001 //	50001.242,	0.000 //	50004.102,	0.000	// 50000.102,	0.001
50036.345,	0.000 //	50063.107,	0.000 //	50064.107,	0.989 //	50065.295,	0.000	// 50092.214,	0.000
50093.214,	0.000 //	50094.332,	0.000 //	50121.212,	0.000 //	50122.212,	0.996	// 50123.381,	0.000
50150 161	0 000 //	50151 161	0 989 //	50152 438	0 000 //	50179 278	0 000	// 50180 278	0 992
50100.101,	0.000 //	50000 070	0.000 //	50102.100,	1 000 //	50010 465	0.000	// 50100.210,	0.002
50181.461,	0.000 //	50208.276,	0.000 //	50209.276,	1.003 //	50210.465,	0.000	// 50237.222,	0.000
50238.222,	0.963 //	50239.397,	0.000 //	50266.273,	0.000 //	50267.273,	0.972	// 50268.446,	0.000
50295.233.	0.000 //	50296.233.	0.991 //	50297.428.	0.000 //	50324.241.	0.000	// 50325.241.	0.652
E0207 110	0.000 //	E02E4 010	0.000 //	E02EE 010	0.007 //	E00EC 000	0.000	// 500201211,	0.000
50327.112,	0.000 //	50354.012,	0.000 //	50355.012,	0.98/ //	50356.233,	0.000	// 50363.175,	0.000
50384.175,	0.972 //	50385.371,	0.000 //	50412.211,	0.000 //	50413.211,	0.993	// 50414.404,	0.000
50441.137.	0.000 //	50442.137.	0.983 //	50443.383.	0.000 //	50470.265.	0.000	// 50471.265.	1.001
E0470 E77	0 000 //	E0400 E22	0 000 //	E0E00 E20	0 070 //	E0E01 706	0 000	// 50500 700	0 000
50412.511,	0.000 //	50499.552,	0.000 //	50500.552,	0.919 //	50501.706,	0.000	// 50526.729,	0.000
50529.729,	0.996 //	50531.030,	0.000 //	50558.010,	0.000 //	50559.010,	0.983	// 50560.330,	0.000
50587.250.	0.000 //	50588.250.	0.997 //	50589.452.	0.000 //	50616.293.	0.000	// 50617.293.	1.000
50618 /02	0 000 //	50645 301	0 000 //	50646 301	0 070 //	50647 755	0 000	// 5067/ 507	0 000
50010.492,	0.000 //	50045.591,	0.000 //	50040.591,	0.919 //	50041.155,	0.000	// 50014.591,	0.000
50675.597,	0.976 //	50676.822,	0.000 //	50703.674,	0.000 //	50704.674,	0.973	// 50705.890,	0.000
50732.783,	0.000 //	50733.783,	0.994 //	50735.136,	0.000 //	50762.012,	0.000	// 50763.012,	1.022
50764 207	0 000 //	50701 075	0 000 //	50702 075	0 969 //	50703 303	0 000	1/ 50820 264	0 000
50104.201,	0.000 //	50751.075,	0.000 //	50132.015,	0.303 //	50135.535,	0.000	// 50020.204,	0.000
50821.264,	0.985 //	50822.478,	0.000 //	50849.416,	0.000 //	50850.416,	0.991	// 50851.637,	0.000
50878.502,	0.000 //	50879.502,	0.976 //	50880.705,	0.000 //	50907.428,	0.000	// 50908.428,	1.031
50909 624	0 000 //	50936 380	0 000 //	50937 380	0 975 //	50938 584	0 000	// 50965 448	0 000
50000.024,	0.000 //	50000.000,	0.000 //	50001.000,	0.010 //	50005 500	0.000	// 50000.440,	0.000
50966.448,	1.003 //	50967.633,	0.000 //	50994.596,	0.000 //	50995.596,	0.991	// 50996.796,	0.000
51023.540,	0.000 //	51024.540,	1.014 //	51025.703,	0.000 //	51052.726,	0.000	// 51053.726,	0.997
51054.858.	0.000 //	51081.870.	0.000 //	51082.870.	1.023 //	51084.042.	0.000	// 51110.784.	0.000
51001.000,	0.005 //	51110.000	0.000 //	51400 740	0.000 //	51110 740	0.000	// 511101101,	0.000
51111.784,	0.995 //	51112.992,	0.000 //	51139.748,	0.000 //	51140.748,	0.986	// 51141.949,	0.000
51168.711,	0.000 //	51169.711,	1.023 //	51171.006,	0.000 //	51197.930,	0.000	// 51198.930,	1.014
51200 873	0 000 //	51227 741	0 000 //	51228 741	0 979 //	51229 975	0 000	// 51256 744	0 000
E10E7 744	1 010 //	E10E0 000	0.000 //	E100E 640	0.000 //	E1006 640	0.077	// 51007 040	0.000
51257.744,	1.018 //	51258.920,	0.000 //	51265.042,	0.000 //	51280.042,	0.977	// 5120/.042,	0.000
51314.749,	0.000 //	51315.749,	1.009 //	51316.944,	0.000 //	51343.709,	0.000	// 51344.709,	1.007
51345.896.	0.000 //	51372.778.	0.000 //	51373.778.	1.013 //	51374.980.	0.000	// 51401.782.	0.000
E1400 700	0.006 //	E1404 047	0.000 //	E1420 062	0.000 //	E1421 062	0.010	// 51422 004	0.000
51402.782,	0.926 //	51404.047,	0.000 //	51430.863,	0.000 //	51431.003,	0.919	// 51433.024,	0.000
51459.941,	0.000 //	51460.941,	0.949 //	51462.215,	0.000 //	51489.061,	0.000	// 51490.061,	0.954
51491.216.	0.000 //	51518.186.	0.000 //	51519.186.	0.962 //	51520.433.	0.000	// 51547.340.	0.000
E1E/0 2/0	0.006 //	E1E40 EE4	0 000 //	E1E76 E07	0.000 //	E1E77 E07	0 000	// 51570 000	0 000
51546.540,	0.920 //	51549.554,	0.000 //	51570.597,	0.000 //	51577.597,	0.333	// 51576.000,	0.000
51605.662,	0.000 //	51606.662,	1.004 //	51607.878,	0.000 //	51634.733,	0.000	// 51635.733,	0.997
51636.918,	0.000 //	51663.940,	0.000 //	51664.940,	1.000 //	51666.225,	0.000	// 51693.378,	0.000
51694 378	0 972 //	51695 577	0 000 //	51722 488	0 000 //	51723 488	0 987	// 51724 706	0 000
E17E1 000	0.002 //	E17E0 004	0.000 //	51722.700,	0.000 //	51720.700,	0.000	// 51704 700,	1 005
51751.601,	0.000 //	51/52.601,	0.998 //	51/53.789,	0.000 //	51780.702,	0.000	// 51/81./02,	1.005
51782.883,	0.000 //	51809.717,	0.000 //	51810.717,	0.996 //	51811.932,	0.000	// 51838.839,	0.000
51839.839.	1.019 //	51841.076.	0.000 //	51867.847.	0.000 //	51868.847.	0.951	// 51870.008.	0.000
E1006 006	0.000 //	E1007 00C	0.001 //	E1000 002	0.000 //	E100E 04E	0.000	// 51006 045	0 070
51696.606,	0.000 //	51697.800,	0.991 //	51699.095,	0.000 //	51925.945,	0.000	// 51920.945,	0.972
51928.168,	0.000 //	51955.055,	0.000 //	51956.055,	0.972 //	51957.234,	0.000	// 51984.036,	0.000
51985.036.	0.991 //	51986.250.	0.000 //	52013.122.	0.000 //	52014.122.	0.980	// 52015.376.	0.000
520/12 217	0 000 //	520/13 017	0 082 //	5204/ 271	0 000 //	52071 2/2	0 000	// 52072 240	0 026
52042.21/,	0.000 //	52045.211,	0.302 //	52044.311,	0.000 //	52011.240,	0.000	// 02012.240,	0.300
52073.463,	0.000 //	52100.554,	0.000 //	52101.554,	0.961 //	52102.867,	0.000	// 52129.714,	0.000
52130.714.	0.987 //	52131.861.	0.000 //	52158.632.	0.000 //	52159.632.	0.981	// 52160.814.	0.000
52187 602	0 000 //	52188 602	0 970 //	52180 007	0 000 //	52216 860	0 000	// 52217 860	0 066
52101.033,	0.000 //	52100.033,	0.010 //	52103.301,	0.000 //	52210.009,	0.000	// 50077	0.000
52219.088,	0.000 //	52245.921,	0.000 //	52246.921,	0.983 //	52248.136,	0.000	// 52275.173,	0.000
52276.173,	0.978 //	52277.381,	0.000 //	52304.242,	0.000 //	52305.242,	0.952	// 52306.446,	0.000
52333 246	0.000 //	52334 246	0.973 //	52335 432	0.000 //	52362 238	0.000	// 52363 238	0.964
E0064 440	0.000 //	E0201 057	0.000 //	E0200.40Z,	0.051 //	E0002.200,	0.000	// E0400.200,	0.004
52364.419,	0.000 //	52391.25/,	0.000 //	52392.25/,	0.951 //	52393.414,	0.000	// 52420.229,	0.000
52421.229,	0.965 //	52422.441,	0.000 //	52449.332,	0.000 //	52450.332,	0.944	// 52451.457,	0.000
52478.249	0.000 //	52479.249	0.982 //	52480.574	0.000 //	52507.361	0.000	// 52508.361	0.930
EDE00 E00	0 000 //	50526 200	0 000 //	E0E27 000	0 050 //	EDE20 FC4	0 000	// 50545 055	0 000
02003.090,	0.000 //	02000.009,	0.000 //	02001.009,	0.303 //	02000.004,	0.000	// 02000.005,	0.000

52566.355,	0.916 //	52567.568,	0.000 //	52594.357,	0.000 //	52595.357,	0.954	// 52596.548,	0.000
52623.477.	0.000 //	52624.477.	0.931 //	52625.724.	0.000 //	52652.493.	0.000	// 52653.493.	0.932
EDGEA 604	0 000 //	E0601 E00	0.000 //	E0600 E00	0 007 //	E0602 777	0.000	// 50710 702	0 000
52054.004,	0.000 //	52001.522,	0.000 //	52002.522,	0.991 //	52005.111,	0.000	7 52/10.705,	0.000
52711.703,	0.969 //	52712.889,	0.000 //	52739.631,	0.000 //	52740.631,	0.966	// 52741.902,	0.000
52768.759.	0.000 //	52769.759.	0.980 //	52770.929.	0.000 //	52797.775.	0.000	// 52798.775.	0.971
E0700 004	0.000 //	50006 006	0.000 //	50007 006	0.044 //	50000 010	0.000	// EDOEE 001	0 000
52/99.964,	0.000 //	52820.830,	0.000 //	52621.630,	0.944 //	52629.018,	0.000	// 52655.621,	0.000
52856.821,	0.950 //	52858.031,	0.000 //	52884.796,	0.000 //	52885.796,	0.924	// 52887.054,	0.000
52914.013.	0.000 //	52915.013.	0.965 //	52916.236.	0.000 //	52943.045.	0.000	// 52944.045.	0.952
E004E 021	0 000 //	50070 072	0.000 //	50072 072	0 000 //	50074 000	0.000	// 52001 050	0 000
52945.231,	0.000 //	52912.013,	0.000 //	52913.013,	0.000 //	52974.220,	0.000	/ 53001.052,	0.000
53002.052,	0.948 //	53003.229,	0.000 //	53030.056,	0.000 //	53031.056,	0.944	// 53032.257,	0.000
53059.109.	0.000 //	53060.109.	0.951 //	53061.284.	0.000 //	53088.070.	0.000	// 53089.070.	0.941
53000 288	0 000 //	52117 161	0 000 //	52110 161	0 0/5 //	53110 397	0 000	1/ 531/6 250	0 000
55090.200,	0.000 //	55117.101,	0.000 //	55116.101,	0.945 //	55119.507,	0.000	7 55140.250,	0.000
53147.250,	0.960 //	53148.580,	0.000 //	53175.436,	0.000 //	53176.436,	0.965	// 53177.676,	0.000
53204.604,	0.000 //	53205.604,	0.977 //	53206.841,	0.000 //	53233.854,	0.000	// 53234.854,	0.945
53236 079	0 000 //	53262 972	0 000 //	53263 972	0 965 //	53265 199	0 000	// 53291 960	0 000
50000.010,	0.000 //	50004 400	0.000 //	50000.012,	0.000 //	50001 007	0.000	// 50000 400	0.000
53292.960,	0.933 //	53294.122,	0.000 //	53320.907,	0.000 //	53321.907,	0.982	// 53323.132,	0.000
53350.022,	0.000 //	53351.022,	0.958 //	53352.244,	0.000 //	53379.144,	0.000	// 53380.144,	0.965
53381 328	0 000 //	53408 359	0 000 //	53409 359	0 963 //	53410 636	0 000	// 53437 476	0 000
E2420 476	0.000 //	52420 604	0.000 //	E2466 E06	0.000 //	E2467 E06	0.000	// 52460 710	0.000
53438.476,	0.959 //	53439.694,	0.000 //	53466.506,	0.000 //	53467.506,	0.955	// 53468./12,	0.000
53495.590,	0.000 //	53496.590,	0.964 //	53497.796,	0.000 //	53524.744,	0.000	// 53525.744,	0.936
53526.943.	0.000 //	53553.840.	0.000 //	53554.840.	0.942 //	53556.045.	0.000	// 53582.959.	0.000
E2E02 0E0	0 040 //	E2E0E 10E	0 000 //	E2610 002	0.000 //	E2612 002	0.061	// 52614 061	0 000
53563.959,	0.949 //	53565.195,	0.000 //	53612.023,	0.000 //	53613.023,	0.961	/ 53014.201,	0.000
53641.085,	0.000 //	53642.085,	1.001 //	53643.283,	0.000 //	53670.075,	0.000	// 53671.075,	0.942
53672.300.	0.000 //	53699.144.	0.000 //	53700.144.	0.944 //	53701.389.	0.000	// 53728.207.	0.000
E2700 007	0 020 //	E2720 400	0 000 //	E27E7 1E0	0 000 //	E27E0 1E0	0 0/1	// 52750 271	0 000
55129.201,	0.939 //	55750.429,	0.000 //	55757.159,	0.000 //	55756.159,	0.941	/ 55/59.5/1,	0.000
53786.109,	0.000 //	53787.109,	0.969 //	53788.346,	0.000 //	53815.100,	0.000	// 53816.100,	0.972
53817.319,	0.000 //	53844.128,	0.000 //	53845.128,	0.977 //	53846.346,	0.000	// 53873.121,	0.000
5387/ 101	0 998 //	53875 362	0 000 //	53002 130	0 000 //	53003 130	0 974	// 5300/ 332	0 000
	0.330 //		0.000 //	55502.155,	0.000 //		0.514	/	0.000
53931.127,	0.000 //	53932.127,	0.979 //	53933.363,	0.000 //	53960.149,	0.000	// 53961.149,	0.971
53962.353,	0.000 //	53989.148,	0.000 //	53990.148,	0.972 //	53991.325,	0.000	// 54018.045,	0.000
54019 045	0 967 //	54020 218	0 000 //	54047 097	0 000 //	54048 097	0 968	// 54049 347	0 000
54072.000	0.001 //	54027.210,	0.000 //	54070 400	0.000 //	54405 040	0.000	// 54402 040	0.000
54076.293,	0.000 //	54077.293,	1.016 //	54078.486,	0.000 //	54105.213,	0.000	// 54106.213,	0.969
54107.368,	0.000 //	54134.137,	0.000 //	54135.137,	0.956 //	54136.372,	0.000	// 54163.126,	0.000
54164 126	1 020 //	54165 321	0 000 //	54192 128	0 000 //	54193 128	0 994	// 54194 307	0 000
E 4001 100	0.000 //	E4000 100	0.074 //	E 4002 00E	0.000 //	E 4040 000	0.000	// 54050 000	0.004
54221.100,	0.000 //	54222.100,	0.9/4 //	54223.295,	0.000 //	54249.982,	0.000	/ 54250.982,	0.984
54252.165,	0.000 //	54278.977,	0.000 //	54279.977,	0.998 //	54281.245,	0.000	// 54308.058,	0.000
54309.058.	0.970 //	54310.357.	0.000 //	54337.242.	0.000 //	54338.242.	0.958	// 54339.439.	0.000
54366 201	0 000 //	5/367 201	0 0/5 //	5/369 391	0 000 //	54305 307	0 000	// 5/206 207	0 072
54500.201,	0.000 //	54507.201,	0.945 //	54500.501,	0.000 //	54595.307,	0.000	7 54390.307,	0.912
54397.554,	0.000 //	54424.445,	0.000 //	54425.445,	0.965 //	54426.657,	0.000	// 54453.534,	0.000
54454.534,	0.961 //	54455.733,	0.000 //	54482.604,	0.000 //	54483.604,	0.984	// 54484.808,	0.000
54511 672	0 000 //	54512 672	0 960 //	54513 872	0 000 //	54540 678	0 000	// 54541 678	0 989
54540.000	0.000 //	54520 740	0.000 //	54570 740	0.000 //	54574 040	0.000	// 54500 000	0.000
54542.923,	0.000 //	54569.748,	0.000 //	54570.748,	0.957 //	54571.912,	0.000	// 54598.680,	0.000
54599.680,	0.963 //	54600.865,	0.000 //	54627.640,	0.000 //	54628.640,	0.959	// 54629.823,	0.000
54656.668.	0.000 //	54657.668.	0.970 //	54658.895.	0.000 //	54685.724.	0.000	// 54686.724.	0.964
5/697 060	0.000 //	5/71/ 010	0 000 //	5/715 010	0.068 //	54717 104	0.000	// 54744 036	0 000
0-1001.902,	0.000 //	04114.919,	0.000 //	04/10.919,	0.300 //	54111.104,	0.000	// 54/44.030,	0.000
54745.036,	0.955 //	54746.233,	0.000 //	54772.999,	0.000 //	54773.999,	0.915	// 54775.197,	0.000
54802.048,	0.000 //	54803.048,	0.944 //	54804.225,	0.000 //	54831.077,	0.000	// 54832.077,	1.006
54833 242	0 000 //	54860 003	0 000 //	54861 003	0 976 //	54862 183	0 000	// 54889 050	0 000
54000.242,	0.000 //	54000.000,	0.000 //	54001.000,	0.010 //	54042.100,	0.000	// 54000.000,	0.000
54890.050,	0.955 //	54891.223,	0.000 //	54918.042,	0.000 //	54919.042,	0.958	// 54920.254,	0.000
54947.048,	0.000 //	54948.048,	0.953 //	54949.230,	0.000 //	54976.049,	0.000	// 54977.049,	0.944
54978.216.	0.000 //	55005.038.	0.000 //	55006.038.	0.956 //	55007.229.	0.000	// 55033.991.	0.000
EE024 001	0.000 //	EE026 170	0.000 //	EE000.001	0.000 //	EE062 061	0.000	// EEOCE 107	0.000
55054.991,	0.922 //	55050.170,	0.000 //	55062.961,	0.000 //	55065.961,	0.992	7 55065.107,	0.000
55092.011,	0.000 //	55093.011,	0.108 //	55094.194,	0.000 //	55121.138,	0.000	// 55122.138,	0.000
55123.228,	0.000 //	55150.030.	0.000 //	55151.030.	0.966 //	55152.230.	0.000	// 55179.078,	0.000
55180 078	0 960 //	55181 305	0 000 //	55208 1/12	0 000 //	55209 1/2	0 068	// 55210 354	0 000
55100.070,	0.000 //	55101.303,	0.000 //	55200.142,	0.000 //	55203.142,	0.000	// 55210.304,	0.000
55237.186,	0.000 //	55238.186,	0.948 //	55239.367,	0.000 //	55266.282,	0.000	/ 55267.282,	0.964
55268.478,	0.000 //	55295.209,	0.000 //	55296.209,	0.924 //	55297.402,	0.000	// 55324.399,	0.000
55325.399	0.953 //	55326.579	0.000 //	55353.319	0.000 //	55354.319	0.969	// 55355.503	0.000
EE200.000,	0.000 //	EE202.050	0.027 //	EE204 E00	0.000 //	EE411 050	0.000	// 55440 050	0.000
55382.352,	0.000 //	55383.352,	0.93/ //	55384.529,	0.000 //	55411.358,	0.000	/ 55412.358,	0.938
55413.568,	0.000 //	55440.401,	0.000 //	55441.401,	0.962 //	55442.592,	0.000	// 55469.482,	0.000
55470.482.	0.958 //	55471.685.	0.000 //	55498.580.	0.000 //	55499.580.	0.957	// 55500.734.	0.000
55507 557	0 000 //	55528 557	0 083 11	55520 756	0 000 //	55556 517	0 000	// 55557 517	0 069
	0.000 //	00020.001,	0.303 //	00029.100,	0.000 //		0.000	,,	0.300
55558.708,	0.000 //	55585.560,	0.000 //	55586.560,	U.966 //	55587.796,	0.000	// 55614.747,	0.000

55615.747,	0.932 //	55617.005,	0.000 //	55643.930,	0.000 //	55644.930,	0.953 /	/ 55646.162,	0.000
55673.114,	0.000 //	55674.114,	0.938 //	55675.327,	0.000 //	55702.311,	0.000 /	/ 55703.311,	0.916
55704.524,	0.000 //	55731.375,	0.000 //	55732.375,	0.950 //	55733.626,	0.000 /	/ 55760.600,	0.000
55761 600	0 943 //	55762 791	0 000 //	55789 513	0 000 //	55790 513	0 957 /	/ 55791 688	0 000
55818 /57	0 000 //	55810 /57	0 935 //	55820 626	0 000 //	558/7 6/9	0 000 /	/ 558/8 6/9	0 956
55010.457,	0.000 //	55013.457,	0.300 //	55020.020,	0.000 //	55047.043,	0.000 /	/ 55040.043,	0.550
55849.889,	0.000 //	55876.717,	0.000 //	558//./1/,	0.932 //	55878.949,	0.000 /	/ 55905.742,	0.000
55906.742,	0.959 //	55907.945,	0.000 //	55934.856,	0.000 //	55935.856,	0.951 /	/ 55937.034,	0.000
55963.897,	0.000 //	55964.897,	0.939 //	55966.136,	0.000 //	55992.954,	0.000 /	/ 55993.954,	0.997
55995.240.	0.000 //	56022.052.	0.000 //	56023.052.	0.933 //	56024.244.	0.000 /	/ 56051.166.	0.000
56052 166	0 996 //	56053 346	0 000 //	56080 277	0 000 //	56081 277	0 934 /	/ 56082 457	0 000
EC100 001	0.000 //	EC110 001	0.000 //	56111 506	0.000 //	56128 500	0.004 /	/ 56120 500	0.000
56109.281,	0.000 //	50110.201,	0.918 //	56111.526,	0.000 //	56136.502,	0.000 /	/ 56139.502,	0.980
56140.701,	0.000 //	56167.658,	0.000 //	56168.658,	0.994 //	56169.856,	0.000 /	/ 56196.780,	0.000
56197.780,	0.982 //	56199.005,	0.000 //	56225.852,	0.000 //	56226.852,	0.964 /	/ 56228.090,	0.000
56255.032.	0.000 //	56256.032.	0.965 //	56257.326.	0.000 //	56284.136.	0.000 /	/ 56285.136.	0.936
56286 313	0 000 //	56313 212	0 000 //	56314 212	0 977 //	56315 453	0 000 /	/ 56342 476	0 000
E6242 476	0.070 //	E6244 006	0.000 //	E6271 770	0.000 //	E6270 770	0.062 /	/ 56012.110,	0.000
50545.470,	0.912 //	50544.000,	0.000 //	505/1.//0,	0.000 //	50312.110,	0.903 /	/ 50374.015,	0.000
56400.840,	0.000 //	56401.840,	0.950 //	56403.010,	0.000 //	56429.787,	0.000 /	/ 56430.787,	0.957
56432.015,	0.000 //	56458.884,	0.000 //	56459.884,	0.940 //	56461.141,	0.000 /	/ 56488.119,	0.000
56489.119,	0.975 //	56490.336,	0.000 //	56517.190,	0.000 //	56518.190,	0.964 /	/ 56519.462,	0.000
56546.198.	0.000 //	56547.198.	0.977 //	56548.395.	0.000 //	56575.307.	0.000 /	/ 56576.307.	0.942
E6E77 E00	0.000 //	E6604 224	0 000 //	E660E 224	0 022 //	E6606 629	0.000 /	/ 56622 171	0 000
50577.509,	0.000 //	50004.334,	0.000 //	50005.334,	0.933 //	50000.030,	0.000 /	/ 50033.474,	0.000
56634.474,	0.946 //	56635.649,	0.000 //	56662.712,	0.000 //	56663.712,	0.943 /	/ 56664.889,	0.000
56691.724,	0.000 //	56692.724,	0.969 //	56693.951,	0.000 //	56720.798,	0.000 /	/ 56721.798,	0.959
56723.065,	0.000 //	56749.956,	0.000 //	56750.956,	0.943 //	56752.138,	0.000 /	/ 56778.858,	0.000
56779.858.	0.939 //	56781.017.	0.000 //	56808.010.	0.000 //	56809.010.	0.949 /	/ 56810.397.	0.000
56837 307	0.000 //	56939 307	0 0/6 //	56830 624	0.000 //	56866 /10	0 000 /	/ 56867 /10	0 037
50057.537,	0.000 //	50050.537,	0.340 //	50053.024,	0.000 //	50000.410,	0.000 /	/ 5000/.410,	0.301
56868.602,	0.000 //	56895.478,	0.000 //	56896.478,	0.959 //	56897.695,	0.000 /	/ 56924.51/,	0.000
56925.517,	0.950 //	56926.702,	0.000 //	56953.588,	0.000 //	56954.588,	0.970 /	/ 56955.832,	0.000
56982.631,	0.000 //	56983.631,	0.957 //	56984.809,	0.000 //	57011.695,	0.000 /	/ 57012.695,	0.942
57013.861,	0.000 //	57040.812,	0.000 //	57041.812,	0.979 //	57043.029,	0.000 /	/ 57070.067,	0.000
57071 067	0 934 //	57072 274	0 000 //	57099 196	0 000 //	57100 196	0 940 /	/ 57101 403	0 000
E7100 E00	0.000 //	E7100 E90	0.026 //	E7120 700	0.000 //	E71E7 0E7	0.010 /	/ 57159.100,	0.000
5/128.589,	0.000 //	5/129.569,	0.936 //	5/130./92,	0.000 //	5/15/.85/,	0.000 /	/ 5/158.65/,	0.928
57160.100,	0.000 //	57187.099,	0.000 //	57188.099,	0.945 //	57189.363,	0.000 /	/ 57216.419,	0.000
57217.419,	0.961 //	57218.610,	0.000 //	57245.523,	0.000 //	57246.523,	0.943 /	/ 57247.686,	0.000
57274.463,	0.000 //	57275.463,	0.946 //	57276.663,	0.000 //	57303.783,	0.000 /	/ 57304.783,	0.794
57306.516.	0.000 //	57333.272	0.000 //	57334.272	0.921 //	57335.503.	0.000 /	/ 57362.314.	0.000
57363 31/	0 922 //	57364 506	0 000 //	57301 313	0 000 //	57302 313	0 953 /	/ 57303 /82	0 000
57303.314,	0.322 //	57504.500,	0.000 //	57551.515,	0.000 //	57332.515,	0.300 /	/ 57353.402,	0.000
57420.335,	0.000 //	57421.335,	0.930 //	57422.531,	0.000 //	57449.443,	0.000 /	/ 57450.443,	0.934
57451.737,	0.000 //	57478.819,	0.000 //	57479.819,	0.964 //	57481.057,	0.000 /	/ 57507.873,	0.000
57508.873,	0.968 //	57510.073,	0.000 //	57537.019,	0.000 //	57538.019,	0.947 /	/ 57539.209,	0.000
57565.953,	0.000 //	57566.953,	0.945 //	57568.230,	0.000 //	57595.128,	0.000 /	/ 57596.128,	0.938
57597 404	0 000 //	57624 366	0 000 //	57625 366	1 007 //	57626 596	0 000 /	/ 57653 672	0 000
E76E4 670	0.000 //	E76EE 0E0	0.000 //	E7600 076	0.000 //	E7602 076	0.000 /	/ 57605.012,	0.000
57054.072,	0.912 //	57055.059,	0.000 //	57002.070,	0.000 //	57005.070,	0.935 /	/ 57005.122,	0.000
5//12.09/,	0.000 //	57713.097,	0.927 //	57714.323,	0.000 //	5//41.154,	0.000 /	/ 5//42.154,	0.936
57743.363,	0.000 //	57770.287,	0.000 //	57771.287,	0.926 //	57772.494,	0.000 /	/ 57799.500,	0.000
57800.500,	0.933 //	57801.774,	0.000 //	57828.680,	0.000 //	57829.680,	0.157 /	/ 57830.895,	0.000
57857.866.	0.000 //	57858.866.	0.000 //	57860.076.	0.000 //	57887.118.	0.000 /	/ 57888.118.	0.000
57889 264	0 000 //	57916 234	0 000 //	57917 234	1 026 //	57918 393	0 000 /	/ 57945 341	0 000
E7046 241	1 000 //	E7047 E04	0.000 //	E7074 446	0.000 //	E707E 446	1 051 /	/ 57076 605	0.000
57940.341,	1.020 //	5/94/.594,	0.000 //	5/9/4.440,	0.000 //	5/9/5.440,	1.051 /	/ 5/9/0.025,	0.000
58003.512,	0.000 //	58004.512,	1.032 //	58005.737,	0.000 //	58032.617,	0.000 /	/ 58033.617,	1.053
58034.823,	0.000 //	58061.698,	0.000 //	58062.698,	0.000 //	58063.872,	0.000 /	/ 58090.702,	0.000
58091.702,	1.037 //	58092.885,	0.000 //	58119.690,	0.000 //	58120.690,	1.029 /	/ 58121.909,	0.000
58148.754.	0.000 //	58149.754.	1.064 //	58151.177.	0.000 //	58178.152.	0.000 /	/ 58179.152.	1.018
58180 347	0 000 //	58207 389	0 000 //	58208 389	1 029 //	58209 574	0 000 /	/ 58236 620	0 000
50100.017,	1 020 //	E0000 047	0.000 //	E006E 704	1.023 //	50200.014,	1 047 /	/ 50200.020,	0.000
56231.620,	1.033 //	00230.04/,	0.000 //	00200./31,	0.000 //	JOZOD./31,	1.04/ /	/ 5020/.935,	0.000
58294.789,	0.000 //	58295.789,	1.010 //	58297.023,	0.000 //	58323.965,	0.000 /	/ 58324.965,	1.042
58326.153,	0.000 //	58353.023,	0.000 //	58354.023,	1.044 //	58355.193,	0.000 /	/ 58382.163,	0.000
58383.163,	1.044 //	58384.377,	0.000 //	58411.185.	0.000 //	58412.185.	1.051 /	/ 58413.375.	0.000
58440.321	0.000 //	58441.321	1.064 //	58442.532	0.000 //	58469.338	0.000 /	/ 58470.338	1.061
58471 540	0 000 //	58498 334	0 000 //	58499 334	1 045 //	58500 562	0 000 /	/ 58527 580	0 000
50411.040,	1 010 //	50450.334,	0.000 //	50433.334,	1.040 //	50500.500,	1 000 /	/ 00021.009,	0.000
56528.589,	1.010 //	58529.929,	0.000 //	58556.865,	0.000 //	56557.865,	1.033 /	/ 58559.030,	0.000
58585.896,	0.000 //	58586.896,	1.023 //	58588.166,	0.000 //	58614.985,	0.000 /	/ 58615.985,	1.065
58617.215,	0.000 //	58644.069,	0.000 //	58645.069,	1.025 //	58646.246,	0.000 /	/ 58673.130,	0.000

58674.130,	1.055 //	58675.313,	0.000 //	58702.225,	0.000 //	58703.225,	1.037	// 58704.444,	0.000
58731.380,	0.000 //	58732.380,	1.032 //	58733.534,	0.000 //	58760.332,	0.000	// 58761.332,	1.036
58762.528,	0.000 //	58789.299,	0.000 //	58790.299,	1.039 //	58791.510,	0.000	// 58818.332,	0.000
58819.332.	1.052 //	58820.507.	0.000 //	58847.294.	0.000 //	58848.294.	1.101	// 58849.494.	0.000
58876 438	0 000 //	58877 438	1 035 //	58878 624	0 000 //	58905 568	0 000	// 58906 568	1 024
E0007 771	0.000 //	E0024 600	0.000 //	E002E 600	1 024 //	E8026 04E	0.000	// 50000.000,	0 000
50907.771,	0.000 //	50954.000,	0.000 //	56955.006,	1.034 //	50950.945,	0.000	// 50905.029,	0.000
58964.829,	1.055 //	58966.064,	0.000 //	58993.095,	0.000 //	58994.095,	1.030	// 58995.389,	0.000
59022.417,	0.000 //	59023.417,	1.065 //	59024.679,	0.000 //	59051.531,	0.000	// 59052.531,	1.009
59053.737,	0.000 //	59080.647,	0.000 //	59081.647,	1.033 //	59082.940,	0.000	// 59109.744,	0.000
59110.744,	1.007 //	59111.980,	0.000 //	59138.741,	0.000 //	59139.741,	0.984	// 59140.948,	0.000
59167.765,	0.000 //	59168.765,	0.661 //	59170.676,	0.000 //	59197.591,	0.000	// 59198.591,	1.014
59199.805.	0.000 //	59226.759.	0.000 //	59227.759.	0.990 //	59228.962.	0.000	// 59255.905.	0.000
59256 905	1 030 //	59258 148	0 000 //	59285 020	0 000 //	59286 020	1 005	// 59287 211	0 000
E0212 040	1.000 //	E0214 040	1 0 0 //	E0216 120	0.000 //	E0240.020,	0.000	// 50207.211,	1 020
59515.949,	0.000 //	59514.949,	1.020 //	59510.152,	0.000 //	59542.944,	0.000	// 59343.944,	1.039
59345.199,	0.000 //	59372.238,	0.000 //	59373.238,	1.034 //	59374.498,	0.000	// 59401.393,	0.000
59402.393,	1.050 //	59403.623,	0.000 //	59430.436,	0.000 //	59431.436,	1.054	// 59432.628,	0.000
59459.530,	0.000 //	59460.530,	1.083 //	59461.707,	0.000 //	59488.692,	0.000	// 59489.692,	1.070
59490.890,	0.000 //	59517.737,	0.000 //	59518.737,	1.075 //	59519.947,	0.000	// 59547.017,	0.000
59548.017,	1.099 //	59549.226,	0.000 //	59576.125,	0.000 //	59577.125,	1.078	// 59578.372,	0.000
59605.342,	0.000 //	59606.342,	1.039 //	59607.556,	0.000 //	59634.385,	0.000	// 59635.385,	1.063
59636.567.	0.000 //	59663.557.	0.000 //	59664.557.	1.053 //	59665.735.	0.000	// 59692.605.	0.000
59693 605	1 044 //	5969/ 927	0 000 //	50721 7/0	0 000 //	50700 7/0	1 0/1	// 50703 070	0 000
E07E0 004	1.044 //	E07E1 004	1 047 //	50752 072	0.000 //	59722.149,	0.000	// 50720.006	1 046
59750.894,	0.000 //	59751.894,	1.047 //	59753.073,	0.000 //	59779.986,	0.000	// 59/80.986,	1.046
59782.201,	0.000 //	59809.043,	0.000 //	59810.043,	1.045 //	59811.271,	0.000	// 59838.216,	0.000
59839.216,	1.037 //	59840.477,	0.000 //	59867.402,	0.000 //	59868.402,	1.022	// 59869.627,	0.000
59896.412,	0.000 //	59897.412,	1.037 //	59898.595,	0.000 //	59925.456,	0.000	// 59926.456,	1.025
59927.841,	0.000 //	59954.679,	0.000 //	59955.679,	1.014 //	59956.899,	0.000	// 59983.883,	0.000
59984.883,	1.012 //	59986.128,	0.000 //	60013.247,	0.000 //	60014.247,	0.989	// 60015.481,	0.000
60042.505.	0.000 //	60043.505	0.986 //	60044.700.	0.000 //	60071.507.	0.000	// 60072.507.	0.987
60073 713	0 000 //	60100 529	0 000 //	60101 529	1 002 //	60102 771	0 000	// 60129 763	0 000
60120 762	0.000 //	60121 060	0.000 //	60169 009	0.000 //	60162.111,	0.000	// 60123.100,	0.000
00130.703,	0.334 //	00131.900,	0.000 //	00150.900,	0.000 //	00139.900,	0.900	// 00101.144,	0.000
60188.220,	0.000 //	60189.220,	0.000 //	60190.374,	0.000 //	60217.188,	0.000	// 60218.188,	0.980
60219.405,	0.000 //	60246.554,	0.000 //	60247.554,	0.963 //	60248.724,	0.000	// 60275.586,	0.000
60276.586,	1.036 //	60277.796,	0.000 //	60304.674,	0.000 //	60305.674,	0.970	// 60306.880,	0.000
60333.789,	0.000 //	60334.789,	1.012 //	60335.965,	0.000 //	60362.771,	0.000	// 60363.771,	0.978
60364.969,	0.000 //	60391.903,	0.000 //	60392.903,	1.032 //	60394.116,	0.000	// 60421.000,	0.000
60422.000,	0.994 //	60423.201,	0.000 //	60450.170,	0.000 //	60451.170,	0.995	// 60452.402,	0.000
60479.384	0.000 //	60480.384.	1.014 //	60481.580.	0.000 //	60508.447.	0.000	// 60509.447.	1.017
60510 632	0 000 //	60537 531	0 000 //	60538 531	1 029 //	60539 726	0 000	// 60566 519	0 000
60567 510	1 035 //	60569 700	0.000 //	60505 786	0.000 //	60506 786	0.000	// 60508 057	0.000
00507.519,	1.035 //	00500.122,	0.000 //	000330.700,	0.000 //	000590.700,	0.901	// 00050.007,	1 000
60625.161,	0.000 //	60626.161,	1.029 //	60627.365,	0.000 //	60654.216,	0.000	// 60655.216,	1.000
60656.424,	0.000 //	60683.231,	0.000 //	60684.231,	0.987 //	60685.446,	0.000	// 60712.244,	0.000
60713.244,	1.028 //	60714.429,	0.000 //	60741.383,	0.000 //	60742.383,	1.023	// 60744.014,	0.000
60771.136,	0.000 //	60772.136,	1.012 //	60773.334,	0.000 //	60800.216,	0.000	// 60801.216,	1.020
60802.447,	0.000 //	60829.252,	0.000 //	60830.252,	1.026 //	60831.453,	0.000	// 60858.261,	0.000
60859.261,	1.031 //	60860.436,	0.000 //	60887.278,	0.000 //	60888.278,	1.006	// 60889.523,	0.000
60916.646.	0.000 //	60917.646.	1.033 //	60918.903.	0.000 //	60945.779.	0.000	// 60946.779.	1.022
60947 946	0 000 //	60974 933	0 000 //	60975 933	0 000 //	60977 048	0 000	// 61004 065	0 000
61005 065	0.000 //	61006 178	0.000 //	61033 074	0.000 //	61034 074	0.000	// 61035 192	0.000
01005.005,	0.000 //	01000.170,	0.000 //	01033.074,	0.000 //	01034.074,	0.000	// 01033.102,	0.000
61062.251,	0.000 //	61063.251,	0.000 //	61064.321,	0.000 //	61091.323,	0.000	// 61092.323,	0.000
61093.414,	0.000 //	61120.519,	0.000 //	61121.519,	0.000 //	61122.723,	0.000	// 61149.833,	0.000
61150.833,	0.000 //	61151.962,	0.000 //	61178.849,	0.000 //	61179.849,	0.000	// 61180.976,	0.000
61207.851,	0.000 //	61208.851,	0.028 //	61209.980,	0.000 //	61236.905,	0.000	// 61237.905,	0.000
61239.082,	0.000 //	61265.975,	0.000 //	61266.975,	0.000 //	61268.158,	0.000	// 61295.181,	0.000
61296.181.	0.000 //	61297.315.	0.000 //	61324.365.	0.000 //	61325.365.	0.000	// 61326.502.	0.000
61353.684	0.000 //	61354.684	0.000 //	61355.811	0.000 //	61382.834	0.000	// 61383.834	0.000
61385 003	0 000 //	61412 150	0 000 //	61413 150	0 000 //	61414 301	0 000	// 61441 282	0 000
61//2 202	0 000 //	61//3 250	0.000 //	61/70 201	0 000 //	61/71 201	0.000	// 61/70 /00	0.000
01442.202,	0.000 //	01440.009,	0.000 //	01410.391,	0.000 //	014/1.391,	0.000	// 014/2.400,	0.000
01499.612,	0.000 //	01500.612,	0.000 //	61501.719,	0.000 //	01528.739,	0.000	// 61529.739,	0.000
61530.884,	0.000 //	61557.876,	0.000 //	61558.876,	0.000 //	61559.959,	0.000	// 61587.059,	0.000
61588.059,	0.000 //	61589.142,	0.000 //	61616.130,	0.000 //	61617.130,	0.000	// 61618.250,	0.000
61645.273,	0.000 //	61646.273,	0.000 //	61647.442,	0.000 //	61674.424,	0.000	// 61675.424,	0.000
61676.518,	0.000 //	61703.526,	0.000 //	61704.526,	0.000 //	61705.639,	0.000	// 61732.711,	0.000

61733.711,	0.000 //	61734.813,	0.000 //	61761.815,	0.000 //	61762.815,	0.000	// 61763.928,	0.000
61790.978.	0.000 //	61791.978.	0.000 //	61793.111.	0.000 //	61820.145.	0.000	// 61821.145.	0.000
61000.040	0.000 //	61040 012	0.000 //	61050 012	0.000 //	61051 240	0.000	// 61020.051	0.000
01022.242,	0.000 //	61649.213,	0.000 //	01050.213,	0.000 //	01051.349,	0.000	// 010/0.351,	0.000
61879.351,	0.000 //	61880.442,	0.000 //	61907.370,	0.000 //	61908.370,	0.000	// 61909.477,	0.000
61936 598	0 000 //	61937 598	0 000 //	61938 678	0 000 //	61965 731	0 000	// 61966 731	0 000
01000.000,	0.000 //	01001.000,	0.000 //	01000.010,	0.000 //	01000.101,	0.000	// 01000.101,	0.000
61967.843,	0.000 //	61994.991,	0.000 //	61995.991,	0.060 //	61997.120,	0.000	// 62024.301,	0.000
62025.301,	0.000 //	62026.397,	0.000 //	62053.694,	0.000 //	62054.694,	0.000	// 62055.828,	0.000
62082 938	0 000 //	62083 938	0 000 //	62085 043	0 000 //	62112 047	0 000	// 62113 047	0 000
CO114 040	0.000 //	CO144 44C	0.000 //	CO140 44C	0.000 //	CO140 500	0.000	// 00170 005	0.000
62114.242,	0.000 //	62141.416,	0.000 //	62142.416,	0.000 //	62143.530,	0.000	// 621/0.635,	0.000
62171.635,	0.000 //	62172.747,	0.000 //	62199.706,	0.000 //	62200.706,	0.000	// 62201.819,	0.000
62228 761	0 000 //	62229 761	0 000 //	62230 880	0 000 //	62257 927	0 000	// 62258 927	0 000
60060 020	0.000 //	60007 049	0.000 //	60000 040	0.000 //	60000 150	0.000	// 60016 075	0.000
62260.038,	0.000 //	62287.048,	0.000 //	02200.040,	0.000 //	62289.150,	0.000	// 02310.075,	0.000
62317.075,	0.000 //	62318.176,	0.000 //	62345.083,	0.000 //	62346.083,	0.000	// 62347.192,	0.000
62373.968.	0.000 //	62374.968.	0.000 //	62376.071.	0.000 //	62402.903.	0.000	// 62403.903.	0.986
6040E 000	0 000 //	60420 001	0 000 //	60422 001	0 057 //	60/2/ 010	0 000	// 60/61 000	0 000
02405.090,	0.000 //	02432.001,	0.000 //	02433.001,	0.951 //	02434.210,	0.000	// 02401.202,	0.000
62462.202,	0.929 //	62463.485,	0.000 //	62490.408,	0.000 //	62491.408,	0.956	// 62492.655,	0.000
62519.498,	0.000 //	62520.498,	1.039 //	62521.658,	0.000 //	62548.666,	0.000	// 62549.666,	1.012
62550 881	0 000 //	62577 0/0	0 000 //	62578 0/0	0 962 //	62580 178	0 000	// 62607 1/0	0 000
02000.001,	0.000 //	02011.040,	0.000 //	02010.040,	0.002 //	02000.110,	0.000	// 02007.140,	0.000
62608.140,	0.923 //	62609.368,	0.000 //	62636.384,	0.000 //	62637.384,	0.969	// 62638.570,	0.000
62665.397,	0.000 //	62666.397,	0.968 //	62667.664,	0.000 //	62694.594,	0.000	// 62695.594,	0.989
62696 945	0 000 //	62724 022	0 000 //	62725 022	1 045 //	62726 236	0 000	// 62753 134	0 000
02000.040,	0.000 //	02724.022,	0.000 //	02120.022,	1.040 //	02720.200,	0.000	// 02100.104,	0.000
62754.134,	0.976 //	62755.321,	0.000 //	62782.117,	0.000 //	62783.117,	0.980	// 62/84.284,	0.000
62811.072,	0.000 //	62812.072,	0.990 //	62813.278,	0.000 //	62840.087,	0.000	// 62841.087,	0.984
62842 284	0 000 //	62869 154	0 000 //	62870 154	0 989 //	62871 347	0 000	// 62898 375	0 000
COOOD 275	0.000 //	CO000 F00	0.000 //	CO007 400	0.000 //	COODO 400	0.000	// 02000.010,	0.000
62899.375,	0.983 //	62900.593,	0.000 //	62927.423,	0.000 //	62928.423,	0.976	// 62929.759,	0.000
62956.721,	0.000 //	62957.721,	0.982 //	62959.048,	0.000 //	62985.818,	0.000	// 62986.818,	0.973
62988.056.	0.000 //	63014.817.	0.000 //	63015.817.	0.991 //	63017.007.	0.000	// 63043.812.	0.000
62044 010	0 052 //	62046 004	0 000 //	62070 007	0.000 //	62072 007	0 050	// 62075 000	0 000
03044.012,	0.955 //	03040.024,	0.000 //	03012.001,	0.000 //	03073.007,	0.950	// 030/5.000,	0.000
63101.814,	0.000 //	63102.814,	0.983 //	63104.050,	0.000 //	63130.808,	0.000	// 63131.808,	0.958
63133.028.	0.000 //	63159.880.	0.000 //	63160.880.	0.966 //	63162.088.	0.000	// 63188.926.	0.000
63180 026	0 975 //	63101 130	0 000 //	63217 015	0 000 //	63218 015	0 966	// 63220 105	0 000
00100.020,	0.313 //	00101.100,	0.000 //	00217.010,	0.000 //	00210.010,	0.300	// 00220.100,	0.000
63247.009,	0.000 //	63248.009,	1.002 //	63249.158,	0.000 //	63275.897,	0.000	// 63276.897,	0.979
63278.109,	0.000 //	63304.948,	0.000 //	63305.948,	0.946 //	63307.337,	0.000	// 63334.251,	0.000
63335 251	0 974 //	63336 467	0 000 //	63363 387	0 000 //	63364 387	0 954	// 63365 587	0 000
00000.201,	0.014 //	cooco.407,	0.000 //	00000.001,	0.000 //	00004.001,	0.004	// 00000.001,	4 005
63392.437,	0.000 //	63393.437,	0.994 //	63394.618,	0.000 //	63421.458,	0.000	// 63422.458,	1.005
63423.684,	0.000 //	63450.460,	0.000 //	63451.460,	0.992 //	63452.646,	0.000	// 63479.675,	0.000
63480.675.	1.006 //	63481.874.	0.000 //	63508.735.	0.000 //	63509.735.	1.036	// 63510.918.	0.000
COE07 700	2.000 //	COF 00 700	1 014 //	COE 00 004	0.000 //	COECC 045	0.000	// 00010101010,	1 010
63537.768,	0.000 //	63538.768,	1.014 //	63539.994,	0.000 //	63566.845,	0.000	// 63567.845,	1.016
63568.965,	0.000 //	63595.898,	0.000 //	63596.898,	0.993 //	63598.106,	0.000	// 63625.069,	0.000
63626.069.	1.018 //	63627.243.	0.000 //	63654.143.	0.000 //	63655.143.	1.041	// 63656.338.	0.000
63693 034	0 000 //	63684 034	1 000 //	63695 400	0 000 //	63710 354	0 000	// 63713 354	1 010
03003.234,	0.000 //	03004.234,	1.009 //	03003.402,	0.000 //	03712.354,	0.000	// 03/13.354,	1.010
63714.590,	0.000 //	63741.510,	0.000 //	63742.510,	1.039 //	63743.758,	0.000	// 63770.761,	0.000
63771.761,	1.022 //	63772.982,	0.000 //	63799.768,	0.000 //	63800.768,	1.011	// 63801.960,	0.000
63828 750	0 000 //	63829 750	1 007 //	63830 944	0 000 //	63857 810	0 000	// 63858 810	1 022
00020.100,	0.000 //	00023.100,	1.001 //	00000.044,	0.000 //		0.000	// 00000.010,	1.022
03800.022,	0.000 //	03881.049,	0.000 //	03888.049,	1.036 //	03889.230,	0.000	// 03910.030,	0.000
63917.030,	1.025 //	63918.262,	0.000 //	63945.116,	0.000 //	63946.116,	1.050	// 63947.320,	0.000
63974.101.	0.000 //	63975.101.	1.024 //	63976.406.	0.000 //	64003.311.	0.000	// 64004.311.	1.035
CAOOF F07	0.000 //	64020 449	0.000 //	64022 449	1 010 //	64024 641	0.000	// 64061 525	0.000
64005.527,	0.000 //	64032.448,	0.000 //	64033.448,	1.010 //	64034.641,	0.000	// 04001.535,	0.000
64062.535,	1.018 //	64063.753,	0.000 //	64090.577,	0.000 //	64091.577,	1.034	// 64092.744,	0.000
64119.562.	0.000 //	64120.562.	1.022 //	64121.762.	0.000 //	64148.586.	0.000	// 64149.586.	1.004
6/150 776	0 000 //	6/177 766	0 000 //	6/179 766	1 005 //	6/170 078	0 000	11 61206 763	0 000
04130.770,	0.000 //	04177.700,	0.000 //	04170.700,	1.005 //	041/9.9/0,	0.000	// 04200.703,	0.000
64207.763,	1.039 //	64208.979,	0.000 //	64235.990,	0.000 //	64236.990,	0.000	// 64237.999,	0.000
64264.842,	0.000 //	64265.842,	1.013 //	64267.648,	0.000 //	64294.429,	0.000	// 64295.429,	0.997
64296.607	0.000 //	64323 412	0.000 //	64324 412	1.000 //	64325.585	0.000	// 64352.784	0.000
CADED 704	1 015 //	CADEA 000	0.000 //	64001 040	2.000 //	64200 046	0.000	// 64004 404	0.000
04353.784,	1.012 //	04354.966,	0.000 //	04381.946,	0.000 //	04382.946,	0.990	// 04384.131,	0.000
64411.078,	0.000 //	64412.078,	0.972 //	64413.358,	0.000 //	64440.208,	0.000	// 64441.208,	0.994
64440 204				64470 201	1 001 //	61171 106	0 000	1/ 61/08 200	0.000
04442.394.	0.000 //	64469.301	0.000 //	044/0.301	T • OO T / /	044/1.400.		// 01100.200	· · · · · · · · · · · · · · · · · · ·
64442.394,	0.000 //	64469.301,	0.000 //	64470.301,	0.000 //	6/528 36F	0.000	// 6/500 550	0 000
64499.299,	0.000 //	64469.301, 64500.509,	0.000 //	64527.365,	0.000 //	64528.365,	0.992	// 64529.558,	0.000
64499.299, 64556.395,	0.000 // 0.989 // 0.000 //	64469.301, 64500.509, 64557.395,	0.000 // 0.000 // 0.998 //	64527.365, 64558.611,	0.000 //	64528.365, 64585.714,	0.992	// 64529.558, // 64586.714,	0.000
64442.394, 64499.299, 64556.395, 64588.018.	0.000 // 0.989 // 0.000 // 0.000 //	64469.301, 64500.509, 64557.395, 64614.961.	0.000 // 0.000 // 0.998 // 0.000 //	64527.365, 64558.611, 64615.961.	0.000 // 0.000 // 0.991 //	64528.365, 64585.714, 64617.116.	0.992 0.000 0.000	// 64529.558, // 64586.714, // 64643.955.	0.000 0.997 0.000
64442.394, 64499.299, 64556.395, 64588.018, 64644 955	0.000 // 0.989 // 0.000 // 0.000 //	64469.301, 64500.509, 64557.395, 64614.961, 64646_160	0.000 // 0.000 // 0.998 // 0.000 //	64470.301, 64527.365, 64558.611, 64615.961, 64673.011	0.000 // 0.000 // 0.991 //	64528.365, 64585.714, 64617.116, 64674_011	0.992 0.000 0.000 0.975	// 64529.558, // 64586.714, // 64643.955, // 64675 187	0.000 0.997 0.000
64442.394, 64499.299, 64556.395, 64588.018, 64644.955,	0.000 // 0.989 // 0.000 // 0.000 // 0.981 //	64469.301, 64500.509, 64557.395, 64614.961, 64646.160,	0.000 // 0.000 // 0.998 // 0.000 // 0.000 //	64527.365, 64558.611, 64615.961, 64673.011,	0.000 // 0.000 // 0.991 // 0.000 //	64528.365, 64528.365, 64585.714, 64617.116, 64674.011,	0.992 0.000 0.000 0.975	// 64529.558, // 64529.558, // 64586.714, // 64643.955, // 64675.187,	0.000 0.997 0.000 0.000
64442.394, 64499.299, 64556.395, 64588.018, 64644.955, 64702.083,	0.000 // 0.989 // 0.000 // 0.981 // 0.000 //	64469.301, 64500.509, 64557.395, 64614.961, 64646.160, 64703.083,	0.000 // 0.000 // 0.998 // 0.000 // 1.019 //	64527.365, 64558.611, 64615.961, 64673.011, 64704.307,	0.000 // 0.000 // 0.991 // 0.000 //	64528.365, 64528.365, 64585.714, 64617.116, 64674.011, 64731.298,	0.992 0.000 0.000 0.975 0.000	// 64529.558, // 64586.714, // 64643.955, // 64675.187, // 64732.298,	0.000 0.997 0.000 0.000 0.970

64790.669,	0.972 //	64791.903,	0.000 //	64818.876,	0.000 //	64819.876,	1.017	// 64821.123,	0.000
64847.981.	0.000 //	64848.981.	0.999 //	64850.241.	0.000 //	64877.164.	0.000	// 64878.164.	1.009
61070 20E	0.000 //	64006 126	0.000 //	64007 126	0.006 //	61000 200	0.000	// 64025 460	0 000
04019.305,	0.000 //	04900.130,	0.000 //	04907.130,	0.900 //	04900.300,	0.000	/ 04935.409,	0.000
64936.469,	0.993 //	64937.661,	0.000 //	64964.692,	0.000 //	64965.692,	1.018	// 64966.946,	0.000
64994.103.	0.000 //	64995.103.	0.998 //	64996.360.	0.000 //	65023.334.	0.000	// 65024.334.	1.020
CEODE 640	0.000 //	CEOED E44	0.000 //	CEOE2 E44	1 010 //	CEOE4 740	0.000	// 05001 007	0.000
05025.040,	0.000 //	05052.544,	0.000 //	05053.544,	1.012 //	65054.749,	0.000	/ 05081.02/,	0.000
65082.627,	0.998 //	65083.893,	0.000 //	65110.942,	0.000 //	65111.942,	1.043	// 65113.166,	0.000
65140.088.	0.000 //	65141.088.	1.039 //	65142.355.	0.000 //	65169.281.	0.000	// 65170.281.	0.987
00110.000,	0.000 //	00111.000,	1.000 //	00112.000,	0.000 //	00100.201,	0.000	/ 00110.201,	0.001
651/2.163,	0.000 //	65198.983,	0.000 //	65199.983,	0.980 //	65201.187,	0.000	/ 65228.054,	0.000
65229.054,	1.035 //	65230.225,	0.000 //	65257.137,	0.000 //	65258.137,	0.973	// 65259.336,	0.000
65286 169	0 000 //	65287 169	0 993 //	65288 403	0 000 //	65315 179	0 000	// 65316 179	0 953
00200.100,	0.000 //	00201.100,	0.000 //	00200.400,	0.000 //	00010.170,	0.000	/ 00010.170,	0.000
65317.314,	0.000 //	65344.171,	0.000 //	65345.171,	0.988 //	65346.351,	0.000	// 653/3.133,	0.000
65374.133,	1.011 //	65375.306,	0.000 //	65402.249,	0.000 //	65403.249,	0.965	// 65404.433,	0.000
65431 316	0 000 //	65432 316	0 993 //	65433 536	0 000 //	65460 386	0 000	// 65461 386	0 983
CE 4 CO 570	0.000 //	CE 400 444	0.000 //	CE 400 444	4 045 //	CE 404 CE0	0.000	/ 00101.000,	0.000
65462.576,	0.000 //	65489.444,	0.000 //	65490.444,	1.015 //	65491.652,	0.000	/ 65518.44/,	0.000
65519.447,	1.013 //	65520.626,	0.000 //	65547.440,	0.000 //	65548.440,	0.972	// 65549.638,	0.000
65576.439.	0.000 //	65577.439.	0.947 //	65578.673.	0.000 //	65605.544.	0.000	// 65606.544.	0.937
CEC07 712	0.000 //	65624 550	0 000 //	CECCE EE0	0.000 //	CEC2C 01C	0.000	/ 65660.011,	0 000
65607.713,	0.000 //	00034.000,	0.000 //	00000.000,	0.938 //	00000.010,	0.000	/ 05003./93,	0.000
65664.793,	0.958 //	65666.089,	0.000 //	65692.982,	0.000 //	65693.982,	0.977	// 65695.218,	0.000
65722.088.	0.000 //	65723.088.	0.946 //	65724.383.	0.000 //	65751.297.	0.000	// 65752.297.	0.963
65752 522	0 000 //	65700 202	0 000 //	65701 202	0 061 //	65790 600	0 000	// 65000 502	0 000
05755.555,	0.000 //	05760.393,	0.000 //	05/01.393,	0.901 //	05762.000,	0.000	/ 05009.505,	0.000
65810.503,	0.957 //	65811.703,	0.000 //	65838.655,	0.000 //	65839.655,	0.951	// 65840.944,	0.000
65867.822.	0.000 //	65868.822.	0.950 //	65870.021.	0.000 //	65896.875.	0.000	// 65897.875.	0.934
65900 110	0 000 //	65026 136	0 000 //	65007 136	0 950 //	65028 340	0 000	// 65055 167	0 000
000099.112,	0.000 //	03920.130,	0.000 //	05927.150,	0.950 //	03920.340,	0.000	/ 05955.107,	0.000
65956.167,	0.942 //	65957.377,	0.000 //	65984.274,	0.000 //	65985.274,	0.959	// 65986.471,	0.000
66013.253,	0.000 //	66014.253,	0.952 //	66015.506,	0.000 //	66042.356,	0.000	// 66043.356,	0.963
66044 581	0 000 //	66071 446	0 000 //	66072 116	0 950 //	66073 640	0 000	1/ 66100 1/6	0 000
00044.001,	0.000 //	00071.440,	0.000 //	00072.440,	0.300 //	00073.040,	0.000	/ 00100.440,	0.000
66101.446,	0.969 //	66102.617,	0.000 //	66129.514,	0.000 //	66130.514,	0.934	// 66131.700,	0.000
66158.627,	0.000 //	66159.627,	0.962 //	66160.831,	0.000 //	66187.760,	0.000	// 66188.760,	0.927
66189 996	0 000 //	66217 109	0 000 //	66218 109	0 985 //	66219 295	0 000	// 66246 163	0 000
CC047 4C0	0.000 //	CC040 445	0.000 //	CC075 40C	0.000 //	00210.200,	0.000	/ 00210.100,	0.000
66247.163,	0.943 //	66248.415,	0.000 //	66275.436,	0.000 //	66276.436,	0.961	/ 662//.640,	0.000
66304.479,	0.000 //	66305.479,	0.936 //	66306.663,	0.000 //	66333.715,	0.000	// 66334.715,	0.952
66335.891.	0.000 //	66362.964.	0.000 //	66363.964.	0.985 //	66365.137.	0.000	// 66392.318.	0.000
ccooo 040	0.045 //	CC004 F00	0.000 //	CC404 202	0.000 //	cc400.207,	0.074	/ 00002.010,	0.000
66393.318,	0.945 //	66394.592,	0.000 //	66421.393,	0.000 //	66422.393,	0.971	/ 66423.650,	0.000
66450.547,	0.000 //	66451.547,	1.002 //	66452.728,	0.000 //	66479.561,	0.000	// 66480.561,	0.950
66481 785	0 000 //	66508 669	0 000 //	66509 669	0 988 //	66510 906	0 000	// 66537 972	0 000
CCE20 070		CCE40 1E0	0.000 //	CCEC7 0CC	0.000 //	CCEC0 0CC	0.070	/ 66560 217	0 000
00000.972,	0.959 //	00540.152,	0.000 //	00007.000,	0.000 //	00000.000,	0.970	/ 00009.01/,	0.000
66596.153,	0.000 //	66597.153,	0.952 //	66598.384,	0.000 //	66625.247,	0.000	// 66626.247,	0.958
66627.446.	0.000 //	66654.565.	0.000 //	66655.565.	0.966 //	66656.805.	0.000	// 66683.629.	0.000
66684 600	0.075 //	CCCOF 071	0.000 //	66710 800	0.000 //	66712 000	1 015	/ 66715 170	0 000
00004.029,	0.975 //	00005.0/1,	0.000 //	00/12.092,	0.000 //	66/13.892,	1.015	/ 00/15.1/9,	0.000
66742.179,	0.000 //	66743.179,	1.020 //	66744.361,	0.000 //	66771.567,	0.000	// 66772.567,	1.002
66773.785.	0.000 //	66800.645.	0.000 //	66801.645.	1.000 //	66802.843.	0.000	// 66829.837.	0.000
66020 027	1 000 //	66020 0/5	0 000 //	660E0 121	0.000 //	66960 121	1 002	// 66061 207	0 000
00030.037,	1.002 //	00032.045,	0.000 //	000059.131,	0.000 //	00000.131,	1.003	/ 00001.327,	0.000
66888.282,	0.000 //	66889.282,	1.018 //	66890.490,	0.000 //	66917.449,	0.000	// 66918.449,	1.001
66919.650.	0.000 //	66946.563.	0.000 //	66947.563.	0.993 //	66948.753.	0.000	// 66975.749.	0.000
66976 740	0 991 //	66977 927	0 000 //	67004 829	0 000 //	67005 820	0 996	// 67007 000	0 000
67022 004	0.000 //	67024 004	1 020 //	67026 040	0.000 //	67062 054	0.000	/ 67064 054	1 040
67033.994,	0.000 //	67034.994,	1.030 //	67036.219,	0.000 //	67063.054,	0.000	// 6/064.054,	1.013
67065.252,	0.000 //	67092.321,	0.000 //	67093.321,	1.000 //	67094.499,	0.000	// 67121.374,	0.000
67122.374.	1.018 //	67123.647.	0.000 //	67150.626.	0.000 //	67151.626.	1.014	// 67152.816.	0.000
67170 624	0.000 //	67100 624	1 026 //	67101 060	0.000 //	67000 040	0.000	/ 67000 040	0 070
6/1/9.634,	0.000 //	0/180.034,	1.036 //	0/101.900,	0.000 //	67208.848,	0.000	/ 0/209.848,	0.918
67211.035,	0.000 //	67238.007,	0.000 //	67239.007,	0.964 //	67240.483,	0.000	// 67267.640,	0.000
67268.640.	1.004 //	67269.831.	0.000 //	67296.878.	0.000 //	67297.878.	1.059	// 67299.028.	0.000
67325 077	0 000 //	67326 077	1 030 //	67328 160	0 000 //	67355 261	0 000	1/ 67356 261	0 003
01020.311,	0.000 //	01020.311,	1.009 //	01020.109,	0.000 //	01000.204,	0.000	/ 07000.204,	0.330
6/357.468,	0.000 //	67384.433,	0.000 //	67385.433,	0.976 //	67386.607,	0.000	// 67413.499,	0.000
67414.499.	1.000 //	67415.684.	0.000 //	67442.603.	0.000 //	67443.603.	0.960	// 67444.804.	0.000
67471 960	0 000 //	67472 960	1 004 //	67474 363	0 000 //	67501 260	0 000	// 67502 260	1 001
67500 440	0.000 //	67500 400	1.001 //	67504 400	0.000 //	67500 600	0.000	/ 67550 055	1.001
01503.442,	0.000 //	0/530.430,	0.000 //	0/531.430,	0.998 //	0/532.602,	0.000	/ 0/559.357,	0.000
67560.357,	0.995 //	67561.691,	0.000 //	67588.654,	0.000 //	67589.654,	0.980	// 67590.859,	0.000
67617 839	0.000 //	67618 839	0.990 //	67620 058	0.000 //	67647 030	0.000	// 67648 030	1.000
67640 004	0.000 //	67676 100	0.000 //	67677 100	0.000 //	67670 047	0.000	// 67705 000	0.000
01049.224,	0.000 //	01010.130,	0.000 //	01011.130,	0.998 //	01010.31/,	0.000	/ 0//05.289,	0.000
67706.289,	0.987 //	67707.501,	0.000 //	67734.617,	0.000 //	67735.617,	0.998	// 67736.813,	0.000
67763.784.	0.000 //	67764.784.	1.004 //	67766.059.	0.000 //	67793.085.	0.000	// 67794.085.	1.005
67705 222	0 000 //	67800 260	0 000 //	67903 260	0 080 //	67904 570	0 000	// 67951 100	0 000
01190.000,	0.000 //	01022.300,	0.000 //	01020.000,	0.302 //	01024.019,	0.000	, 01001.400,	0.000

67852.480,	1.027 //	67853.706,	0.000 //	67880.645,	0.000 //	67881.645,	1.014 /	/ 67883.358,	0.000
67910.211.	0.000 //	67911.211.	0.991 //	67912.387.	0.000 //	67939.325.	0.000	/ 67940.325.	0.994
670/1 5/1	0 000 //	67069 109	0.000 //	67060 409	0.065 //	67070 600	0.000	/ 67007 757	0 000
0/941.541,	0.000 //	01900.490,	0.000 //	01909.490,	0.905 //	01910.000,	0.000 /	/ 01991.151,	0.000
67998.757,	0.999 //	67999.970,	0.000 //	68026.840,	0.000 //	68027.840,	1.012 /	/ 68029.056,	0.000
68055.975.	0.000 //	68056.975.	0.995 //	68058.197.	0.000 //	68085.091.	0.000	/ 68086.091.	0.987
60007 215	0 000 //	6011/ 201	0.000 //	60115 201	0 070 //	CO116 EO1	0.000	/ 601/2 261	0 000
66067.315,	0.000 //	00114.391,	0.000 //	00115.391,	0.912 //	00110.501,	0.000 /	/ 00143.301,	0.000
68144.361,	1.000 //	68145.550,	0.000 //	68172.506,	0.000 //	68173.506,	0.999 /	// 68174.724,	0.000
68201.577.	0.000 //	68202.577.	0.996 //	68203.782.	0.000 //	68230.866.	0.000	/ 68231.866.	1.010
60000 0/F	0 000 //	60050 076	0 000 //	60060 076	1 020 //	60060 024	0.000	/ 60000 150	0.000
00233.045,	0.000 //	00209.070,	0.000 //	00200.070,	1.030 //	00202.034,	0.000 /	/ 00209.100,	0.000
68290.150,	1.004 //	68291.327,	0.000 //	68318.306,	0.000 //	68319.306,	1.015 /	/ 68320.485,	0.000
68347.381,	0.000 //	68348.381,	1.019 //	68349.589,	0.000 //	68376.439,	0.000 /	/ 68377.439,	1.033
68378 708	0 000 //	68405 898	0 000 //	68406 898	0 985 //	68408 114	0 000	/ 68435 006	0 000
	0.000 //	00100.000,	0.000 //		0.000 //	00100.111,	0.000 ,	/ 00100.000,	0.000
68436.006,	0.995 //	68437.199,	0.000 //	68464.188,	0.000 //	68465.188,	0.998 /	/ 68466.436,	0.000
68493.499,	0.000 //	68494.499,	1.014 //	68495.744,	0.000 //	68522.646,	0.000 /	// 68523.646,	1.034
68524.910.	0.000 //	68551.884.	0.000 //	68552.884.	0.986 //	68554.069.	0.000 /	// 68580.867.	0.000
68581 867	1 013 //	68583 028	0 000 //	68609 859	0 000 //	68610 859	1 004	/ 68612 006	0 000
00001.007,	1.013 //	00000.020,	0.000 //	00003.003,	0.000 //	00010.000,	1.004 /	/ 00012.000,	0.000
68638.901,	0.000 //	68639.901,	1.000 //	68641.082,	0.000 //	68667.955,	0.000 /	/ 68668.955,	0.988
68670.167,	0.000 //	68697.251,	0.000 //	68698.251,	0.980 //	68699.497,	0.000 /	// 68726.429,	0.000
68727.429.	1.041 //	68728.618.	0.000 //	68755.666.	0.000 //	68756.666.	0.986	/ 68757.873.	0.000
60701 020	0.000 //	CO70E 020	1 000 //	60707 040	0.000 //	6001/ 006	0.000	/ 6001E 006	0 070
00104.030,	0.000 //	00105.030,	1.009 //	00101.040,	0.000 //	00014.000,	0.000 /	/ 00015.000,	0.919
68816.168,	0.000 //	68843.161,	0.000 //	68844.161,	0.958 //	68845.372,	0.000 /	// 68872.194,	0.000
68873.194,	0.990 //	68874.436,	0.000 //	68901.402,	0.000 //	68902.402,	0.983 /	/ 68903.576,	0.000
68930 658	0 000 //	68031 658	0 986 //	68032 011	0 000 //	68050 783	0 000	/ 68960 783	1 011
00330.030,	0.000 //	00331.030,	0.300 //	00352.311,	0.000 //	00303.100,	0.000 /	/ 00300.703,	1.011
68961.960,	0.000 //	68988.971,	0.000 //	68989.971,	0.987 //	68991.143,	0.000 /	/ 69017.957,	0.000
69018.957,	0.993 //	69020.133,	0.000 //	69046.991,	0.000 //	69047.991,	1.023 /	// 69049.170,	0.000
69075.949.	0.000 //	69076.949.	1.001 //	69078.123.	0.000 //	69104.968.	0.000	/ 69105.968.	0.989
60107 124	0.000 //	60124 062	0 000 //	60125 062	1 002 //	60126 000	0.000	/ 60162 004	0 000
09107.134,	0.000 //	09134.003,	0.000 //	09135.003,	1.003 //	09130.202,	0.000 /	/ 09103.204,	0.000
69164.284,	0.978 //	69165.616,	0.000 //	69192.561,	0.000 //	69193.561,	0.988 /	/ 69194.790,	0.000
69221.616,	0.000 //	69222.616,	0.980 //	69223.774,	0.000 //	69250.875,	0.000 /	/ 69251.875,	0.993
69253 039	0 000 //	69280 054	0 000 //	69281 054	0 986 //	69282 267	0 000	/ 69309 158	0 000
00200.000,	0.000 //	00200.004,	0.000 //	00201.004,	0.000 //	00202.201,	0.000 /	/ 00000.100,	0.000
69310.158,	0.989 //	69311.422,	0.000 //	69338.195,	0.000 //	69339.195,	1.015 /	/ 69340.372,	0.000
69367.273,	0.000 //	69368.273,	0.972 //	69369.485,	0.000 //	69396.588,	0.000 /	// 69397.588,	1.010
69398.819,	0.000 //	69425.685,	0.000 //	69426.685,	0.952 //	69427.860,	0.000 /	// 69454.596,	0.000
60/55 506	0 008 //	60/56 777	0 000 //	60/93 620	0 000 //	60/8/ 620	0 964	/ 60/05 002	0 000
03400.000,	0.330 //	03400.777,	0.000 //	03403.020,	0.000 //	00404.020,	0.304 /	/ 03403.023,	0.000
69512.780,	0.000 //	69513.780,	0.959 //	69514.970,	0.000 //	69541.790,	0.000 /	/ 69542.790,	0.979
69544.046,	0.000 //	69570.851,	0.000 //	69571.851,	0.963 //	69573.024,	0.000 /	// 69599.813,	0.000
69600.813.	0.957 //	69602.017.	0.000 //	69628.980.	0.000 //	69629.980.	0.000	/ 69631.033.	0.000
COCE7 070	0.000 //	COCER 070	0.000 //	60660 074	0.000 //	COCOC 075	0.000	/ 60602.000,	0 000
09057.079,	0.000 //	09050.019,	0.962 //	69660.074,	0.000 //	09000.075,	0.000 /	/ 09001.015,	0.985
69689.127,	0.000 //	69715.944,	0.000 //	69716.944,	0.986 //	69718.141,	0.000 /	// 69745.061,	0.000
69746.061,	0.952 //	69747.262,	0.000 //	69774.031,	0.000 //	69775.031,	0.971 /	// 69776.220,	0.000
69803 188	0 000 //	69804 188	0 961 //	69805 368	0 000 //	69832 281	0 000	/ 69833 281	0 974
00000.100,	0.000 //	00004.100,	0.001 //		0.000 //	00002.201,	0.000 /	/ 00000.201,	0.014
69834.489,	0.000 //	69861.369,	0.000 //	69862.369,	0.982 //	69863.574,	0.000 /	/ 69890.470,	0.000
69891.470,	0.965 //	69892.645,	0.000 //	69919.565,	0.000 //	69920.565,	0.986 /	// 69921.855,	0.000
69948.682,	0.000 //	69949.682,	0.978 //	69950.877,	0.000 //	69978.024,	0.000 /	// 69979.024,	0.987
69980 338	0 000 //	70007 446	0 000 //	70008 446	0 980 //	70009 610	0 000	70036 468	0 000
70007 400	0.000 //	70001.440,	0.000 //	70000.440,	0.000 //	70000.010,	0.000 /	/ 10000.400,	0.000
70037.468,	0.9// //	70038.650,	0.000 //	70065.512,	0.000 //	70066.512,	0.975 /	/ /006/./0/,	0.000
70094.534,	0.000 //	70095.534,	0.971 //	70096.685,	0.000 //	70123.651,	0.000 /	// 70124.651,	0.970
70125.885,	0.000 //	70152.917,	0.000 //	70153.917,	0.965 //	70155.104,	0.000 /	// 70182.015,	0.000
70183 015	0 953 //	70184 236	0 000 //	70211 3/2	0 000 //	70010 3/0	0 955	/ 70213 750	0 000
70100.010,	0.000 //	70104.200,	0.000 //	70211.042,	0.000 //	70212.042,	0.000 /	/ 10210.100,	0.000
70240.851,	0.000 //	70241.851,	0.940 //	70243.032,	0.000 //	70269.891,	0.000 /	/ 70270.891,	0.982
70272.107,	0.000 //	70299.203,	0.000 //	70300.203,	0.977 //	70301.407,	0.000 /	// 70328.345,	0.000
70329.345.	0.977 //	70330.540.	0.000 //	70357.783.	0.000 //	70358.783.	1.024	/ 70360.031.	0.000
70386 002	0 000 //	70387 002	0 070 //	70380 01/	0.000 //	70/16 369	0 000	/ 70/17 369	0 060
10000.993,	0.000 //	10001.993,	0.313 //	70303.214,	0.000 //	10410.300,	0.000 /	/ /////////////////////////////////////	0.300
10418.591,	0.000 //	/0445.491,	0.000 //	/0446.491,	1.011 //	10447.684,	0.000 /	/ 70474.725,	0.000
70475.725,	0.967 //	70476.935,	0.000 //	70503.776,	0.000 //	70504.776,	0.948 /	/ 70506.065,	0.000
70533.121	0.000 //	70534.121	0.954 //	70535.320	0.000 //	70562.285	0.000	/ 70563.285	0.958
70564 400	0 000 //	70501 500	0.000 //	70500 500	0 071 //	70502 000	0 000	/ 70600 500	0 000
10004.400,	0.000 //	10091.029,	0.000 //	10092.029,	0.911 //	10090.090,	0.000 /	/ /////.502,	0.000
70621.562,	1.006 //	70622.838,	0.000 //	70649.793,	0.000 //	70650.793,	0.963 /	/ 70651.982,	0.000
70679.037.	0.000 //	70680.037,	0.982 //	70681.248,	0.000 //	70708.176,	0.000 /	// 70709.176,	0.978
70710 379	0.000 //	70737 300	0.000 //	70738 300	0.975 //	70739 473	0.000	/ 70766 407	0.000
70767 407	0.000 //	70760 604	0.000 //	70705 634	0.000 //	70706 624	0 070	/ 70707 005	0.000
10101.407,	0.990 //	10100.031,	0.000 //	10195.634,	0.000 //	10190.034,	0.913 /	/ 10191.805,	0.000
70824.853,	0.000 //	70825.853,	0.986 //	70827.060,	0.000 //	70854.030,	0.000 /	/ 70855.030,	0.998
70856.208,	0.000 //	70883.327,	0.000 //	70884.327,	0.979 //	70885.552,	0.000 /	// 70912.426,	0.000

70913.426,	0.980 //	70914.625,	0.000 //	70941.703,	0.000 //	70942.703,	0.968	// 70943.977,	0.000
70970.938,	0.000 //	70971.938,	0.972 //	70973.189,	0.000 //	71000.042,	0.000	// 71001.042,	0.975
71002.226,	0.000 //	71029.105,	0.000 //	71030.105,	0.974 //	71031.274,	0.000	// 71058.175,	0.000
71059.175,	0.956 //	71060.396,	0.000 //	71087.376,	0.000 //	71088.376,	0.961	// 71089.584,	0.000
71116.429,	0.000 //	71117.429,	0.974 //	71118.615,	0.000 //	71145.552,	0.000	// 71146.552,	0.970
71147.731,	0.000 //	71174.653,	0.000 //	71175.653,	0.964 //	71176.836,	0.000	// 71203.876,	0.000
71204.876.	0.956 //	71206.145.	0.000 //	71233.100.	0.000 //	71234.100.	0.944	// 71235.338.	0.000
71262 309	0 000 //	71263 309	0 963 //	71264 515	0 000 //	71291 355	0 000	// 71292 355	0 955
71202.000,	0.000 //	71200.000,	0.000 //	71204.010,	0.000 //	71201.000,	0.000	// 71202.000,	0.000
71293.555,	0.000 //	71320.473,	0.000 //	71321.473,	0.976 //	71322.070,	0.000	// 71349.541,	0.000
/1350.541,	0.997 //	/1351./29,	0.000 //	/13/8.659,	0.000 //	/13/9.659,	0.957	// /1380.84/,	0.000
71407.763,	0.000 //	71408.763,	0.960 //	71411.125,	0.000 //	71438.198,	0.000	// 71439.198,	0.921
71440.456,	0.000 //	71467.256,	0.000 //	71468.256,	0.978 //	71469.551,	0.000	// 71496.467,	0.000
71497.467,	0.941 //	71498.671,	0.000 //	71525.621,	0.000 //	71526.621,	0.931	// 71527.834,	0.000
71554.819,	0.000 //	71555.819,	0.937 //	71557.047,	0.000 //	71584.074,	0.000	// 71585.074,	0.916
71586.286,	0.000 //	71613.244,	0.000 //	71614.244,	0.028 //	71615.317,	0.000	// 71642.180,	0.000
71643.180,	0.919 //	71644.382,	0.000 //	71671.264,	0.000 //	71672.264,	0.937	// 71673.434,	0.000
71700.380.	0.000 //	71701.380.	0.980 //	71702.662.	0.000 //	71729.559.	0.000	// 71730.559.	0.964
71731 747	0 000 //	71758 624	0 000 //	71759 624	0 934 //	71760 818	0 000	// 71787 652	0 000
71799 650	0.000 //	71780 876	0.000 //	71916 936	0.000 //	71917 936	0.000	// 71910 002,	0.000
71045 005	0.959 //	71046 005	0.000 //	71010.030,	0.000 //	71017.030,	0.950	// 71019.024,	0.000
/1845.925,	0.000 //	71846.925,	0.961 //	71848.153,	0.000 //	71875.050,	0.000	// /18/6.050,	0.947
/18//.283,	0.000 //	/1904.168,	0.000 //	71905.168,	0.941 //	71906.386,	0.000	// /1933.523,	0.000
71934.523,	0.946 //	71935.715,	0.000 //	71962.573,	0.000 //	71963.573,	0.947	// 71964.756,	0.000
71991.631,	0.000 //	71992.631,	0.971 //	71993.855,	0.000 //	72020.834,	0.000	// 72021.834,	0.957
72022.984,	0.000 //	72049.868,	0.000 //	72050.868,	0.946 //	72052.105,	0.000	// 72079.172,	0.000
72080.172,	0.950 //	72081.369,	0.000 //	72108.160,	0.000 //	72109.160,	0.973	// 72110.356,	0.000
72137.266.	0.000 //	72138.266.	0.930 //	72139.466.	0.000 //	72166.440.	0.000	// 72167.440.	0.943
72168.632.	0.000 //	72195.483.	0.000 //	72196.483.	0.944 //	72197.664.	0.000	// 72224.536.	0.000
72225 536	0 955 //	72226 690	0 000 //	72253 619	0 000 //	72254 619	1 002	// 72255 793	0 000
72220.000,	0.000 //	72220.000,	0.000 //	72200.010,	0.000 //	70210 100	0.000	// 70212 100,	0.000
72202.151,	0.000 //	70244 000	0.955 //	72205.031,	0.000 //	72312.102,	0.000	// 72313.102,	0.937
72314.402,	0.000 //	72341.269,	0.000 //	72342.269,	0.952 //	72343.443,	0.000	// /23/0.249,	0.000
72371.249,	0.947 //	72372.621,	0.000 //	72399.389,	0.000 //	72400.389,	0.933	// 72401.590,	0.000
72428.672,	0.000 //	72429.672,	0.953 //	72430.953,	0.000 //	72457.819,	0.000	// 72458.819,	0.949
72460.002,	0.000 //	72486.754,	0.000 //	72487.754,	0.953 //	72488.929,	0.000	// 72516.108,	0.000
72517.108,	0.919 //	72518.315,	0.000 //	72545.156,	0.000 //	72546.156,	0.938	// 72547.337,	0.000
72574.271,	0.000 //	72575.271,	0.945 //	72576.428,	0.000 //	72603.262,	0.000	// 72604.262,	0.973
72605.433,	0.000 //	72632.314,	0.000 //	72633.314,	0.971 //	72634.536,	0.000	// 72661.675,	0.000
72662.675.	0.965 //	72663.877.	0.000 //	72690.854.	0.000 //	72691.854.	0.934	// 72693.142.	0.000
72720.046.	0.000 //	72721.046.	0.935 //	72722.273.	0.000 //	72749.112.	0.000	// 72750.112.	0.940
72751 277	0.000 //	72778 003	0.000 //	72770 003	0 933 //	72780 282	0.000	// 72807 1/3	0.000
72909 1/2	0.000 //	72800 200	0.000 //	72936 231	0.000 //	70037 031	0.000	// 72039 460	0.000
72006.143,	0.946 //	72009.299,	0.000 //	72030.231,	0.000 //	72004 667	0.901	// 12030.400,	0.000
/2005.4/1,	0.000 //	72800.471,	0.976 //	12001.103,	0.000 //	12894.001,	0.000	// /2895.00/,	0.954
72896.925,	0.000 //	72923.941,	0.000 //	72924.941,	0.941 //	72926.261,	0.000	// 72953.189,	0.000
72954.189,	0.965 //	72955.355,	0.000 //	72982.258,	0.000 //	72983.258,	0.919	// 72984.470,	0.000
73011.408,	0.000 //	73012.408,	0.972 //	73013.625,	0.000 //	73040.418,	0.000	// 73041.418,	0.941
73042.650,	0.000 //	73069.642,	0.000 //	73070.642,	0.913 //	73071.832,	0.000	// 73098.813,	0.000
73099.813,	0.887 //	73101.013,	0.000 //	73127.962,	0.000 //	73128.962,	0.939	// 73130.160,	0.000
73157.080,	0.000 //	73158.080,	0.993 //	73159.243,	0.000 //	73186.082,	0.000	// 73187.082,	0.923
73188.255.	0.000 //	73215.267.	0.000 //	73216.267.	0.927 //	73217.453.	0.000	// 73244.444.	0.000
73245.444.	0.928 //	73246.649	0.000 //	73273.458.	0.000 //	73274.458.	0.938	// 73275.660.	0.000
73302 571	0 000 //	73303 571	0 907 //	73304 767	0 000 //	73331 606	0 000	// 73332 606	0 013
72222 067	0.000 //	72260 704	0.000 //	72261 704	0.000 //	73361.000,	0.000	// 72200 700	0.010
73333.007,	0.000 //	73300.724,	0.000 //	73410 040	0.937 //	73410 040	0.000	// 73404 407	0.000
73390.789,	0.943 //	73392.000,	0.000 //	73418.949,	0.000 //	73419.949,	0.957	// /3421.10/,	0.000
73448.258,	0.000 //	73449.258,	0.943 //	73450.460,	0.000 //	/34//.5/9,	0.000	// /34/8.5/9,	0.907
/34/9.763,	0.000 //	/3506.671,	0.000 //	/3507.671,	0.945 //	/3508.896,	0.000	// 73536.032,	0.000
73537.032,	0.923 //	73538.227,	0.000 //	73565.182,	0.000 //	73566.182,	0.909	// 73567.378,	0.000
73594.295,	0.000 //	73595.295,	0.987 //	73596.481,	0.000 //	73623.390,	0.000	// 73624.390,	0.911
73625.539,	0.000 //	73652.362,	0.000 //	73653.362,	0.892 //	73654.552,	0.000	// 73681.366,	0.000
73682.366.	0.881 //	73683.546.	0.000 //	73710.499.	0.000 //	73711.499.	0.000	// 73712.597.	0.000
73739.353	0.000 //	73740.353.	0.884 //	73741.542.	0.000 //	73768.280.	0.000	// 73769.280.	0.899
73770.475	0.000 //	73797.332	0.000 //	73798.332	0.870 //	73799.527	0.000	// 73826 381	0.000
73827 381	0.902 //	73828 542	0.000 //	73855 391	0.000 //	73856 391	0.867	// 73857 590	0.000
73884 636	0 000 //	73885 636	0 873 //	73886 824	0 000 //	73913 770	0 000	// 73014 770	0 881
72016 000	0.000 //	72040 000	0.000 //	72042 000	0.000 //	72045 004	0.000	// 72074 004	0.001
13910.020,	0.000 //	13942.890,	0.000 //	13943.890,	0.004 //	10940.004,	0.000	11 10911.994,	0.000

73972.994,	0.899 //	73974.195,	0.000 //	74001.073,	0.000 //	74002.073,	0.879 /	/ 74003.271,	0.000
74030.179.	0.000 //	74031.179.	0.869 //	74032.344.	0.000 //	74059.340.	0.000 /	/ 74060.340.	0.877
74061 570	0.000 //	71000 152	0 000 //	74000 452	0 072 //	74000 650	0.000 /	/ 7/117 512	0 000
74001.572,	0.000 //	14000.455,	0.000 //	14009.455,	0.013 //	74090.050,	0.000 /	/ 14111.515,	0.000
74118.513,	0.949 //	74119.668,	0.000 //	74146.562,	0.000 //	74147.562,	0.903 /	/ 74148.780,	0.000
74175.626.	0.000 //	74176.626.	0.882 //	74177.922.	0.000 //	74204.758.	0.000 /	/ 74205.758.	0.903
74006 055	0.000 //	74024 052	0 000 //	74025 052	0 000 //	74026 066	0.000 /	/ 7/062 016	0 000
74206.955,	0.000 //	74234.053,	0.000 //	74235.053,	0.000 //	74230.200,	0.000 /	/ 14203.210,	0.000
74264.216,	0.887 //	74265.388,	0.000 //	74292.216,	0.000 //	74293.216,	0.872 /	/ 74294.419,	0.000
74321.469.	0.000 //	74322.469.	0.882 //	74323.683.	0.000 //	74350.590.	0.000 /	/ 74351.590.	0.876
74250 705	0.000 //	74070 650	0 000 //	74200 650		74201 010	0.000 /	/ 74400 760	0 000
14352.195,	0.000 //	14319.050,	0.000 //	74380.650,	0.854 //	74381.810,	0.000 /	/ 14408.162,	0.000
74409.762,	0.881 //	74410.951,	0.000 //	74437.850,	0.000 //	74438.850,	0.846 /	/ 74440.064,	0.000
74466.968.	0.000 //	74467.968.	0.943 //	74469.155.	0.000 //	74496.002.	0.000 /	/ 74497.002.	0.844
7//09 171	0 000 //	74525 034	0 000 //	74526 034	0 979 //	7/507 010	0 000 /	/ 7/55/ 07/	0 000
74430.171,	0.000 //	74525.004,	0.000 //	74520.054,	0.010 //	74527.213,	0.000 /	/ 14004.214,	0.000
74555.274,	0.856 //	74556.520,	0.000 //	74583.597,	0.000 //	74584.597,	0.904 /	/ 74585.785,	0.000
74612.606,	0.000 //	74613.606,	0.905 //	74614.781,	0.000 //	74641.702,	0.000 /	/ 74642.702,	0.860
74643.920.	0.000 //	74670.825.	0.000 //	74671.825.	0.874 //	74672.996.	0.000 /	/ 74699.864.	0.000
74700 064	0.000 //	74700.020,	0.000 //	74700 155	0.000 //	74720 100	0.000 /	/ 74701 004	0.000
74700.864,	0.8/2 //	14102.012,	0.000 //	14129.155,	0.000 //	14130.155,	0.009 /	/ 14131.384,	0.000
74758.198,	0.000 //	74759.198,	0.859 //	74760.437,	0.000 //	74787.564,	0.000 /	/ 74788.564,	0.929
74789.777.	0.000 //	74816.756.	0.000 //	74817.756.	0.907 //	74819.146.	0.000 /	/ 74845.974.	0.000
7/9/6 07/	0 937 //	7/9/9 160	0 000 //	7/975 016	0 000 //	7/976 016	0 860 /	/ 7/077 000	0 000
74040.374,	0.001 //	74040.102,	0.000 //	74073.010,	0.000 //	74070.010,	0.003 /	/ 74077.200,	0.000
74904.210,	0.000 //	74905.210,	0.892 //	74906.462,	0.000 //	74933.552,	0.000 /	/ 74934.552,	0.850
74935.744,	0.000 //	74962.541,	0.000 //	74963.541,	0.777 //	74965.439,	0.000 /	/ 74992.388,	0.000
74993 388	0 854 //	74994 614	0 000 //	75021 620	0 000 //	75022 620	0 861 /	/ 75023 789	0 000
74333.300,	0.004 //	74334.014,	0.000 //	75021.020,	0.000 //	75022.020,	0.001 /	/ 75025.703,	0.000
75050.616,	0.000 //	75051.616,	0.879 //	75052.811,	0.000 //	75079.756,	0.000 /	/ 75080.756,	0.858
75081.931,	0.000 //	75108.804,	0.000 //	75109.804,	0.857 //	75111.027,	0.000 /	/ 75137.877,	0.000
75138 877	0 890 //	75140 103	0 000 //	75166 944	0 000 //	75167 944	0 837 /	/ 75169 117	0 000
75405 004	0.000 //	75106.004	0.000 //	75400 405	0.000 //	75005 000	0.001 /	/ 75000.000	0.000
75195.934,	0.000 //	/5196.934,	0.847 //	75198.135,	0.000 //	75225.069,	0.000 /	/ 15226.069,	0.830
75227.244,	0.000 //	75254.037,	0.000 //	75255.037,	0.864 //	75256.258,	0.000 /	/ 75283.069,	0.000
75284.069.	0.834 //	75285.230.	0.000 //	75312.226.	0.000 //	75313.226.	0.883 /	/ 75314.431.	0.000
752/1 /67	0 000 //	75240 467	0 006 11	752/2 701	0 000 //	75270 500	0 000 /	/ 75271 500	0 027
/5341.40/,	0.000 //	15542.401,	0.020 //	15545.121,	0.000 //	15510.596,	0.000 /	/ 155/1.590,	0.037
75372.809,	0.000 //	75399.715,	0.000 //	75400.715,	0.842 //	75401.912,	0.000 /	/ 75428.854,	0.000
75429.854,	0.034 //	75430.926,	0.000 //	75457.978,	0.000 //	75458.978,	0.898 /	/ 75460.226,	0.000
75487 058	0 000 //	75488 058	0 887 //	75489 445	0 000 //	75516 343	0 000 /	/ 75517 343	0 884
70401.000,	0.000 //	70400.000,	0.001 //	70400.440,	0.000 //	70010.040,	0.000 /	/ 70011.040,	0.004
75518.531,	0.000 //	75545.501,	0.000 //	75546.501,	0.914 //	/554/./14,	0.000 /	/ 15514.103,	0.000
75575.703,	0.934 //	75576.936,	0.000 //	75604.072,	0.000 //	75605.072,	0.902 /	/ 75606.327,	0.000
75633.165.	0.000 //	75634.165.	0.302 //	75635.386.	0.000 //	75662.350.	0.000 /	/ 75663.350.	0.899
75664 560	0.000 //	75601.100,	0.002 //	75600 457	0.000 //	75602.000,	0.000 /	/ 75700 504	0.000
15004.500,	0.000 //	/5091.45/,	0.000 //	15092.451,	0.890 //	15693.625,	0.000 /	/ 15120.584,	0.000
75721.584,	0.895 //	75722.782,	0.000 //	75749.664,	0.000 //	75750.664,	0.717 /	/ 75752.171,	0.000
75779.068.	0.000 //	75780.068.	0.940 //	75781.247.	0.000 //	75808.147.	0.000 /	/ 75809.147.	0.897
75910 3/1	0 000 //	75937 303	0 000 //	75939 303	0 992 //	75930 /71	0 000 /	/ 75966 305	0 000
75610.541,	0.000 //	15031.303,	0.000 //	15050.505,	0.002 //	15059.411,	0.000 /	/ / 5000.525,	0.000
75867.325,	0.902 //	75868.595,	0.000 //	75895.593,	0.000 //	75896.593,	0.916 /	/ 75897.779,	0.000
75924.648,	0.000 //	75925.648,	0.924 //	75926.819,	0.000 //	75953.779,	0.000 /	/ 75954.779,	0.925
75955 959	0 000 //	75982 866	0 000 //	75983 866	0 898 //	75985 089	0 000 /	/ 76012 038	0 000
70010.000,	0.000 //	70002.000,	0.000 //	70000.000,	0.000 //	70040 400	0.000 /	/ 70012.000,	0.000
76013.038,	0.910 //	76014.219,	0.000 //	76041.403,	0.000 //	76042.403,	0.915 /	/ /6043.639,	0.000
76070.514,	0.000 //	76071.514,	0.899 //	76072.692,	0.000 //	76099.692,	0.000 /	/ 76100.692,	0.878
76101.884,	0.000 //	76128.704,	0.000 //	76129.704,	0.937 //	76130.934,	0.000 /	/ 76157.965,	0.000
76159 065	0 015 //	76160 173	0 000 //	76197 100	0 000 //	76199 100	0 012 /	/ 76190 //2	0 000
70130.903,	0.915 //	70100.173,	0.000 //	70107.192,	0.000 //	70100.192,	0.912 /	/ 70109.443,	0.000
76216.512,	0.000 //	76217.512,	0.909 //	76218.714,	0.000 //	76245.688,	0.000 /	/ 76246.688,	0.907
76247.879,	0.000 //	76274.824,	0.000 //	76275.824,	0.934 //	76277.104,	0.000 /	/ 76304.084,	0.000
76305.084.	0.922 //	76306.270.	0.000 //	76333.213.	0.000 //	76334.213.	0.918 /	/ 76335.426.	0.000
76260 640	0.000 //	76262 640		76261 070	0.000 //	76201 042	0.000 /	/ 76200 042	0 000
/0302.040,	0.000 //	/0303.040,	0.959 //	10304.010,	0.000 //	/0391.043,	0.000 /	/ 10392.043,	0.909
76394.008,	0.000 //	76420.881,	0.000 //	76421.881,	0.901 //	76423.084,	0.000 /	/ 76450.044,	0.000
76451.044,	0.913 //	76452.285,	0.000 //	76479.145,	0.000 //	76480.145,	0.903 /	/ 76481.344,	0.000
76508 208	0 000 //	76509 208	0 929 //	76510 384	0 000 //	76537 134	0 000 /	/ 76538 13/	0 915
76520 404	0.000 //	76566 047	0.020 //	76567 047	0.000 //	76560 540	0.000 /	/ 76505.104,	0.010
10539.481,	0.000 //	10000.341,	0.000 //	10001.341,	0.928 //	10008.512,	0.000 /	/ (0595.543,	0.000
76596.543,	0.909 //	76597.790,	0.000 //	76624.809,	0.000 //	76625.809,	0.879 /	/ 76627.045,	0.000
76654.174	0.000 //	76655.174	0.889 //	76656.354	0.000 //	76683.488	0.000 /	/ 76684.488	0.879
76695 600	0.000 //	76710 505	0 000 //	76712 505	0 052 //	7671/ 702	0 000 /	/ 767/1 0/0	0.000
10000.000,	0.000 //	10112.000,	0.000 //	10113.000,	0.903 //	10/14./03,	0.000 /	/ 10141.042,	0.000
76742.842,	0.920 //	76744.189,	0.000 //	76771.030,	0.000 //	76772.030,	0.909 /	/ 76773.203,	0.000
76800.179,	0.000 //	76801.179,	0.889 //	76802.368,	0.000 //	76829.275.	0.000 /	/ 76830.275,	0.970
76831 /66	0 000 //	76858 171	0 000 //	76859 171	0 898 //	76860 650	0 000 /	/ 76887 533	0 000
70000 500	0.000 //	70000.414,	0.000 //	70010 205	0.000 //	70017 000,	0.000 /	/ 70001.000,	0.000
16888.533,	0.892 //	16889.708,	0.000 //	16916.635,	0.000 //	16911.635,	0.935 /	/ /6918.802,	0.000
76945.707,	0.000 //	76946.707,	0.935 //	76947.905,	0.000 //	76974.958,	0.000 /	/ 76975.958,	0.900
76977.200	0.000 //	77004.205	0.000 //	77005 205	0.936 //	77006.428	0.000 /	/ 77033.613	0.000
,		,	, ,	,		,	/		

77034.613,	0.883 //	77035.808,	0.000 //	77062.932,	0.000 //	77063.932,	0.870	// 77065.121,	0.000
77091.979.	0.000 //	77092.979.	0.861 //	77094.162.	0.000 //	77121.175.	0.000	// 77122.175.	0.883
77102 240	0.000 //	77150 400	0.000 //	77151 400	0.010 //	77150 550	0.000	// 77170 665	0.000
11123.342,	0.000 //	11150.420,	0.000 //	11151.420,	0.910 //	11152.559,	0.000	/////9.005,	0.000
77180.665,	0.913 //	77181.926,	0.000 //	77208.947,	0.000 //	77209.947,	0.902	// 77211.154,	0.000
77238.308.	0.000 //	77239.308.	0.027 //	77240.463.	0.000 //	77267.411.	0.000	// 77268.411.	0.897
77060 622	0.000 //	77006 540	0.000 //	77007 540	0 070 //	77000 710	0.000	// 77205 662	0 000
11209.033,	0.000 //	11296.540,	0.000 //	11291.540,	0.8/3 //	11298.118,	0.000	// //325.003,	0.000
77326.663,	0.899 //	77327.901,	0.000 //	77354.763,	0.000 //	77355.763,	0.938	// 77356.999,	0.000
77383.915.	0.000 //	77384.915.	0.911 //	77386.076.	0.000 //	77412.950.	0.000	// 77413.950.	0.931
77445 400	0.000 //	77440.005	0.011 //	77440.005	0.000 //	77112.000,	0.000	// 77110.000,	0.001
77415.180,	0.000 //	77442.085,	0.000 //	77443.085,	0.877 //	77444.252,	0.000	// 77471.088,	0.000
77472.088,	0.904 //	77473.257,	0.000 //	77500.354,	0.000 //	77501.354,	0.868	// 77502.543,	0.000
77529 427	0 000 //	77530 427	0 913 //	77531 629	0 000 //	77558 487	0 000	// 77559 487	0 878
77020.421,	0.000 //	77507 704	0.010 //	77001.020,	0.000 //	77500.407,	0.000	// 77040.005	0.010
77560.700,	0.000 //	77587.784,	0.000 //	77588.784,	0.896 //	77589.973,	0.000	// 77616.885,	0.000
77617.885,	0.885 //	77619.084,	0.000 //	77646.061,	0.000 //	77647.061,	0.892	// 77648.250,	0.000
77675 257	0 000 //	77676 257	0 894 //	77677 544	0 000 //	77704 547	0 000	// 77705 547	0 886
77700.201,	0.000 //	77700.201,	0.004 //	77704 005	0.000 //	77704.041,	0.000	// 77700.017,	0.000
///06.842,	0.000 //	(((33.885,	0.000 //	///34.885,	0.913 //	///36.104,	0.000	// ///63.0//,	0.000
77764.077,	0.887 //	77765.346,	0.000 //	77792.388,	0.000 //	77793.388,	0.920	// 77794.701,	0.000
77821 607	0 000 //	77822 607	0 877 //	77823 812	0 000 //	77850 833	0 000	// 77851 833	0 928
77052.000	0.000 //	77070 050	0.000 //	77000 050	0.000 //	77000 440	0.000	// 77000 110	0.020
11853.023,	0.000 //	11819.959,	0.000 //	11000.959,	0.943 //	11002.149,	0.000	////909.119,	0.000
77910.119,	0.901 //	77911.288,	0.000 //	77938.191,	0.000 //	77939.191,	0.889	// 77940.387,	0.000
77967.274.	0.000 //	77968.274.	0.914 //	77969.446.	0.000 //	77996.551.	0.000	// 77997.551.	0.902
77000 700	0.000 //	70005 600	0.000 //	70006 600	0.011 //	70007 012	0.000	// 7005/ 704	0.000
11998.128,	0.000 //	78025.630,	0.000 //	78026.630,	0.911 //	/802/.813,	0.000	// /8054./04,	0.000
78055.704,	0.891 //	78056.961,	0.000 //	78083.873,	0.000 //	78084.873,	0.918	// 78086.028,	0.000
78113 132	0 000 //	78114 132	0 911 //	78115 362	0 000 //	78142 512	0 000	// 78143 512	0 937
70144 700	0.000 //	70171.702,	0.011 //	70170.7002,	0.000 //	70174 014	0.000	// 70004 046	0.001
/8144./38,	0.000 //	/81/1./20,	0.000 //	/81/2./20,	0.8/8 //	/81/4.011,	0.000	// /8201.046,	0.000
78202.046,	0.885 //	78203.204,	0.000 //	78230.438,	0.000 //	78231.438,	0.923	// 78232.653,	0.000
78259 608	0 000 //	78260 608	0 880 //	78261 861	0 000 //	78288 976	0 000	// 78289 976	0 890
70200.000,	0.000 //	70200.000,	0.000 //	70201.001,	0.000 //	70200.010,	0.000	// 70205.510,	0.000
78291.163,	0.000 //	78318.048,	0.000 //	78319.048,	0.903 //	78320.300,	0.000	// /834/.396,	0.000
78348.396,	0.923 //	78349.627,	0.000 //	78376.549,	0.000 //	78377.549,	0.956	// 78378.918,	0.000
78406 129	0 000 //	78407 129	0 849 //	78408 356	0 000 //	78435 256	0 000	// 78436 256	0 892
70407.444	0.000 //	70401.120,	0.040 //	70400.000,	0.000 //	70400.200,	0.000	// 70400.200,	0.002
/843/.414,	0.000 //	78464.433,	0.000 //	78465.433,	0.882 //	/8466.661,	0.000	// /8493./08,	0.000
78494.708,	0.685 //	78496.417,	0.000 //	78523.310,	0.000 //	78524.310,	0.943	// 78525.565,	0.000
78552.603.	0.000 //	78553.603.	0.897 //	78554.868.	0.000 //	78581.743.	0.000	// 78582.743.	0.866
70502.000	0.000 //	70610 050	0.000 //	70611 050	0.005 //	70612 074	0.000	// 70640 010	0.000
10000.920,	0.000 //	78610.850,	0.000 //	/8011.850,	0.005 //	/8013.0/4,	0.000	// /8640.010,	0.000
78641.010,	0.893 //	78642.302,	0.000 //	78669.460,	0.000 //	78670.460,	0.902	// 78671.665,	0.000
78698 626	0 000 //	78699 626	0 891 //	78700 826	0 000 //	78727 670	0 000	// 78728 670	0 916
70700.050	0.000 //	70756 700	0.001 //	70757 700	0.000 //	70750 000	0.000	// 70706 010	0.010
18129.858,	0.000 //	18156.122,	0.000 //	18151.122,	0.914 //	18158.966,	0.000	// /8/86.010,	0.000
78787.010,	0.949 //	78788.199,	0.000 //	78815.073,	0.000 //	78816.073,	0.932	// 78817.247,	0.000
78844 097	0 000 //	78845 097	0 944 //	78846 288	0 000 //	78873 161	0 000	// 78874 161	0 908
70044.007,	0.000 //	70040.001,	0.011 //	70040.200,	0.000 //	70070.101,	0.000	// 70004.101,	0.000
/88/5.408,	0.000 //	78902.451,	0.000 //	78903.451,	0.948 //	78904.636,	0.000	// /8931.6/1,	0.000
78932.671,	0.933 //	78933.865,	0.000 //	78960.757,	0.000 //	78961.757,	0.985	// 78962.924,	0.000
78989 706	0 000 //	78990 706	0 000 //	78991 984	0 000 //	79019 047	0 000	// 79020 047	0 913
70001 040	0.000 //	70040 400	0.000 //	70040 400	0.000 //	70050 000	0.000	// 70077 000	0.000
79021.249,	0.000 //	79048.123,	0.000 //	79049.123,	0.923 //	79050.290,	0.000	// /90//.326,	0.000
79078.326,	0.869 //	79079.525,	0.000 //	79106.735,	0.000 //	79107.735,	0.896	// 79109.030,	0.000
79135.994.	0.000 //	79136.994.	0.900 //	79138.232.	0.000 //	79165.309.	0.000	// 79166.309.	0.892
70167 622	0.000 //	7010/ 660	0 000 //	70105 660	0 800 //	70106 061	0 000	// 70000 700	0 000
13101.033,	0.000 //	13134.009,	0.000 //	19190.009,	0.033 //	13130.001,	0.000	1 13223.129,	0.000
79224.729,	0.870 //	79225.892,	0.000 //	79252.803,	0.000 //	79253.803,	0.849	// 79255.003,	0.000
79281.980.	0.000 //	79282.980.	0.878 //	79284.126.	0.000 //	79310.933.	0.000	// 79311.933.	0.852
70313 100	0 000 //	703/0 033	0 000 //	702/1 022	0 061 //	703/0 303	0 000	1/ 70360 101	0 000
79515.102,	0.000 //	79340.033,	0.000 //	79341.033,	0.901 //	79342.303,	0.000	// 79309.404,	0.000
79370.404,	1.034 //	79371.606,	0.000 //	79398.661,	0.000 //	79399.661,	0.883	// 79400.857,	0.000
79427.706.	0.000 //	79428.706.	0.897 //	79429.916.	0.000 //	79456.871.	0.000	// 79457.871.	0.890
70/50 099	0 000 //	70/96 153	0 000 //	70/07 153	0 979 //	70/99 375	0 000	// 70515 3/9	0 000
79409.000,	0.000 //	79400.100,	0.000 //	19401.100,	0.010 //	19400.313,	0.000	// / / / / / / / / / / / / / / / / / / /	0.000
19516.348,	0.899 //	79517.505,	0.000 //	19544.318,	0.000 //	19545.318,	0.916	// 79546.528,	0.000
79573.487.	0.000 //	79574.487.	0.900 //	79575.693.	0.000 //	79602.662.	0.000	// 79603.662,	0.913
79604 849	0 000 //	79631 823	0 000 //	79632 823	0 893 //	79634 067	0 000	// 79660 943	0 000
70001.019,	0.000 //	70001.020,	0.000 //	70002.020,	0.000 //	70004.007,	0.000	// 70000.040,	0.000
19661.943,	0.906 //	79663.135,	0.000 //	19690.066,	0.000 //	19691.066,	0.922	// 79692.258,	0.000
79719.197.	0.000 //	79720.197.	0.899 //	79721.424,	0.000 //	79748.502.	0.000	// 79749.502.	0.958
79750 679	0.000 //	79777 731	0.000 //	79778 731	0.880 //	79779 943	0.000	// 79806 777	0.000
70007 777	0.000 //	70000 001	0.000 //	70000 077	0.000 //	70007 077	0.000	// 70000.000	0.000
19801.111,	0.881 //	19809.091,	0.000 //	19830.011,	0.000 //	19831.011,	0.960	1 19838.328,	0.000
79865.339,	0.000 //	79866.339,	0.930 //	79867.590,	0.000 //	79894.350,	0.000	// 79895.350,	0.936
79896 595	0.000 //	79923 556	0.000 //	79924 556	0.944 //	79925 742	0.000	// 79952 719	0.000
70052 740	0.011 //	70054 000	0.000 //	70001 000	0.000 //	70000 000	0.000	// 70004 000	0.000
19903.119,	0.911 //	19954.980,	0.000 //	19901.823,	0.000 //	19982.823,	0.926	1 19984.032,	0.000
80010.990,	0.000 //	80011.990,	0.893 //	80013.144,	0.000 //	80040.091,	0.000	// 80041.091,	0.953
80042.300	0.000 //	80069.326	0.000 //	80070.326	0.925 //	80071.555	0.000	// 80098.506.	0.000
		,		,	= , ,	,		,	

80099.506,	0.901 //	80100.692,	0.000 //	80127.550,	0.000 //	80128.550,	0.905 /	/ 80129.874,	0.000
80156.906.	0.000 //	80157.906.	0.935 //	80159.138.	0.000 //	80186.187.	0.000	/ 80187.187.	0.912
00100 562	0.000 //	00015 466	0.000 //	00016 466	0.010 //	00017 710	0.000	/ 00044 001	0.000
80188.563,	0.000 //	80215.400,	0.000 //	80210.400,	0.919 //	80217.719,	0.000 /	/ 80244.821,	0.000
80245.821,	0.913 //	80247.226,	0.000 //	80274.129,	0.000 //	80275.129,	0.910 /	/ 80276.339,	0.000
80303 25/	0 000 //	80304 254	0 918 //	80305 /01	0 000 //	80332 /05	0 000	/ 80333 /05	0 911
00000.204,	0.000 //	00004.204,	0.310 //	00000.401,	0.000 //	00002.400,	0.000 /	/ 00000.400,	0.311
80334.625,	0.000 //	80361.872,	0.000 //	80362.872,	0.910 //	80364.131,	0.000 /	/ 80391.114,	0.000
80392.114.	0.906 //	80393.303.	0.000 //	80420.194.	0.000 //	80421.194.	0.922	/ 80422.389.	0.000
80440 460	0.000 //	00450.460	0.045 //	004E1 CO1	0.000 //	00470 504	0.000	/ 00470 504	0.000
80449.460,	0.000 //	80450.460,	0.945 //	80451.691,	0.000 //	80478.594,	0.000 /	/ 804/9.594,	0.922
80480.848,	0.000 //	80507.664,	0.000 //	80508.664,	0.901 //	80509.852,	0.000 /	/ 80536.723,	0.000
90537 703	0 007 //	80538 081	0 000 //	80566 201	0 000 //	80567 201	0 021	1 20562 125	0 000
00007.720,	0.301 //	00000.904,	0.000 //	00000.204,	0.000 //	00007.204,	0.931 /	/ 00000.420,	0.000
80595.397,	0.000 //	80596.397,	0.903 //	80597.609,	0.000 //	80624.638,	0.000 /	/ 80625.638,	0.913
80626.844.	0.000 //	80653.714.	0.000 //	80654.714.	0.973 //	80655.848.	0.000 /	/ 80682.842.	0.000
00602 040	0.006 //	00605 070	0.000 //	00710 010	0.000 //	00712 010	0.000	/ 00714 001	0.000
00003.042,	0.896 //	80685.070,	0.000 //	80/12.010,	0.000 //	80/13.010,	0.920 /	/ 80/14.331,	0.000
80741.290,	0.000 //	80742.290,	0.924 //	80743.488,	0.000 //	80770.332,	0.000 /	/ 80771.332,	0.916
80772 547	0 000 //	80799 540	0 000 //	80800 540	0 886 //	80801 766	0 000	/ 80828 749	0 000
00000 740	0.000 //	00000.004	0.000 //	00057 700	0.000 //	00050 700	0.000 ,	/ 00020.110,	0.000
80829.749,	0.896 //	80830.924,	0.000 //	80857.708,	0.000 //	80858.708,	0.906 /	/ 80859.866,	0.000
80886.910,	0.000 //	80887.910,	0.000 //	80888.977,	0.000 //	80915.990,	0.000 /	/ 80916.990,	0.891
80018 106	0 000 //	809/5 0/6	0 000 //	809/6 0/6	0 872 //	800/17 230	0 000	/ 8007/ 101	0 000
00310.130,	0.000 //	00340.040,	0.000 //	00340.040,	0.012 //	00347.203,	0.000 /	/ 003/4.131,	0.000
80975.191,	0.897 //	80976.360,	0.000 //	81003.332,	0.000 //	81004.332,	0.929 /	/ 81005.534,	0.000
81032.452.	0.000 //	81033.452.	0.894 //	81034.649.	0.000 //	81061.668.	0.000 /	/ 81062.668.	0.916
01062 056	0 000 //	01000 776	0 000 //	91001 776	0 027 //	91000 06E	0 000	/ 01110 060	0 000
01003.000,	0.000 //	01090.770,	0.000 //	01091.770,	0.931 //	01092.905,	0.000 /	/ 01119.000,	0.000
81120.860,	0.965 //	81122.050,	0.000 //	81148.924,	0.000 //	81149.924,	0.902 /	/ 81151.090,	0.000
81178.060.	0.000 //	81179.060.	0.893 //	81180.247.	0.000 //	81207.046.	0.000	/ 81208.046.	0.883
01000 054	0.000 //	01000 004	0.000 //	01007 004	0.004 //	01000 400	0.000,	/ 01005 050	0.000
81209.254,	0.000 //	81236.224,	0.000 //	81237.224,	0.904 //	81238.420,	0.000 /	/ 81265.350,	0.000
81266.350,	0.913 //	81267.563,	0.000 //	81294.497,	0.000 //	81295.497,	0.868 /	/ 81296.657,	0.000
81323 778	0 000 //	81324 778	0 915 //	81325 964	0 000 //	81352 752	0 000	/ 81353 752	0 929
01020.110,	0.000 //	01024.110,	0.010 //	01020.004,	0.000 //	01002.102,	0.000 /	/ 01000.102,	0.020
81354.886,	0.000 //	81381.782,	0.000 //	81382.782,	0.898 //	81384.014,	0.000 /	/ 81410.844,	0.000
81411.844,	0.926 //	81413.054,	0.000 //	81439.995,	0.000 //	81440.995,	0.925	/ 81442.229,	0.000
91/60 2/7	0 000 //	91/70 9/7	0 001 //	91/71 //0	0 000 //	91/09 396	0 000	/ 91/00 396	0 975
01409.247,	0.000 //	014/0.24/,	0.904 //	014/1.440,	0.000 //	01490.000,	0.000 /	/ 01499.300,	0.015
81500.584,	0.000 //	81527.711,	0.000 //	81528.711,	0.909 //	81529.902,	0.000 /	/ 81556.904,	0.000
81557.904.	0.893 //	81559.133.	0.000 //	81586.197.	0.000 //	81587.197.	0.917	/ 81588.380.	0.000
01615 217	0 000 //	01616 217	0 004 //	01617 EOE	0.000 //	01611 611	0.000	/ 0161E 611	0.005
01015.317,	0.000 //	01010.317,	0.904 //	01017.505,	0.000 //	01044.044,	0.000 /	/ 01045.044,	0.905
81646.841,	0.000 //	81673.655,	0.000 //	81674.655,	0.888 //	81675.837,	0.000 /	/ 81702.751,	0.000
81703.751.	0.918 //	81704.958.	0.000 //	81731.772.	0.000 //	81732.772.	0.916	/ 81734.043.	0.000
01761 024	0.000 //	01760 004	0.000 //	01762 007	0.000 //	01700 100	0.000	/ 01701 100	0 001
81/61.034,	0.000 //	81762.034,	0.880 //	81/63.227,	0.000 //	81790.122,	0.000 /	/ 81/91.122,	0.881
81792.474,	0.000 //	81819.456,	0.000 //	81820.456,	0.953 //	81821.711,	0.000 /	/ 81848.587,	0.000
81849 587	0 918 //	81850 754	0 000 //	81877 735	0 000 //	81878 735	0 894	/ 81880 024	0 000
01040.001,	0.010 //	01000.104,	0.000 //	01011.100,	0.000 //	010/0./00,	0.004 /	/ 01000.024,	0.000
81907.090,	0.000 //	81908.090,	0.914 //	81909.284,	0.000 //	81936.107,	0.000 /	/ 81937.107,	0.909
81938.292,	0.000 //	81965.212,	0.000 //	81966.212,	0.937 //	81967.418,	0.000 /	/ 81994.496,	0.000
81005 /06	0 92/ //	81006 601	0 000 //	82023 103	0 000 //	82024 403	0 903	/ 82025 720	0 000
01333.430,	0.324 //	01330.031,	0.000 //	02020.400,	0.000 //	02024.433,	0.303 /	/ 02020.123,	0.000
82052.631,	0.000 //	82053.631,	0.917 //	82054.814,	0.000 //	82081.661,	0.000 /	/ 82082.661,	0.907
82083.892,	0.000 //	82110.953,	0.000 //	82111.953,	0.885 //	82113.135,	0.000 /	/ 82140.130,	0.000
901/1 120	0 023 //	901/0 215	0 000 //	80160 251	0 000 //	90170 0F/	0 024	/ 90171 /07	0 000
02141.100,	0.325 //	02142.010,	0.000 //	02103.204,	0.000 //	02170.204,	0.324 /	/ 021/1.43/,	0.000
82198.501,	0.000 //	82199.501,	0.904 //	82200.760,	0.000 //	82227.876,	0.000 /	/ 82228.876,	0.911
82230.090,	0.000 //	82257.091,	0.000 //	82258.091,	0.872 //	82259.244,	0.000 /	/ 82286.041,	0.000
00007 0/1		00000 011	0 000 //	00015 066	0 000 //	00216 066	0 006	/ 00217 077	0 000
02201.041,	0.009 //	02200.244,	0.000 //	02313.000,	0.000 //	02310.000,	0.000 /	/ 02311.211,	0.000
82344.077,	0.000 //	82345.077,	0.887 //	82346.298,	0.000 //	82373.274,	0.000 /	/ 82374.274,	0.916
82375.482.	0.000 //	82402.397.	0.000 //	82403.397.	0.918 //	82404.628.	0.000 /	/ 82431.586.	0.000
00/20 506	0 020 //	00/00 776	0 000 //	00160 700	0 000 //	00/61 700	0 970	1 00162 001	0 000
02432.300,	0.939 //	02433.110,	0.000 //	02400.190,	0.000 //	02401.790,	0.019 /	/ 02403.004,	0.000
82490.018,	0.000 //	82491.018,	0.922 //	82492.221,	0.000 //	82519.229,	0.000 /	/ 82520.229,	0.920
82521,405.	0.000 //	82548.320.	0.000 //	82549.320.	0.939 //	82550.500.	0.000	/ 82577.479.	0.000
00570 470	0.004 //	00570 665	0.000 //	00000 050	0.000 //	00607 656	0.005		0.000
02510.419,	0.924 //	02519.005,	0.000 //	02000.000,	0.000 //	02007.000,	0.925 /	/ 02000.00/,	0.000
82635.702,	0.000 //	82636.702,	0.897 //	82638.031,	0.000 //	82665.027,	0.000 /	/ 82666.027,	0.901
82667.238	0.000 //	82694.204	0.000 //	82695.204	0.892 //	82696.371	0.000	/ 82723,368	0.000
00704 000	0.000 //	00705 555	0.000 //	00750 540	0.000 //	00752 540	0.040	/ 00754 774	0.000
02/24.368,	0.900 //	02/25.555,	0.000 //	02/52.516,	0.000 //	02/53.516,	0.919 /	/ 82/54.//4,	0.000
82781.601,	0.000 //	82782.601,	0.870 //	82783.787,	0.000 //	82810.921,	0.000 /	/ 82811.921,	0.967
82813 102	0.000 //	82839 975	0.000 //	82840 975	0.850 //	82842 169	0.000	/ 82869 105	0.000
00070 105	0.000 //	00074 000	0.000 //		0.000 //		0.000 /	, 02000.100,	0.000
02010.105,	0.902 //	020/1.362,	0.000 //	02898.280,	0.000 //	02899.280,	0.855 /	/ 82900.617,	0.000
82927.554,	0.000 //	82928.554,	0.872 //	82929.756.	0.000 //	82956.706.	0.000 /	/ 82957.706.	0.899
82958 922	0 000 //	82986 041	0 000 //	82987 041	0 856 //	82988 284	0 000	/ 83015 495	0 000
02010.022,	0.000 //	02007 515	0.000 //	020014 454	0.000 //	02045 454	0.000 /	/ 00040.400,	0.000
83016.495,	0.000 //	83017.515,	0.000 //	83044.454,	0.000 //	83045.454,	0.867 /	/ 83046.677,	0.000
83073.594,	0.000 //	83074.594,	0.884 //	83075.786,	0.000 //	83102.689,	0.000 /	/ 83103.689,	0.887
83104 870	0 000 //	83131 810	0 000 //	83132 810	0 905 //	83134 002	0 000	/ 83161 171	0 000
JJIJI.012,	0.000 //		5.000 //	JJ102.013,	0.000 //	JUIDI.000,	0.000 /	,,	5.000

83162.171,	0.930 //	83163.375,	0.000 //	83190.323,	0.000 //	83191.323,	0.921	// 83192.530,	0.000
83219 557	0 000 //	83220 557	0 947 //	83221 773	0 000 //	83248 740	0 000	// 83249 740	0 918
00210.001,	0.000 //	00220.001,	0.011 //	00221.110,	0.000 //	00210.110,	0.000	// 002101110,	0.010
83251.002,	0.000 //	83278.171,	0.000 //	83279.171,	0.869 //	83280.571,	0.000	// 83307.615,	0.000
83308.615,	0.000 //	83309.752,	0.000 //	83336.798,	0.000 //	83337.798,	0.000	// 83339.069,	0.000
83366 12/	0 000 //	83367 10/	0 026 //	83368 200	0 000 //	83305 286	0 000	// 83306 286	0 000
00000.124,	0.000 //	00007.124,	0.020 //	00000.200,	0.000 //	00000.200,	0.000	// 00000.200,	0.000
83397.362,	0.000 //	83424.505,	0.000 //	83425.505,	0.000 //	83426.580,	0.000	// 83453.608,	0.000
83454.608,	0.000 //	83455.742,	0.000 //	83482.675,	0.000 //	83483.675,	0.034	// 83484.762,	0.000
83511 0/0	0 000 //	83512 0/0	0 000 //	8351/ 061	0 000 //	835/11 063	0 000	// 835/12 063	0 000
00011.040,	0.000 //	00012.040,	0.000 //	00014.001,	0.000 //	00041.000,	0.000	// 00042.000,	0.000
83543.111,	0.000 //	83570.156,	0.000 //	83571.156,	0.872 //	83572.383,	0.000	// 83599.257,	0.000
83600.257.	0.881 //	83601.585.	0.000 //	83628.530.	0.000 //	83629.530.	0.891	// 83630.716.	0.000
93657 744	0 000 //	93659 711	0 967 //	83650 033	0 000 //	83686 870	0 000	// 93697 930	0 974
03037.744,	0.000 //	03030.744,	0.007 //	03039.933,	0.000 //	03000.029,	0.000	// 03001.029,	0.014
83689.053,	0.000 //	83716.204,	0.000 //	83717.204,	0.864 //	83718.411,	0.000	// 83745.230,	0.000
83746.230.	0.877 //	83747.427.	0.000 //	83774.336.	0.000 //	83775.336.	0.885	// 83776.556.	0.000
83803 5/8	0 000 //	83804 548	0 875 //	83805 811	0 000 //	83832 003	0 000	// 83833 003	0 863
00000.040,	0.000 //	00004.040,	0.010 //	00000.011,	0.000 //	00002.000,	0.000	// 00000.000,	0.000
83835.143,	0.000 //	83862.074,	0.000 //	83863.074,	0.8/4 //	83864.299,	0.000	// 83891.148,	0.000
83892.148,	0.904 //	83893.335,	0.000 //	83920.251,	0.000 //	83921.251,	0.844	// 83922.472,	0.000
83949 328	0 000 //	83950 328	0 878 //	83951 532	0 000 //	83978 479	0 000	// 83979 479	0 878
0000 10.020,	0.000 //	04007 704	0.010 //	04000 704	0.007 //	04000 000	0.000	// 04007 064	0.010
83980.715,	0.000 //	84007.704,	0.000 //	84008.704,	0.927 //	84009.909,	0.000	// 84037.064,	0.000
84038.064,	0.850 //	84039.372,	0.000 //	84066.334,	0.000 //	84067.334,	0.892	// 84068.555,	0.000
84095.649.	0.000 //	84096.649.	0.863 //	84097.852.	0.000 //	84124.795.	0.000	// 84125.795.	0.896
04406 007	0.000 //	04454 004	0.000 //	04455 004	0.000 //	04456 007	0.000	// 04400 000	0.000
84120.987,	0.000 //	84154.004,	0.000 //	84155.004,	0.898 //	84156.227,	0.000	// 04103.322,	0.000
84184.322,	0.879 //	84185.509,	0.000 //	84212.581,	0.000 //	84213.581,	0.873	// 84214.792,	0.000
84241.737.	0.000 //	84242.737.	0.848 //	84243.985.	0.000 //	84271.062.	0.000	// 84272.062.	0.859
04072 200	0.000 //	012121101,	0 000 //	04201 206	0.000 //	01200 501	0.000	// 0/200 665	0.000
84273.302,	0.000 //	84300.396,	0.000 //	84301.396,	0.900 //	84302.584,	0.000	// 84329.005,	0.000
84330.665,	0.873 //	84331.881,	0.000 //	84358.982,	0.000 //	84359.982,	0.850	// 84361.200,	0.000
84388.097.	0.000 //	84389.097.	0.878 //	84390.393.	0.000 //	84417.283.	0.000	// 84418.283.	0.855
04410 505	0.000 //	01000.000,	0 000 //	01000.000,	0.000 //	04440 056	0.000	// 04475 001	0 000
84419.505,	0.000 //	84440.000,	0.000 //	84447.000,	0.898 //	04440.000,	0.000	// 044/5.001,	0.000
84476.801,	0.831 //	84478.046,	0.000 //	84505.015,	0.000 //	84506.015,	0.845	// 84507.223,	0.000
84534.160.	0.000 //	84535.160.	0.881 //	84536.347.	0.000 //	84563.324.	0.000	// 84564.324.	0.832
04ECE E10	0.000 //	04500 670	0.000 //	04502 670	0.040 //	04504 000	0.000	// 04601 055	0 000
84565.512,	0.000 //	84592.670,	0.000 //	84595.670,	0.849 //	84594.908,	0.000	// 04021.955,	0.000
84622.955,	0.864 //	84624.180,	0.000 //	84651.179,	0.000 //	84652.179,	0.854	// 84653.373,	0.000
84680.558.	0.000 //	84681.558.	0.866 //	84682.791.	0.000 //	84709.820.	0.000	// 84710.820.	0.854
9/712 0/9	0 000 //	8/730 100	0 000 //	84740 100	0 936 //	8/7/1 /20	0 000	1/ 9/769 /00	0 000
04/12.040,	0.000 //	04739.129,	0.000 //	04740.129,	0.030 //	04/41.429,	0.000	// 04/00.409,	0.000
84769.409,	0.834 //	84770.666,	0.000 //	84797.651,	0.000 //	84798.651,	0.838	// 84799.814,	0.000
84826.855.	0.000 //	84827.855.	0.849 //	84829.051.	0.000 //	84855.935.	0.000	// 84856.935.	0.853
0/050 16/	0 000 //	0/00E 27E	0 000 //	01006 275	0 026 //	0/007 E01	0 000	// 0/01/ 602	0 000
04050.104,	0.000 //	04000.375,	0.000 //	04000.375,	0.836 //	04007.591,	0.000	// 84914.603,	0.000
84915.603,	0.837 //	84916.812,	0.000 //	84943.713,	0.000 //	84944.713,	0.838	// 84945.924,	0.000
84972.691.	0.000 //	84973.691.	0.825 //	84974.912.	0.000 //	85001.839.	0.000	// 85002.839.	0.840
8E004 040	0 000 //	00021 020	0 000 //	05020 025	0 000 //	00022 071	0 000	// 05060 047	0 000
05004.042,	0.000 //	05031.035,	0.000 //	05032.035,	0.020 //	05055.271,	0.000	// 05000.24/,	0.000
85061.247,	0.807 //	85062.534,	0.000 //	85089.592,	0.000 //	85090.592,	0.821	// 85091.796,	0.000
85118.639,	0.000 //	85119.639,	0.895 //	85120.824,	0.000 //	85147.831,	0.000	// 85148.831,	0.844
95150 044	0 000 //	95176 090	0 000 //	95177 090	0 9/1 //	95170 165	0 000	// 95206 105	0 000
00100.044,	0.000 //	00170.900,	0.000 //	00111.900,	0.041 //	00179.100,	0.000	// 05200.195,	0.000
85207.195,	0.831 //	85208.385,	0.000 //	85235.345,	0.000 //	85236.345,	0.000	// 85237.484,	0.000
85264.532,	0.000 //	85265.532,	0.840 //	85266.734,	0.000 //	85293.607,	0.000	// 85294.607,	0.863
85295 778	0 000 //	85322 664	0 000 //	85323 664	0 872 //	85324 855	0 000	// 85351 722	0 000
05050 700	0.000 //	00022.001,	0.000 //	00020.001,	0.012 //	00021.000,	0.000	// 050001.122,	0.000
85352.722,	0.883 //	85354.002,	0.000 //	85380.980,	0.000 //	85381.980,	0.853	// 85383.173,	0.000
85410.057,	0.000 //	85411.057,	0.840 //	85412.285,	0.000 //	85439.139,	0.000	// 85440.139,	0.889
85441.745.	0.000 //	85468.668.	0.000 //	85469.668.	0.777 //	85471.001.	0.000	// 85497.942.	0.000
0011111110,	0 070 //	001001000, 0000 120	0 000 //	0000000000,	0 000 //	000000000000000000000000000000000000000	0 007	// 00000 /0012,	0.000
00490.942,	0.012 //	05500.152,	0.000 //	00021.200,	0.000 //	00020.200,	0.021	// 00029.400,	0.000
85556.602,	0.000 //	85557.602,	0.855 //	85558.811,	0.000 //	85585.865,	0.000	// 85586.865,	0.866
85588.111.	0.000 //	85615.251.	0.000 //	85616.251.	0.845 //	85617.411.	0.000	// 85644.317.	0.000
956/5 317	0 930 //	95646 524	0 000 //	95673 517	0 000 //	95674 517	0 8/0	// 95675 7/3	0 000
00040.017,	0.009 //	05700.024,	0.000 //	00010.011,	0.000 //	00017.011,	0.049	// 00010.143,	0.000
85702.675,	0.000 //	85703.675,	0.872 //	85704.909,	0.000 //	85731.765,	0.000	// 85732.765,	0.881
85734.052,	0.000 //	85761.110.	0.000 //	85762.110.	0.863 //	85763.325,	0.000	// 85790.299.	0.000
85791 299	0 882 //	85792 496	0 000 //	85819 558	0 000 //	85820 558	0 897	// 85821 760	0 000
05040 250	0.002 //	05040 050	0.000 //	05050.000	0.000 //	05027.000,	0.001	// 05021.109,	0.000
85848.656,	0.000 //	85849.656,	0.847 //	85850.867,	0.000 //	85811.929,	0.000	// 858/8.929,	0.873
85880.090,	0.000 //	85907.020,	0.000 //	85908.020,	0.846 //	85909.207,	0.000	// 85936.207,	0.000
85937.207	0.857 //	85938.462	0.000 //	92909.000	0.000 //	92914.000	1,240	// 92915 236	0.000
02040 040	0.000 //	02047 040	1 070 //	02040 404	0.000 //	02175 000,	0.000	// 02100.200,	1 005
93042.213,	0.000 //	93047.213,	1.2/0 //	93048.424,	0.000 //	93115.360,	0.000	// 93180.360,	1.265
93181.541,	0.000 //	93308.498,	0.000 //	93313.498,	1.269 //	93314.677,	0.000	// 93441.548,	0.000
93446.548	1.270 //	93447 745	0.000 //	93574.585	0.000 //	93579.585	1.274	// 93580.784	0.000
02707 705	0.000 //	02710 705	1 071 //	02712 000	0.000 //	039/1 000	0.000	// 038/6 000	1 071
33101.125,	0.000 //	93112.125,	1.2(1 //	93113.988,	0.000 //	93041.080,	0.000	// 93040.086,	1.2/1
								//	

94112.529,	1.288 //	94113.769,	0.000 //	94240.796,	0.000 //	94245.796	, 1.140	// 942	246.988,	0.000)
94373.883,	0.000 //	94378.883,	1.132 //	94380.100,	0.000 //	94507.286	, 0.000	// 94	512.286,	1.234	1
94513.483,	0.000 //	94640.556,	0.000 //	94645.556,	1.238 //	94646.756	, 0.000	// 94	73.717,	0.000)
94778.717,	1.286 //	94779.954,	0.000 //	94906.938,	0.000 //	94911.938	, 1.278	// 949	913.107,	0.000)
95040.150,	0.000 //	95045.150,	1.281 //	95046.368,	0.000 //	95173.287	, 0.000	// 95	178.287,	1.267	7
95179.488,	0.000 //	95306.417,	0.000 //	95311.417,	1.274 //	95312.597	, 0.000	// 954	139.810,	0.000)
95444.810,	1.299 //	95446.054,	0.000 //	95573.118,	0.000 //	95578.118	, 1.290	// 95	579.327,	0.000)
95706.321,	0.000 //	95711.321,	1.283 //	95712.554,	0.000 //	95839.535	, 0.000	// 958	344.535,	1.283	3
95845.786.	0.000 //	95972.716.	0.000 //	95977.716.	1.271 //	95978.873	. 0.000	// 96	106.074.	0.000)
96111.074.	1.288 //	96112.307.	0.000 //	96239.489.	0.000 //	96244.489	. 1.288	// 96	245.684.	0.000)
96372.682.	0.000 //	96377.682.	1.238 //	96378.882	0.000 //	96506.049	. 0.000	// 96	511.049.	1.288	3
96512.260.	0.000 //	96639.216.	0.000 //	96644.216.	1.265 //	96645.421	. 0.000	// 96	772.509.	0.000)
96777 509	1 279 //	96778 738	0 000 //	96905 810	0 000 //	96910 810	1 273	// 969	12 063	0 000)
97039 006	0 000 //	97044 006	1 264 //	97045 218		97172 208	0 000	// 97	77 208	1 251	, I
97178 421	0.000 //	97305 390	0.000 //	97310 390	1 271 //	97311 598	, 0.000	// 97/	138 544	0 000	-)
97443 544	1 263 //	97444 695	0.000 //	97571 767		97576 767	1 254	// 97	577 956	0.000	,)
07704 005	0.000 //	07700 005	1 065 //	07711 004	0.000 //	07020 100	, 1.204	// 079	A2 100	1 260	, ,
97704.905,	0.000 //	97109.903,	0.000 //	97111.004,	1 250 //	97030.102	, 0.000	// 00	101 102,	0.000))
97044.299,	1 242 //	97971.290,	0.000 //	91910.290,	0.000 //	91911.400	1 260	// 90.	104.442,	0.000	, ,
90109.442,	1.242 //	90110.025,	0.000 //	90231.390,	0.000 //	90242.090	, 1.200	// 90.	243.791,	1 000	
96366.555,	0.000 //	96373.555,	0.000 //	98377.020,	0.000 //	98504.052	, 0.000	// 96:	009.052,	1.202	2
98510.264,	0.000 //	98637.020,	0.000 //	98642.020,	1.249 //	98643.292	, 0.000	// 98	70.404,	0.000)
98775.404,	1.263 //	98776.604,	0.000 //	98903.558,	0.000 //	98908.558	, 1.255	// 98	909.765,	0.000	-
99036.742,	0.000 //	99041.742,	1.267 //	99042.937,	0.000 //	99169.872	, 0.000	// 993	1/4.8/2,	1.255	2
99176.056,	0.000 //	99302.957,	0.000 //	99307.957,	1.242 //	99309.146	, 0.000	// 994	136.024,	0.000)
99441.024,	1.249 //	99442.258,	0.000 //	99569.282,	0.000 //	99574.282	, 1.252	// 99	575.420,	0.000)
99702.446,	0.000 //	99707.446,	1.252 //	99708.634,	0.000 //	99835.684	, 0.000	// 998	340.684,	1.246	5
99841.851,	0.000 //	99968.713,	0.000 //	99973.713,	1.256 //	99974.874	, 0.000	// 100	0101.938	, 0.00	00
100106.938,	, 1.238 /,	/ 100108.138	3, 0.000 /	/ 100235.1	133, 0.000	// 100240	.133, 1	.260 /,	100241	.314,	0.000
100368.333,	, 0.000 //	/ 100373.333	3, 1.257 /	/ 100374.5	502, 0.000	// 100501	.538, 0	.000 /,	100506	.538,	1.260
100507.768,	, 0.000 //	100634.707	, 0.000 /	/ 100639.7	07, 1.255	// 100640	.913, 0	.000 /,	100767	.826,	0.000
100772.826,	, 1.261 /,	/ 100774.03	, 0.000 /	/ 100901.0	028, 0.000	// 100906	.028, 1	.251 /,	100907	.221,	0.000
101034.045,	, 0.000 //	/ 101039.04	5, 1.252 /	/ 101040.2	298, 0.000	// 101167	.511, 0	.000 /,	/ 101172	.511,	1.260
101173.746,	, 0.000 //	/ 101300.876	5, 0.000 /	/ 101305.8	376, 1.255	// 101307	.018, 0	.000 /,	101434	.013,	0.000
101439.013,	, 1.159 /,	101440.854	⊧, 0.000 /	/ 101567.8	369, 0.000	// 101572	.869, 1	.253 /,	101574	.107,	0.000
101701.274,	, 0.000 //	101706.274	4, 1.250 /	/ 101707.5	556, 0.000	// 101834	.475, 0	.000 /,	101839	.475,	1.248
101840.685,	, 0.000 //	101967.60	5, 0.000 /	/ 101972.6	305, 1.242	// 101973	.802, 0	.000 /,	102100	.888,	0.000
102105.888,	, 1.257 /,	/ 102107.109	9, 0.000 /	/ 102234.3	341, 0.000	// 102239	.341, 1	.259 /,	102240	.519,	0.000
102367.387,	, 0.000 //	/ 102372.387	7, 1.242 /	/ 102373.6	324, 0.000	// 102500	.587, 0	.000 /,	102505	.587,	1.238
102506.752,	, 0.000 //	/ 102631.314	⊾, 0.000 /	/ 102636.3	314, 0.000	// 102639	.818, 0	.000 /,	102766	.662,	0.000
102771.662,	, 1.252 /,	/ 102772.856	3, 0.000 /	/ 102900.0	022, 0.000	// 102905	.022, 1	.256 /,	102906	.309,	0.000
103033.559,	, 0.000 //	/ 103038.559	9, 1.255 /	/ 103039.7	741, 0.000	// 103166	.740, 0	.000 /,	/ 103171	.740,	1.249
103173.070,	, 0.000 //	/ 103299.84	5, 0.000 /	/ 103304.8	345, 1.238	// 103306	.073, 0	.000 /,	/ 103433	.059,	0.000
103438.059,	, 1.258 /,	/ 103439.237	7, 0.000 /	/ 103566.1	128, 0.000	// 103571	.128, 1	.245 /,	/ 103572	.344,	0.000
103699.397,	, 0.000 //	/ 103704.397	7, 1.251 /	/ 103705.5	574, 0.000	// 103832	.564, 0	.000 /,	/ 103837	.564,	1.262
103838.768,	, 0.000 /,	/ 103965.896	3, 0.000 /	/ 103970.8	396, 1.263	// 103972	.102, 0	.000 /,	104099	.152,	0.000
104104.152,	, 1.244 //	/ 104105.35	5, 0.000 /	/ 104232.2	257, 0.000	// 104237	.257, 1	.261 /,	/ 104238	.440,	0.000
104365.446,	, 0.000 //	/ 104370.446	3, 1.238 /	/ 104371.6	512, 0.000	// 104498	.615, 0	.000 /,	/ 104503	.615,	1.251
104504.845,	, 0.000 //	/ 104631.802	2, 0.000 /	/ 104636.8	302, 1.244	// 104638	.087, 0	.000 /,	104765	.130,	0.000
104770.130,	, 1.199 /,	/ 104771.329	9, 0.000 /	/ 104895.9	979, 0.000	// 104900	.979, 0	.000 /,	/ 104904	.429,	0.000
105031.418,	, 0.000 //	/ 105036.418	3, 1.220 /	/ 105037.6	511, 0.000	// 105164	.748, 0	.000 /,	/ 105169	.748,	1.251
105170.964,	, 0.000 //	/ 105297.746	3, 0.000 /	/ 105302.7	46, 1.246	// 105303	.974, 0	.000 /,	/ 105430	.906,	0.000
105435.906,	, 1.227 /,	/ 105437.097	′, 0.000 /	/ 105564.4	401, 0.000	// 105569	.401, 1	.242 /,	/ 105570	.632,	0.000
105697.731,	, 0.000 /,	/ 105702.73	, 1.227 /	/ 105703.9	944, 0.000	// 105830	.863, 0	.000 /,	/ 105835	.863,	1.229
105837.128,	, 0.000 //	/ 105964.289	9, 0.000 /	/ 105969.2	289, 1.222	// 105970	.478, 0	.000 /,	/ 106097	.569,	0.000
106102.569,	, 1.226 //	/ 106103.780), 0.000 /	/ 106230.6	62, 0.000	// 106235	.662, 1	.221 /,	/ 106236	.843,	0.000
106361.474,	, 0.000 //	/ 106366.474	L, 0.000 /	/ 106370.0	021, 0.000	// 106496	.970, 0	.000 /,	/ 106501	.970,	1.214
106503.176,	, 0.000 //	/ 106630.04:	, 0.000 /	/ 106635.0	041, 1.197	// 106636	.252, 0	.000 /,	/ 106763	.432,	0.000
106768.432,	, 1.203 //	/ 106769.600	3, 0.000 /	/ 106896.6	66, 0.000	// 106901	.666, 1	.224 /,	/ 106902	.851,	0.000
107029.832,	, 0.000 //	/ 107034.832	2, 1.214 /	/ 107036.0	010, 0.000	// 107163	.205, 0	.000 /,	/ 107168	.205,	1.234
107169.384,	, 0.000 //	/ 107296.343	3, 0.000 /	/ 107301.3	343, 1.228	// 107302	.503, 0	.000 /,	/ 107429	.419,	0.000
107434.419,	, 1.213 //	/ 107435.634	4, 0.000 /	/ 107560.5	522, 0.000	// 107565	.522, 0	.000 /,	/ 107568	.887,	0.000
107695.780,	, 0.000 //	/ 107700.780), 1.218 /	/ 107702.0	014, 0.000	// 107828	.902, 0	.000 /,	/ 107833	.902,	1.205
107935 107	0 000 /	/ 107962.118	3. 0.000 /	/ 107967.1	18. 1.214	// 107968	.309.0	.000 /	/ 108095	.222.	0.000

108100.222,	1.220 //	108101.435,	0.000 //	108228.585,	0.000 //	108233.585,	1.209 //	108234.804,	0.000
108359 904	0 000 //	108364 904	0 000 //	108367 958	0 000 //	108495 053	0 000 //	108500 053	0 138
100501 052	0.000 //	100600 076	0.000 //	100622 076	1 016 //	100624 471	0.000 //	100761 540	0.100
100501.255,	0.000 //	100020.270,	0.000 //	100033.270,	1.210 //	100034.471,	0.000 //	100/01.540,	0.000
108766.540,	1.221 //	108767.736,	0.000 //	108894.627,	0.000 //	108899.627,	1.195 //	108900.851,	0.000
109027.845,	0.000 //	109032.845,	1.223 //	109034.019,	0.000 //	109160.916,	0.000 //	109165.916,	1.219
109167.131,	0.000 //	109294.121,	0.000 //	109299.121,	1.219 //	109300.361,	0.000 //	109427.367,	0.000
109432 367	1 238 //	109433 622	0 000 //	109560 866	0 000 //	109565 866	1 243 //	109567 018	0 000
100402.007,	1.200 //	100400.022,	1 010 //	100700 102	0.000 //	100007, 106	1.240 //	100007.010,	1 007
109093.923,	0.000 //	109090.925,	1.213 //	109700.193,	0.000 //	109627.196,	0.000 //	109032.190,	1.207
109833.360,	0.000 //	109960.645,	0.000 //	109965.645,	1.223 //	109966.825,	0.000 //	110093.689,	0.000
110098.689,	1.213 //	110100.028,	0.000 //	110227.027,	0.000 //	110232.027,	1.257 //	110233.965,	0.000
110360.986,	0.000 //	110365.986,	1.224 //	110367.200,	0.000 //	110494.133,	0.000 //	110499.133,	1.215
110500 363	0 000 //	110627 372	0 000 //	110632 372	1 214 //	110633 600	0 000 //	110760 638	0 000
110765 620	1 005 //	110766 026	0.000 //	110002.072,	0.000 //	110000.000,	1 049 //	110000 116	0.000
110/05.030,	1.225 //	110/00.030,	0.000 //	110093.059,	0.000 //	110090.059,	1.240 //	110900.110,	0.000
111027.068,	0.000 //	111032.068,	1.218 //	111033.257,	0.000 //	111160.212,	0.000 //	111165.212,	1.216
111166.420,	0.000 //	111293.416,	0.000 //	111298.416,	1.205 //	111299.546,	0.000 //	111426.533,	0.000
111431.533,	1.192 //	111432.743,	0.000 //	111559.918,	0.000 //	111564.918,	1.232 //	111566.159,	0.000
111690 762	0 000 //	111695 762	0 000 //	111699 344	0 000 //	111826 304	0 000 //	111831 304	1 238
111020.102,	0.000 //	111050.702,	0.000 //	111064 270	1 017 //	111020.001,	0.000 //	112002 505	0.000
111032.407,	0.000 //	111959.579,	0.000 //	111904.379,	1.21/ //	111905.570,	0.000 //	112092.595,	0.000
112097.595,	1.160 //	112098.780,	0.000 //	112225.689,	0.000 //	112230.689,	1.220 //	112231.852,	0.000
112358.749,	0.000 //	112363.749,	1.206 //	112364.954,	0.000 //	112491.916,	0.000 //	112496.916,	1.208
112498.161,	0.000 //	112625.129,	0.000 //	112630.129,	1.216 //	112631.327,	0.000 //	112758.272,	0.000
112763.272.	1.209 //	112764.497.	0.000 //	112891.368	0.000 //	112896.368	1.207 //	112897.564	0.000
113024 520	0.000 //	112020 520	1 204 //	112020 806	0.000 //	113157 7/6	0.000 //	112162 7/6	1 016
113024.520,	0.000 //	113029.320,	1.204 //	113030.000,	0.000 //	113137.740,	0.000 //	113102.740,	1.210
113163.934,	0.000 //	113291.038,	0.000 //	113296.038,	1.215 //	113297.214,	0.000 //	113424.206,	0.000
113429.206,	1.206 //	113430.433,	0.000 //	113557.562,	0.000 //	113562.562,	1.210 //	113563.766,	0.000
113690.759,	0.000 //	113695.759,	0.497 //	113696.948,	0.000 //	113823.768,	0.000 //	113828.768,	1.189
113829.988.	0.000 //	113956.863.	0.000 //	113961.863.	1.193 //	113963.060.	0.000 //	114090.154.	0.000
114095 154	1 206 //	114096 386	0 000 //	114223 385	0 000 //	114228 385	1 214 //	114229 559	0 000
114256 205	0.000 //	114061 205	1 100 //	114260 500	0.000 //	111220.000,	0.000 //	111220.000,	1 101
114350.385,	0.000 //	114301.305,	1.190 //	114302.500,	0.000 //	114469.459,	0.000 //	114494.459,	1.191
114495.623,	0.000 //	114622.548,	0.000 //	114627.548,	1.184 //	114629.043,	0.000 //	114756.072,	0.000
114761.072,	1.193 //	114762.289,	0.000 //	114889.173,	0.000 //	114894.173,	1.197 //	114895.348,	0.000
115022.279,	0.000 //	115027.279,	1.182 //	115028.512,	0.000 //	115155.446,	0.000 //	115160.446,	1.217
115161.650.	0.000 //	115288.652.	0.000 //	115293.652.	1.190 //	115294.832.	0.000 //	115421.651.	0.000
115/06 651	1 199 //	115/07 966	0 000 //	11555/ 730	0.000 //	115550 730	1 195 /	115560 084	0 000
115420.051,	1.100 //	115427.000,	0.000 //	115554.759,	0.000 //	110009.709,	1.105 //	115500.904,	0.000
115688.051,	0.000 //	115693.051,	1.18/ //	115694.225,	0.000 //	115821.349,	0.000 //	115826.349,	1.180
115827.542,	0.000 //	115954.497,	0.000 //	115959.497,	1.161 //	115960.700,	0.000 //	116087.829,	0.000
116092.829,	1.172 //	116094.005,	0.000 //	116220.918,	0.000 //	116225.918,	1.162 //	116227.119,	0.000
116354.285.	0.000 //	116359.285.	1.165 //	116360.551.	0.000 //	116485.241.	0.000 //	116490.241.	0.000
116/03 73/	0 000 //	116620 764	0 000 //	116625 764	1 108 //	116626 085		116753 0/8	0 000
116750.040	1 001 //	116760 122	0.000 //	116023.704,	1.130 //	116020.303,	1 100 //	110700.0407	0.000
116/58.948,	1.221 //	116/60.133,	0.000 //	116887.308,	0.000 //	116892.308,	1.192 //	116893.497,	0.000
117020.651,	0.000 //	117025.651,	1.186 //	117026.972,	0.000 //	117154.168,	0.000 //	117159.168,	1.187
117160.380,	0.000 //	117287.551,	0.000 //	117292.551,	1.201 //	117293.739,	0.000 //	117420.865,	0.000
117425.865,	1.202 //	117427.059,	0.000 //	117554.094,	0.000 //	117559.094,	1.191 //	117560.339,	0.000
117685.302	0.000 //	117690.302	0.000 //	117693.568.	0.000 //	117820.654	0.000 //	117825.654	1.198
117826 805	0.000 //	117053 006	0.000 //	117058 006	1 102 //	117060 154	0.000 //	112027 101	0 000
117020.095,	0.000 //	117903.900,	0.000 //	117956.900,	1.192 //	117900.134,	0.000 //	110007.121,	0.000
118092.121,	1.181 //	118093.338,	0.000 //	118220.402,	0.000 //	118225.402,	1.188 //	118226.613,	0.000
118353.477,	0.000 //	118358.477,	1.190 //	118359.699,	0.000 //	118486.614,	0.000 //	118491.614,	1.209
118492.858,	0.000 //	118619.854,	0.000 //	118624.854,	1.192 //	118626.066,	0.000 //	118753.323,	0.000
118758.323.	0.000 //	118759.523.	0.000 //	118886.431.	0.000 //	118891.431.	1.187 //	118892.685.	0.000
110010 826	0 000 //	11002/ 826	1 207 //	110026 028	0 000 //	110153 061	0 000 //	110158 061	1 181
110010.020,	0.000 //	110024.020,	1.201 //	110020.020,	0.000 //	110100.001,	0.000 //	119100.001,	1.101
119159.282,	0.000 //	119280.234,	0.000 //	119291.234,	1.1/6 //	119292.454,	0.000 //	119419.450,	0.000
119424.456,	1.192 //	119425.695,	0.000 //	119552.829,	0.000 //	119557.829,	1.198 //	119559.003,	0.000
119685.889,	0.000 //	119690.889,	1.178 //	119692.098,	0.000 //	119819.217,	0.000 //	119824.217,	1.181
119825.451,	0.000 //	119952.398,	0.000 //	119957.398.	1.171 //	119958.608.	0.000 //	120085.555.	0.000
120090.555	1.159 //	120091.718	0.000 //	120218.603	0.000 //	120223.603	1.161 //	120224.795	0.000
120351 9/9	0 000 //	120356 9/9	1 1/6 //	120358 020	0 000 //	120485 127	0 000 /	120/00 127	1 1 1 1 1
120301.040,	0.000 //	100610 040	1.140 //	100602 040	1 142 //	100604 404	0.000 //	120430.137,	1.101
120491.310,	0.000 //	120618.240,	0.000 //	120023.240,	1.146 //	120624.484,	0.000 //	120751.449,	0.000
120756.449,	1.156 //	120757.692,	0.000 //	120884.764,	0.000 //	120889.764,	1.148 //	120891.006,	0.000
121018.203,	0.000 //	121023.203,	1.157 //	121024.516,	0.000 //	121149.506,	0.000 //	121154.506,	0.000
121158.033.	0.000 //	121285.097.	0.000 //	121290.097.	1.169 //	121291.305.	0.000 //	121418.324	0.000
121423 324	1.137 //	121424 710	0.000 //	121551 928	0.000 //	121556 928	1.145 //	121558 113	0.000
101685 109	0.000 //	121600 120	1 139 //	101601 570	0.000 //	121818 661	0 000 //	101802 661	1 1/7
121003.120,	0.000 //	121050.128,	1.100 //	121091.070,	0.000 //	121010.001,	0.000 //	121023.001,	1.141
121824.970,	0.000 //	121952.086,	0.000 //	121957.086,	1.155 //	121958.284,	0.000 //	122085.265,	0.000

122090.265,	1.140 //	122091.408,	0.000 //	122218.557,	0.000 //	122223.557,	1.136 //	122224.734,	0.000
122351.756,	0.000 //	122356.756,	1.145 //	122357.972,	0.000 //	122484.974,	0.000 //	122489.974,	1.135
122491.159.	0.000 //	122618.236.	0.000 //	122623.236.	1.139 //	122624.453.	0.000 //	122751.360.	0.000
122756 360	1 129 //	122757 572	0 000 //	122884 597	0 000 //	122889 597	0 000 //	122890 797	0 000
102017 907	0.000 //	103000 807	1 1 1 1 1 / / /	122001.001,	0.000 //	122000.001,	0.000 //	122000.101,	1 1 20
123017.027,	0.000 //	123022.027,	1.144 //	123024.032,	0.000 //	123151.010,	0.000 //	123130.010,	1.129
123157.249,	0.000 //	123284.259,	0.000 //	123289.259,	1.134 //	123290.464,	0.000 //	123417.684,	0.000
123422.684,	1.147 //	123423.870,	0.000 //	123551.027,	0.000 //	123556.027,	1.151 //	123557.234,	0.000
123684.256,	0.000 //	123689.256,	1.133 //	123690.440,	0.000 //	123817.421,	0.000 //	123822.421,	1.135
123823.642.	0.000 //	123950.657.	0.000 //	123955.657.	1.131 //	123956.859.	0.000 //	124083.721.	0.000
124088 721	1 152 //	124089 854	0 000 //	124216 925	0 000 //	124221 925	1 137 //	124223 126	0 000
12/350 00/	0.000 //	12/355 004	1 1/6 //	12/256 190	0.000 //	10//02 102	0.000 //	10//00 102	1 1/2
124350.004,	0.000 //	124355.004,	1.140 //	124330.109,	0.000 //	124403.103,	0.000 //	124400.103,	1.143
124489.394,	0.000 //	124616.390,	0.000 //	124621.390,	1.15/ //	124622.561,	0.000 //	124747.044,	0.000
124752.044,	0.000 //	124755.627,	0.000 //	124882.641,	0.000 //	124887.641,	1.164 //	124888.855,	0.000
125015.844,	0.000 //	125020.844,	1.157 //	125022.032,	0.000 //	125148.893,	0.000 //	125153.893,	1.151
125155.082,	0.000 //	125282.019,	0.000 //	125287.019,	1.154 //	125288.272,	0.000 //	125415.399,	0.000
125420.399,	1.153 //	125421.659,	0.000 //	125546.621,	0.000 //	125551.621,	0.000 //	125555.002,	0.000
125681.877.	0.000 //	125686.877.	1.146 //	125688.081	0.000 //	125815.031.	0.000 //	125820.031.	1.142
125821 287	0 000 //	125948 262	0 000 //	125953 262	1 144 //	125954 441	0 000 //	126079 169	0 000
120021.201,	0.000 //	106007 570	0.000 //	106014 606	0.000 //	106010 606	1 100 //	106001 040	0.000
120004.109,	0.000 //	120007.579,	0.000 //	120214.000,	0.000 //	120219.000,	1.102 //	120221.049,	0.000
126348.927,	0.000 //	126353.927,	1.164 //	126355.156,	0.000 //	126482.158,	0.000 //	126487.158,	1.138
126488.374,	0.000 //	126615.342,	0.000 //	126620.342,	1.143 //	126621.571,	0.000 //	126748.571,	0.000
126753.571,	1.144 //	126754.763,	0.000 //	126881.850,	0.000 //	126886.850,	1.143 //	126888.194,	0.000
127013.047,	0.000 //	127018.047,	0.000 //	127021.582,	0.000 //	127148.627,	0.000 //	127153.627,	0.000
127154.827.	0.000 //	127280.067.	0.000 //	127285.067.	0.000 //	127288.098.	0.000 //	127415.109.	0.000
127/20 109	0 000 //	107/01 309	0 000 //	1075/8 057	0 000 //	107553 057	1 167 //	10755/ /01	0 000
107601 452	0.000 //	107606 452	1 1 60 //	107607 664	0.000 //	107014 641	1.107 //	107010 641	1 1 6 6
127001.455,	0.000 //	127000.455,	1.109 //	12/00/.004,	0.000 //	127014.041,	0.000 //	12/019.041,	1.100
127820.846,	0.000 //	127948.092,	0.000 //	127953.092,	1.1// //	127954.296,	0.000 //	128081.345,	0.000
128086.345,	1.173 //	128087.587,	0.000 //	128214.695,	0.000 //	128219.695,	1.170 //	128220.844,	0.000
128347.893,	0.000 //	128352.893,	1.174 //	128354.110,	0.000 //	128481.296,	0.000 //	128486.296,	1.176
128487.503,	0.000 //	128614.398,	0.000 //	128619.398,	1.155 //	128620.677,	0.000 //	128747.715,	0.000
128752.715,	1.143 //	128753.919,	0.000 //	128881.169,	0.000 //	128886.169,	1.142 //	128887.339,	0.000
129014.498.	0.000 //	129019.498.	1.126 //	129020.755.	0.000 //	129147.746.	0.000 //	129152.746.	1.155
129154 026	0 000 //	1202201001000,	0 000 //	129286 199	1 149 //	120227 495	0 000 //	120414 535	0 000
120104.020,	1 140 //	120201.100,	0.000 //	120200.100,	0.000 //	100550 067	1 1 20 //	120414.000,	0.000
129419.555,	1.140 //	129420.757,	0.000 //	129547.007,	0.000 //	129552.007,	1.130 //	129554.075,	0.000
129681.237,	0.000 //	129686.237,	1.154 //	129687.478,	0.000 //	129814.555,	0.000 //	129819.555,	1.146
129820.731,	0.000 //	129947.660,	0.000 //	129952.660,	1.176 //	129953.888,	0.000 //	130080.728,	0.000
130085.728,	1.105 //	130086.940,	0.000 //	130214.083,	0.000 //	130219.083,	1.120 //	130220.309,	0.000
130347.423,	0.000 //	130352.423,	1.128 //	130353.627,	0.000 //	130480.648,	0.000 //	130485.648,	0.923
130486.837.	0.000 //	130613.659.	0.000 //	130618.659.	0.916 //	130619.844.	0.000 //	130746.970.	0.000
130751.970.	0.922 //	130753.199.	0.000 //	130880.398.	0.000 //	130885.398.	0.937 //	130886.575.	0.000
131013 696	0 000 //	131018 696	0 940 //	131019 906	0 000 //	1311/7 006	0 000 //	131152 006	0 800
121152 020	0.000 //	121000 127	0.040 //	121005 127	0.000 //	121006 410	0.000 //	101102.000,	0.000
131153.239,	0.000 //	131260.137,	0.000 //	131265.137,	0.884 //	131200.410,	0.000 //	131413.551,	0.000
131418.551,	0.899 //	131419.760,	0.000 //	131546.831,	0.000 //	131551.831,	0.906 //	131553.083,	0.000
131680.156,	0.000 //	131685.156,	0.895 //	131686.382,	0.000 //	131813.490,	0.000 //	131818.490,	0.927
131819.749,	0.000 //	131946.926,	0.000 //	131951.926,	0.915 //	131953.134,	0.000 //	132080.179,	0.000
132085.179,	0.884 //	132086.366,	0.000 //	132213.287,	0.000 //	132218.287,	0.880 //	132219.482,	0.000
132346.652,	0.000 //	132351.652,	0.904 //	132352.900,	0.000 //	132479.978,	0.000 //	132484.978,	0.913
132486.204.	0.000 //	132611.020.	0.000 //	132616.020.	0.000 //	132619.497.	0.000 //	132746.498.	0.000
132751 498	0 895 //	132752 757	0 000 //	132879 836	0 000 //	132884 836	0 923 //	132886 020	0 000
122010 700	0.000 //	122017 700	0.000 //	122010.000,	0.000 //	122145 000	0.020 //	122150.020,	0.000
133012.700,	0.000 //	133017.700,	0.054 //	133019.010,	0.000 //	133145.990,	0.000 //	133150.990,	0.007
133152.195,	0.000 //	133278.991,	0.000 //	133283.991,	0.857 //	133285.213,	0.000 //	133412.381,	0.000
133417.381,	0.891 //	133418.609,	0.000 //	133545.560,	0.000 //	133550.560,	0.882 //	133551.793,	0.000
133678.652,	0.000 //	133683.652,	0.911 //	133684.832,	0.000 //	133811.858,	0.000 //	133816.858,	0.895
133818.033,	0.000 //	133945.144,	0.000 //	133950.144,	0.918 //	133951.356,	0.000 //	134078.326,	0.000
134083.326.	0.890 //	134084.538.	0.000 //	134211.638.	0.000 //	134216.638.	0.888 //	134217.850.	0.000
134344 894	0.000 //	134349 894	0.891 //	134351.081	0.000 //	134477.919	0.000 //	134482.919	0.889
134484 104	0 000 //	134611 116	0 000 //	134616 116	0.878 //	134617 301	0 000 //	13474/ 306	0 000
124740 200	0.000 //	124760 500	0.000 //	12/077 745	0.000 //	12/000 715	0.000 //	12/002 015	0.000
134/49.320,	0.009 //	134/50.599,	0.000 //	1340//./15,	0.000 //	134002./15,	0.000 //	134003.915,	0.000
135010.866,	0.000 //	135015.866,	0.849 //	135017.079,	0.000 //	135143.987,	0.000 //	135148.987,	0.847
135150.189,	0.000 //	135277.143,	0.000 //	135282.143,	0.878 //	135283.446,	0.000 //	135410.477,	0.000
135415.477,	0.884 //	135416.678,	0.000 //	135543.613,	0.000 //	135548.613,	0.885 //	135549.787,	0.000
135674.467,	0.000 //	135679.467,	0.000 //	135682.963,	0.000 //	135809.879,	0.000 //	135814.879,	0.000
135816.079.	0.000 //	135940.867.	0.000 //	135945.867.	0.000 //	135949.294.	0.000 //	136076.447.	0.000
						· · · - ,		,	

136081.447,	0.893 //	136082.647,	0.000 //	136209.791,	0.000 //	136214.791,	0.992 //	136216.033, 0	0.000
136343.207,	0.000 //	136348.207,	0.972 //	136349.518,	0.000 //	136476.497,	0.000 //	136481.497, 0	.934
136482.663.	0.000 //	136609.613.	0.000 //	136614.613.	0.945 //	136616.015.	0.000 //	136743.132. 0	0.000
136748 132	0 964 //	136749 483	0 000 //	136876 489	0 000 //	136881 489	0 729 //	136882 689 0	000
127000 000	0.000 //	127014 000	0.000 //	127016 006	0.000 //	127142 044	0.000 //	1271/0 0// 0	004
137009.000,	0.000 //	137014.000,	0.926 //	137015.965,	0.000 //	137143.044,	0.000 //	137140.044, 0	0.924
13/149.255,	0.000 //	13/2/6.158,	0.000 //	13/281.158,	0.940 //	137282.307,	0.000 //	137409.289, 0	0.000
137414.289,	0.939 //	137415.469,	0.000 //	137542.594,	0.000 //	137547.594,	0.912 //	137548.800, 0	0.000
137675.759,	0.000 //	137680.759,	0.930 //	137681.986,	0.000 //	137808.895,	0.000 //	137813.895, 0	.887
137815.091,	0.000 //	137942.013,	0.000 //	137947.013,	0.883 //	137948.225,	0.000 //	138075.188, 0	0.000
138080.188.	0.868 //	138081.438.	0.000 //	138208.295.	0.000 //	138213.295.	0.909 //	138214.467.0	0.000
138341.521	0.000 //	138346.521.	0.908 //	138347.737.	0.000 //	138474.689.	0.000 //	138479.689.0	.885
138480 897	0 000 //	138607 897	0 000 //	138612 897	0 928 //	138614 113	0 000 //	138741 022 0	000
120746 000	0.000 //	120747 102	0.000 //	120074 520	0.020 //	120070 520	0.000 //	120000 720 0	0000
130740.022,	0.890 //	130747.193,	0.000 //	1300/4.559,	0.000 //	1300/9.539,	0.420 //	130000.739, 0	.000
139007.661,	0.000 //	139012.661,	0.874 //	139013.876,	0.000 //	139140.972,	0.000 //	139145.972, 0	0.959
139147.209,	0.000 //	139274.194,	0.000 //	139279.194,	0.913 //	139280.412,	0.000 //	139407.426, 0	0.000
139412.426,	0.896 //	139413.649,	0.000 //	139540.638,	0.000 //	139545.638,	0.865 //	139546.919, 0	0.000
139674.177,	0.000 //	139679.177,	0.877 //	139680.419,	0.000 //	139807.336,	0.000 //	139812.336, 0	0.901
139813.502,	0.000 //	139940.464,	0.000 //	139945.464,	0.882 //	139946.652,	0.000 //	140073.622, 0	0.000
140078.622,	0.972 //	140079.859,	0.000 //	140206.899,	0.000 //	140211.899,	0.914 //	140213.063, 0	0.000
140340.121.	0.000 //	140345.121.	0.903 //	140346.348.	0.000 //	140473.217.	0.000 //	140478.217.0	.865
140479 426	0 000 //	140606 360	0 000 //	140611 360	0 926 //	140612 627	0 000 //	140739 837 0	000
140744 027	0.000 //	140746 051	0.000 //	140011.000,	0.020 //	140012.027,	0.000 //	140970 207 0	0000
140744.037,	0.901 //	140740.051,	0.000 //	1400/3.010,	0.000 //	140070.010,	0.918 //	140079.307, 0	
141006.414,	0.000 //	141011.414,	0.924 //	141012.619,	0.000 //	141139.800,	0.000 //	141144.800, 0	0.901
141146.060,	0.000 //	141273.112,	0.000 //	141278.112,	0.891 //	141279.365,	0.000 //	141406.429, 0	0.000
141411.429,	0.901 //	141412.635,	0.000 //	141539.536,	0.000 //	141544.536,	0.878 //	141545.762, 0	0.000
141672.835,	0.000 //	141677.835,	0.941 //	141679.051,	0.000 //	141806.075,	0.000 //	141811.075, 0	0.941
141812.295,	0.000 //	141939.273,	0.000 //	141944.273,	0.960 //	141945.450,	0.000 //	142072.444, 0	0.000
142077.444,	0.944 //	142078.628,	0.000 //	142205.600,	0.000 //	142210.600,	0.945 //	142211.800, 0	0.000
142338.804	0.000 //	142343.804	0.915 //	142344.931	0.000 //	142471.878.	0.000 //	142476.878.0	.997
1/2/78 023	0 000 //	1/2605 207	0 000 //	1/2610 207	0 920 //	1/2611 5//	0 000 //	1/2738 651 0	000
140742 651	0.000 //	140744 065	0.000 //	142010.207,	0.920 //	142011.044,	0.000 //	142730.031, 0	0000
142743.051,	0.906 //	142744.005,	0.000 //	1420/1.039,	0.000 //	142070.039,	0.904 //	142070.025, 0	
143005.056,	0.000 //	143010.056,	0.883 //	143011.253,	0.000 //	143138.310,	0.000 //	143143.310, 0	.000
143144.510,	0.000 //	1432/1.598,	0.000 //	143276.598,	0.906 //	143277.772,	0.000 //	143404.693, 0	0.000
143409.693,	0.909 //	143410.917,	0.000 //	143538.154,	0.000 //	143543.154,	0.930 //	143544.423, 0	0.000
143671.479,	0.000 //	143676.479,	0.932 //	143677.609,	0.000 //	143804.586,	0.000 //	143809.586, 0	.877
143810.802,	0.000 //	143938.052,	0.000 //	143943.052,	0.948 //	143944.282,	0.000 //	144071.338, 0	0.000
144076.338,	0.883 //	144077.512,	0.000 //	144204.328,	0.000 //	144209.328,	0.933 //	144210.508, 0	0.000
144337.592.	0.000 //	144342.592.	0.949 //	144343.776.	0.000 //	144470.751.	0.000 //	144475.751. 0	.946
144476.925.	0.000 //	144604.012.	0.000 //	144609.012.	0.954 //	144610.196.	0.000 //	144737.424.0	0.000
1//7/2 /2/	0 903 //	1//7/3 555	0.000 //	1//870 /05	0.000 //	1//875 /05	0.035 //	1//876 773 0	
145002 010	0.303 //	1/10/00 010	0.000 //	145010.435,	0.000 //	145127 100	0.955 //	145140 100 0	
145005.010,	0.000 //	145000.010,	0.922 //	145010.035,	0.000 //	145157.120,	0.000 //	145142.120, 0	.920
145143.388,	0.000 //	1452/0.455,	0.000 //	1452/5.455,	0.972 //	145276.714,	0.000 //	145403.652, 0	0.000
145408.652,	0.917 //	145409.895,	0.000 //	145536.974,	0.000 //	145541.974,	0.945 //	145543.220, 0	0.000
145668.014,	0.000 //	145673.014,	0.000 //	145676.238,	0.000 //	145803.156,	0.000 //	145808.156, 0	0.918
145809.420,	0.000 //	145936.440,	0.000 //	145941.440,	0.912 //	145942.646,	0.000 //	146069.760, 0	0.000
146074.760,	0.950 //	146075.962,	0.000 //	146202.937,	0.000 //	146207.937,	0.922 //	146209.150, 0	0.000
146336.072,	0.000 //	146341.072,	0.889 //	146342.305,	0.000 //	146469.095,	0.000 //	146474.095, 0	.906
146475.326.	0.000 //	146602.439.	0.000 //	146607.439.	0.916 //	146608.641.	0.000 //	146735.695.0	0.000
146740 695	0 924 //	146741 887	0 000 //	146868 977	0 000 //	146873 977	0 931 //	146875 185 0	000
147002 100	0.024 //	147007 100	0.000 //	147000.204	0.000 //	147125 240	0.000 //	147140 240 0	010
147002.109,	0.000 //	147007.109,	0.944 //	147000.324,	0.000 //	147135.349,	0.000 //	147140.349, 0	.912
14/141.541,	0.000 //	14/268.495,	0.000 //	14/2/3.495,	0.930 //	14/2/5.24/,	0.000 //	147402.346, 0	0.000
147407.346,	0.958 //	147408.578,	0.000 //	147535.706,	0.000 //	147540.706,	0.936 //	147541.947, 0	0.000
147669.052,	0.000 //	147674.052,	0.915 //	147675.272,	0.000 //	147802.282,	0.000 //	147807.282, 0	.963
147808.490,	0.000 //	147935.496,	0.000 //	147940.496,	0.922 //	147941.723,	0.000 //	148066.898, 0	0.000
148071.898,	0.035 //	148074.783,	0.000 //	148201.869,	0.000 //	148206.869,	1.004 //	148208.034, 0	0.000
148335.233.	0.000 //	148340.233,	0.927 //	148341.420.	0.000 //	148468.476.	0.000 //	148473.476, 0	.890
148474.720.	0.000 //	148601.761.	0.000 //	148606.761.	0.905 //	148607.928.	0.000 //	148735.079. 0	0.000
148740.079	1.004 //	148741.307	0.000 //	148868.305	0.000 //	148873.305	1.022 //	148874 549 0	0.000
149001 /00	0 000 //	149006 /90	1 007 //	149007 704	0.000 //	14913/ 701	0 000 //	149139 701 1	021
1/01/1 001	0.000 //	1/0060 00/	1.001 //	1/0072 02/	1 024 //	1/007/ /05	0.000 //	1/0/01 //0 0	0000
149141.021,	0.000 //	149200.234,	0.000 //	140524 502	1.024 //	140520 500		149401.440, 0	
149406.440,	0.96/ //	149407.619,	0.000 //	149534.566,	0.000 //	149539.566,	1.015 //	149540.//4, 0	
149667.584,	0.000 //	149672.584,	1.015 //	149673.791,	0.000 //	149800.786,	0.000 //	149805.786, 1	.020
149806.995,	0.000 //	149933.874,	0.000 //	149938.874,	1.009 //	149940.112,	0.000 //	150067.374, 0	0.000
APPENDIX B. APPENDIX OF DETAILED IRRADIATION SCHEME FOR ^{238}U TARGET

150072.374,	1.081 //	150073.580,	0.000 //	150200.664,	0.000 //	150205.664,	1.046 //	150206.870,	0.000
150333.807,	0.000 //	150338.807,	1.032 //	150340.007,	0.000 //	150467.031,	0.000 //	150472.031,	1.016
150473.227.	0.000 //	150600.331.	0.000 //	150605.331.	1.019 //	150606.548.	0.000 //	150733.812.	0.000
150738 812	1 011 //	150740 016	0 000 //	150867 038	0 000 //	150872 038	1 013 //	150873 234	0 000
151000 417	0.000 //	151005 417	1 000 //	151006 610	0.000 //	161122 626	0.000 //	151120 626	1 000
151000.417,	0.000 //	151005.417,	1.020 //	151000.012,	0.000 //	151155.050,	0.000 //	151130.030,	1.009
151139.835,	0.000 //	151266.823,	0.000 //	1512/1.823,	1.01/ //	151272.985,	0.000 //	151400.006,	0.000
151405.006,	1.020 //	151406.204,	0.000 //	151533.091,	0.000 //	151538.091,	1.029 //	151539.332,	0.000
151666.323,	0.000 //	151671.323,	1.013 //	151672.569,	0.000 //	151797.750,	0.000 //	151802.750,	0.000
151805.877,	0.000 //	151932.863,	0.000 //	151937.863,	1.011 //	151939.068,	0.000 //	152066.166,	0.000
152071.166,	1.007 //	152072.387,	0.000 //	152199.466,	0.000 //	152204.466,	0.904 //	152205.676,	0.000
152332.693.	0.000 //	152337.693.	1.028 //	152338.899.	0.000 //	152465.769.	0.000 //	152470.769.	0.995
152471 910	0 000 //	152598 935	0 000 //	152603 935	0 986 //	152605 128	0 000 //	152732 027	0 000
150727 007	0.000 //	160720.000,	0.000 //	160066 010	0.000 //	160070 010	1 002 //	150071 206	0.000
152/5/.02/,	0.930 //	152730.240,	0.000 //	152005.210,	0.000 //	152070.210,	1.003 //	152071.300,	0.000
152998.390,	0.000 //	153003.390,	1.029 //	153004.589,	0.000 //	153131.555,	0.000 //	153136.555,	1.011
153137.745,	0.000 //	153264.718,	0.000 //	153269.718,	1.019 //	153270.936,	0.000 //	153395.947,	0.000
153400.947,	0.000 //	153404.095,	0.000 //	153531.136,	0.000 //	153536.136,	1.020 //	153537.298,	0.000
153664.305,	0.000 //	153669.305,	1.025 //	153670.506,	0.000 //	153795.383,	0.000 //	153800.383,	0.000
153803.768,	0.000 //	153930.670,	0.000 //	153935.670,	1.027 //	153936.871,	0.000 //	154063.995,	0.000
154068.995.	1.012 //	154070.205.	0.000 //	154197.363.	0.000 //	154202.363.	1.005 //	154203.569.	0.000
154330 569	0 000 //	154335 569	0 997 //	154336 800	0 000 //	154463 722	0 000 //	154468 722	1 025
161000.000,	0.000 //	16/606 010	0.000 //	164601 910	0.002 //	164602 024	0.000 //	161100.122,	0.000
154409.950,	0.000 //	154590.019,	0.000 //	154001.019,	0.993 //	154003.034,	0.000 //	154750.072,	0.000
154/35.0/2,	0.989 //	154/36.32/,	0.000 //	154863.341,	0.000 //	154868.341,	0.993 //	154869.518,	0.000
154996.587,	0.000 //	155001.587,	1.010 //	155002.799,	0.000 //	155129.787,	0.000 //	155134.787,	1.016
155135.987,	0.000 //	155263.191,	0.000 //	155268.191,	1.016 //	155269.402,	0.000 //	155396.430,	0.000
155401.430,	1.001 //	155402.687,	0.000 //	155529.613,	0.000 //	155534.613,	1.028 //	155535.862,	0.000
155662.931,	0.000 //	155667.931,	1.020 //	155669.146,	0.000 //	155796.164,	0.000 //	155801.164,	1.014
155802.405.	0.000 //	155929.451.	0.000 //	155934.451.	1.026 //	155935.627.	0.000 //	156062.808.	0.000
156067 808	1 037 //	156068 987	0 000 //	156196 024	0 000 //	156201 024	1 009 //	156202 245	0 000
156200 272	0.000 //	166224 272	1 007 //	166226 616	0.000 //	156160 696	1.000 //	166262.240,	1 012
150529.575,	0.000 //	150554.575,	1.02/ //	150555.015,	0.000 //	150402.000,	0.000 //	150407.000,	1.013
156468.884,	0.000 //	156595.731,	0.000 //	156600.731,	1.002 //	156601.959,	0.000 //	156/29.1/1,	0.000
156734.171,	1.036 //	156735.374,	0.000 //	156862.571,	0.000 //	156867.571,	1.032 //	156868.762,	0.000
156995.932,	0.000 //	157000.932,	0.984 //	157002.197,	0.000 //	157129.229,	0.000 //	157134.229,	0.995
157135.435,	0.000 //	157262.452,	0.000 //	157267.452,	1.001 //	157268.618,	0.000 //	157395.429,	0.000
157400.429,	0.998 //	157401.627,	0.000 //	157528.659,	0.000 //	157533.659,	0.999 //	157534.846,	0.000
157661.783,	0.000 //	157666.783,	1.006 //	157668.087,	0.000 //	157794.912,	0.000 //	157799.912,	1.018
157801.206.	0.000 //	157928.167.	0.000 //	157933.167.	1.005 //	157934.370.	0.000 //	158061.443.	0.000
158066 443	1 014 //	158067 689	0 000 //	158194 793	0 000 //	158199 793	1 013 //	158200 958	0 000
150207 067	0.000 //	100007.000,	1 000 //	100104.100,	0.000 //	159461 200	0.000 //	150200.000,	1 016
150327.007,	0.000 //	150552.007,	1.009 //	150554.102,	0.000 //	150401.290,	0.000 //	150400.290,	1.010
158467.534,	0.000 //	158594.574,	0.000 //	158599.574,	1.015 //	158600.869,	0.000 //	158/2/.845,	0.000
158732.845,	1.022 //	158734.064,	0.000 //	158860.949,	0.000 //	158865.949,	1.010 //	158867.157,	0.000
158994.177,	0.000 //	158999.177,	1.024 //	159000.382,	0.000 //	159127.296,	0.000 //	159132.296,	1.036
159133.508,	0.000 //	159260.441,	0.000 //	159265.441,	1.020 //	159266.642,	0.000 //	159393.671,	0.000
159398.671,	1.031 //	159399.908,	0.000 //	159526.920,	0.000 //	159531.920,	1.055 //	159533.240,	0.000
159660.373.	0.000 //	159665.373.	1.032 //	159666.591.	0.000 //	159793.719.	0.000 //	159798.719.	1.018
159799.924.	0.000 //	159926.879.	0.000 //	159931.879.	1.012 //	159933.046	0.000 //	160060.149.	0.000
160065 1/9	0 997 //	160066 393	0 000 //	160103 326	0 000 //	160198 326	1 018 //	160100 571	0 000
100003.149,	0.991 //	160221 500	1 015 //	160220 020	0.000 //	160450.026	1.018 //	160464 826	1 020
160326.599,	0.000 //	160331.599,	1.015 //	100332.830,	0.000 //	160459.836,	0.000 //	160464.836,	1.030
160465.949,	0.000 //	160592.930,	0.000 //	160597.930,	1.032 //	160599.183,	0.000 //	160726.059,	0.000
160731.059,	1.022 //	160732.292,	0.000 //	160859.283,	0.000 //	160864.283,	1.017 //	160865.541,	0.000
160992.572,	0.000 //	160997.572,	1.022 //	160998.809,	0.000 //	161125.891,	0.000 //	161130.891,	1.005
161132.108,	0.000 //	161259.075,	0.000 //	161264.075,	1.003 //	161265.330,	0.000 //	161392.411,	0.000
161397.411,	1.010 //	161398.524,	0.000 //	161525.785,	0.000 //	161530.785,	1.025 //	161531.889,	0.000
161659.043.	0.000 //	161664.043.	0.991 //	161665.233.	0.000 //	161790.617.	0.000 //	161795.617.	0.000
161798 764	0 000 //	161925 827	0 000 //	161930 827	1 008 //	161932 022	0 000 //	162059 103	0 000
160064 102	1 067 //	160065 076	0.000 //	162102 100	0.000 //	160107 100	1 020 //	160100 405	0.000
160205 442	1.00/ //	1602003.210,	1 005 //	160201 000	0.000 //	160/50 570	1.032 //	160/60 570	1 0/0
102325.443,	0.000 //	102330.443,	1.005 //	102331.006,	0.000 //	102400.019,	0.000 //	102403.5/9,	1.048
162464.819,	0.000 //	162591.993,	0.000 //	162596.993,	1.041 //	162598.242,	0.000 //	162725.186,	0.000
162730.186,	1.011 //	162731.396,	0.000 //	162858.324,	0.000 //	162863.324,	1.001 //	162864.575,	0.000
162991.674,	0.000 //	162996.674,	0.990 //	162997.936,	0.000 //	163124.892,	0.000 //	163129.892,	1.027
163131.820,	0.000 //	163259.135,	0.000 //	163264.135,	1.028 //	163265.369,	0.000 //	163392.718,	0.000
163397.718.	1.027 //	163398.977.	0.000 //	163526.044.	0.000 //	163531.044.	1.028 //	163532.319.	0.000
163659.372.	0.000 //	163664.372.	1.046 //	163665.559.	0.000 //	163792.587.	0.000 //	163797.587.	1.018
163798 786	0 000 //	163925 845	0 000 //	163930 845	1 009 //	163932 071	0 000 //	164059 156	0 000
,		,		,	//	,		,	

200

APPENDIX B. APPENDIX OF DETAILED IRRADIATION SCHEME FOR ^{238}U TARGET

164064.156,	1.001 //	164065.360,	0.000 //	164192.483,	0.000 //	164197.483,	1.005 //	164198.780, 0.	.000
164325.901,	0.000 //	164330.901,	1.002 //	164332.017,	0.000 //	164459.131,	0.000 //	164464.131, 0.	.977
164465.382	0.000 //	164592.449	0.000 //	164597.449.	1.007 //	164598.684.	0.000 //	164725.715.0.	.000
16/730 715	1 019 //	164731 000	0 000 //	16/950 090	0.000 //	16/96/ 090	1 005 //	16/965 315 0	000
104730.713,	1.010 //	104731.909,	0.000 //	104009.009,	0.000 //	104004.009,	1.005 //	104005.515, 0.	.000
164992.271,	0.000 //	164997.271,	0.985 //	164998.481,	0.000 //	165125.589,	0.000 //	165130.589, 1.	.002
165131.816,	0.000 //	165258.780,	0.000 //	165263.780,	1.014 //	165265.018,	0.000 //	165392.131, 0.	.000
165397.131,	0.994 //	165398.325,	0.000 //	165525.346,	0.000 //	165530.346,	0.979 //	165531.662, 0.	.000
165658.699,	0.000 //	165663.699,	0.996 //	165664.878,	0.000 //	165791.906,	0.000 //	165796.906, 0.	.990
165798.093,	0.000 //	165925.248,	0.000 //	165930.248,	0.995 //	165931.360,	0.000 //	166058.474, 0.	.000
166063.474.	0.995 //	166064.765.	0.000 //	166191.660.	0.000 //	166196.660.	0.967 //	166197.830. 0.	.000
166324.849	0.000 //	166329.849.	1.002 //	166331.070.	0.000 //	166458.013.	0.000 //	166463.013.0.	.967
166464 195	0 000 //	166591 127	0 000 //	166596 127	0 975 //	166597 354	0 000 //	166724 333 0	000
166700 222	0.005 //	166720 527	0.000 //	166057 117	0.010 //	166960 117	0.000 //	166962 704 0	
100729.333,	0.995 //	100730.537,	0.000 //	100057.447,	0.000 //	100002.447,	0.9/1 //	100003.704, 0.	.000
166990.825,	0.000 //	166995.825,	0.982 //	166997.091,	0.000 //	16/124.039,	0.000 //	16/129.039, 0.	.959
167130.221,	0.000 //	167257.373,	0.000 //	167262.373,	0.972 //	167263.645,	0.000 //	167390.629, 0.	.000
167395.629,	0.953 //	167397.103,	0.000 //	167524.189,	0.000 //	167529.189,	0.970 //	167530.358, 0.	.000
167657.377,	0.000 //	167662.377,	0.957 //	167663.613,	0.000 //	167790.812,	0.000 //	167795.812, 0.	.995
167797.000,	0.000 //	167924.042,	0.000 //	167929.042,	0.963 //	167930.227,	0.000 //	168057.112, 0.	.000
168062.112,	0.989 //	168063.324,	0.000 //	168190.492,	0.000 //	168195.492,	0.971 //	168196.670, 0.	.000
168323.736.	0.000 //	168328.736.	0.974 //	168329.938.	0.000 //	168456.926.	0.000 //	168461.926.0.	.995
168463 175	0 000 //	168590 307	0 000 //	168595 307	0 999 //	168596 537	0 000 //	168723 588 0	000
169709 599	0.060 //	169700 904	0.000 //	168857 070	0.000 //	168862 070	0.000 //	169963 377 0	
160000 472	0.904 //	16005 472	0.000 //	168006 667	0.000 //	100002.079,	0.902 //	100003.377, 0.	.000
168990.473,	0.000 //	168995.473,	0.979 //	168996.667,	0.000 //	169123.632,	0.000 //	169128.632, 0.	.959
169129.834,	0.000 //	169256.791,	0.000 //	169261.791,	0.985 //	169262.963,	0.000 //	169389.975, 0.	.000
169394.975,	0.954 //	169396.205,	0.000 //	169523.118,	0.000 //	169528.118,	0.981 //	169529.274, 0.	.000
169656.476,	0.000 //	169661.476,	0.977 //	169662.689,	0.000 //	169789.860,	0.000 //	169794.860, 0.	.971
169796.054,	0.000 //	169922.984,	0.000 //	169927.984,	1.002 //	169929.193,	0.000 //	170056.201, 0.	.000
170061.201,	0.981 //	170062.386,	0.000 //	170189.376,	0.000 //	170194.376,	0.970 //	170195.619, 0.	.000
170322.521.	0.000 //	170327.521.	1.006 //	170328.784.	0.000 //	170455.696.	0.000 //	170460.696.0.	.994
170461 934	0 000 //	170588 893	0 000 //	170593 893	0 983 //	170595 135	0 000 //	170722 253 0	000
170727 253	0.963 //	170728 505	0.000 //	170855 /00	0.000 //	170860 /00	0 961 //	170861 785 0	000
170020.755	0.303 //	170002 755	0.000 //	170004 077	0.000 //	171100 1/5	0.301 //	171107 145 0	.000
170900.755,	0.000 //	170995.755,	0.950 //	170994.977,	0.000 //	171122.145,	0.000 //	171127.145, 0.	.939
1/1128.35/,	0.000 //	1/1255.311,	0.000 //	1/1260.311,	0.982 //	1/1261.506,	0.000 //	1/1388./49, 0.	.000
171393.749,	0.952 //	171394.965,	0.000 //	171520.392,	0.000 //	171525.392,	0.055 //	171528.262, 0.	.000
171655.319,	0.000 //	171660.319,	0.969 //	171661.517,	0.000 //	171788.551,	0.000 //	171793.551, 0.	.962
171794.816,	0.000 //	171921.719,	0.000 //	171926.719,	0.952 //	171928.034,	0.000 //	172055.056, 0.	.000
172060.056,	0.974 //	172061.407,	0.000 //	172188.606,	0.000 //	172193.606,	0.971 //	172194.822, 0.	.000
172321.929,	0.000 //	172326.929,	0.961 //	172328.175,	0.000 //	172455.469,	0.000 //	172460.469, 0.	.988
172461.673.	0.000 //	172588.759.	0.000 //	172593.759.	0.975 //	172594.960.	0.000 //	172722.068.0.	.000
172727 068	0 954 //	172728 222	0 000 //	172855 498	0 000 //	172860 498	0 937 //	172861 712 0	000
172988 694	0 000 //	172993 694	0 995 //	172994 895	0 000 //	173121 929	0 000 //	173126 929 0	935
172100.007	0.000 //	172055.034,	0.333 //	172060 162	0.000 //	172061 205	0.000 //	170120.020, 0.	
173128.087,	0.000 //	173255.103,	0.000 //	173260.163,	0.992 //	173261.395,	0.000 //	173388.409, 0.	.000
173393.409,	0.932 //	1/3394.5/5,	0.000 //	173521.669,	0.000 //	173526.669,	0.960 //	1/352/.911, 0.	.000
173655.035,	0.000 //	173660.035,	0.946 //	173661.228,	0.000 //	173788.236,	0.000 //	173793.236, 0.	.948
173794.432,	0.000 //	173921.330,	0.000 //	173926.330,	0.925 //	173927.534,	0.000 //	174054.422, 0.	.000
174059.422,	0.947 //	174060.662,	0.000 //	174187.659,	0.000 //	174192.659,	0.958 //	174193.892, 0.	.000
174321.052,	0.000 //	174326.052,	0.943 //	174327.322,	0.000 //	174454.196,	0.000 //	174459.196, 0.	.974
174460.459,	0.000 //	174587.546,	0.000 //	174592.546,	0.941 //	174593.764,	0.000 //	174720.876, 0.	.000
174725.876.	0.933 //	174727.087.	0.000 //	174854.176.	0.000 //	174859.176.	0.941 //	174860.377.0.	.000
174987.303.	0.000 //	174992.303	0.955 //	174993.529.	0.000 //	175120.465.	0.000 //	175125.465.0.	.944
175126 679	0.000 //	175253 561	0.000 //	175258 561	0.036 //	175250 727	0.000 //	175386 6/15 0	000
175120.079,	0.000 //	175255.501,	0.000 //	175230.301,	0.930 //	175504 007	0.000 //	175500.045, 0.	.000
175391.045,	0.920 //	175392.857,	0.000 //	175519.827,	0.000 //	175524.827,	0.949 //	175526.066, 0.	.000
1/5653.284,	0.000 //	175658.284,	0.932 //	1/5659.4/2,	0.000 //	1/5/86.622,	0.000 //	1/5/91.622, 0.	.959
175792.834,	0.000 //	175917.697,	0.000 //	175922.697,	0.000 //	175925.981,	0.000 //	176052.956, 0.	.000
176057.956,	0.966 //	176059.187,	0.000 //	176186.480,	0.000 //	176191.480,	0.941 //	176192.746, 0.	.000
176319.668,	0.000 //	176324.668,	0.943 //	176325.886,	0.000 //	176452.831,	0.000 //	176457.831, 0.	.977
176459.068,	0.000 //	176586.074,	0.000 //	176591.074,	0.928 //	176592.335,	0.000 //	176719.304, 0.	.000
176724.304,	0.925 //	176725.571,	0.000 //	176852.608.	0.000 //	176857.608.	0.951 //	176858.835, 0.	.000
176985.828	0.000 //	176990.828	0.945 //	176992.048	0.000 //	177119.174	0.000 //	177124.174.0	.917
177125.365	0.000 //	177252.402	0.000 //	177257.402	0.903 //	177258.709	0.000 //	177385,877.0	.000
177390 877	0.923 //	177392 106	0.000 //	177519 303	0.000 //	177524 303	0.915 //	177525 655 0	.000
177652 650	0 000 //	177657 650	0 910 //	177658 010	0 000 //	177785 807	0 000 //	177790 807 0	930
177700 000	0.000 //	177010 000	0.000 //	177002.000		177005 104	0.000 //	170061 007 0	
111192.028,	0.000 //	тилата.908,	0.000 //	111923.988,	0.935 //	1/1920.101,	0.000 //	110001.991, 0.	.000

201

APPENDIX B. APPENDIX OF DETAILED IRRADIATION SCHEME FOR ^{238}U TARGET

178056.997,	0.902 //	178058.313,	0.000 /	′ 178185.345,	0.000 //	178190.345,	0.917 //	178191.603,	0.000
178318.734,	0.000 //	178323.734,	0.913 /	178325.008,	0.000 //	178452.052,	0.000 //	178457.052,	0.884
178458.248,	0.000 //	178585.377,	0.000 /	178590.377,	0.879 //	178591.583,	0.000 //	178718.702,	0.000
178723.702,	0.867 //	178724.891,	0.000 /	178852.026,	0.000 //	178857.026,	0.893 //	178858.345,	0.000
178985.323,	0.000 //	178990.323,	0.942 /	178991.545,	0.000 //	179118.590,	0.000 //	179123.590,	0.944
179124.844,	0.000 //	179251.658,	0.000 /	179256.658,	0.955 //	179257.865,	0.000 //	179384.705,	0.000
179389.705,	0.914 //	179390.895,	0.000 /	179518.046,	0.000 //	179523.046,	0.904 //	179524.327,	0.000
179651.588,	0.000 //	179656.588,	0.925 /	179657.845,	0.000 //	179784.982,	0.000 //	179789.982,	0.912
179791.171,	0.000 //	179918.123,	0.000 /	179923.123,	0.901 //	179924.262,	0.000 //	180051.370,	0.000
180056.370,	0.912 //	180057.628,	0.000 /	′ 180184.580,	0.000 //	180189.580,	0.913 //	180190.785,	0.000
180317.804,	0.000 //	180322.804,	0.916 /	180324.058,	0.000 //	180451.323,	0.000 //	180456.323,	0.920
180457.527,	0.000 //	180584.521,	0.000 /	180589.521,	0.930 //	180590.836,	0.000 //	180717.865,	0.000
180722.865,	0.955 //	180724.008,	0.000 /	180850.987,	0.000 //	180855.987,	0.901 //	180857.164,	0.000
180984.096,	0.000 //	180989.096,	0.929 /	180990.287,	0.000 //	181117.245,	0.000 //	181122.245,	0.924
181123.454,	0.000 //	181250.729,	0.000 /	181255.729,	0.928 //	181256.955,	0.000 //	181383.984,	0.000
181388.984,	0.935 //	181390.227,	0.000 /	′ 181517.156,	0.000 //	181522.156,	0.932 //	181523.374,	0.000
181650.470,	0.000 //	181655.470,	0.939 /	181656.664,	0.000 //	181783.601,	0.000 //	181788.601,	0.923
181789.766,	0.000 //	181916.832,	0.000 /	′ 181921.832 ,	0.928 //	181923.039,	0.000 //	182050.085,	0.000
182055.085,	0.950 //	182056.392,	0.000 /	′ 182183.495,	0.000 //	182188.495,	0.945 //	182189.712,	0.000
182316.713,	0.000 //	182321.713,	0.927 /	182322.912,	0.000 //	182449.906,	0.000 //	182454.906,	0.927
182456.130,	0.000 //	182583.419,	0.000 /	182588.419,	0.911 //	182589.652,	0.000 //	182716.722,	0.000
182721.722,	0.940 //	182722.953,	0.000 /	182850.000,	0.000 //	182855.000,	0.941 //	182856.203,	0.000
182983.218,	0.000 //	182988.218,	0.993 /	182989.421,	0.000 //	183116.591,	0.000 //	183121.591,	0.940
183122.846,	0.000 //	183249.905,	0.000 /	183254.905,	0.950 //	183256.098,	0.000 //	183383.016,	0.000
183388.016,	0.934 //	183389.204,	0.000 /	183514.245,	0.000 //	183519.245,	0.000 //	183522.575,	0.000
183649.432,	0.000 //	183654.432,	0.969 /	183655.694,	0.000 //	183782.714,	0.000 //	183787.714,	0.947
183788.929,	0.000 //	183916.126,	0.000 /	183921.126,	0.931 //	183922.326,	0.000 //	184049.489,	0.000
184054.489,	0.930 //	184055.713,	0.000 /	′ 184182.857 ,	0.000 //	184187.857,	0.916 //	184189.075,	0.000
184316.150,	0.000 //	184321.150,	0.925 /	184322.455,	0.000 //	184449.654,	0.000 //	184454.654,	0.941
184455.888,	0.000 //	184583.123,	0.000 /	′ 184588.123,	0.921 //	184589.324,	0.000 //	184716.595,	0.000
184721.595,	0.921 //	184722.881,	0.000 /	184850.066,	0.000 //	184855.066,	0.923 //	184856.313,	0.000
184983.541,	0.000 //	184988.541,	0.943 /	184989.657,	0.000 //	185114.553,	0.000 //	185119.553,	0.000
185122.880,	0.000 //	185249.794,	0.000 /	185254.794,	0.951 //	185256.054,	0.000 //	185383.092,	0.000
185388.092,	0.931 //	185389.299,	0.000 /	185516.322,	0.000 //	185521.322,	0.919 //	185522.532,	0.000
185649.457,	0.000 //	185654.457,	0.932 /	185655.696,	0.000 //	185782.717,	0.000 //	185787.717,	0.945
185789.362,	0.000 //	185914.362,	0.000 /	/					
POPULATIONS									
COUNTS									

END

сиD